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Most of the material in this section has been taken from the report [1].

Version: 01-2010

1



Contents
1 General remarks 3

1.1 Particle reflection coefficient . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Energy reflection coefficient . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Momentum reflection coefficient . . . . . . . . . . . . . . . . . . . . . . 4

2 Target-projectile combinations 5

3 The input data 7
3.1 Hydrogen projectiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Deuteron projectiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Triton projectiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4 Helium projectiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.5 Neon projectiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Data format, and random sampling 12

5 Scaling to other target – projectile combinations 13

6 Updates 14
References

2



1 General remarks
For details concerning the physical model, the basic assumptions and the TRIM-code,
which was used to generate the data discussed here, we refer to the monograph by W.Eckstein,
[2]. For a description of the format of the database, and the random sampling procedure,
which allows one to generate the distribution of reflected particles from the data given here,
we refer the reader to the earlier works [3] and [4] on the same issue. Whereas in Ref. [3]
the data are based upon MARLOWE code calculations, they have been obtained using the
TRIM Monte Carlo code in Ref. [4] and in this current database.
The TRIM code assumes an amorphous target, while in the earlier MARLOWE code calcu-
lations a crystal target structure was retained. In the TRIM code, the “krypton-carbon po-
tential” was used, whereas in MARLOWE usually the “Moliere potential” was employed.
The MARLOWE data in [3] had been produced on the basis of 20,000 particle histories for
each incident energy and angle. The TRIM calculations have been performed with 200,000
cascades for each such incident beam, both in Ref. [4] and in this current database. Thus
the statistical significance of the more recent TRIM data can be expected to be better, but
the trends should be similar as with the MARLOWE code data.
The only difference of this present data compilation to the one presented in [4] is the
extension to a larger set of target-projectile combinations here. However, for comparisons
and completeness, we have kept the data and the plots for particle, energy and momentum
reflection coefficients also for the previous data.
The full database can be found under “downloads”. Graphical presentation of some mo-
ments derived from that database are available under “Surface Data/Incident Species/Target-
Projectile Combination”. The definition of these moments is given in the three subsections
below.

1.1 Particle reflection coefficient
Let f(E, θ, ϕ | E0, θ0) sin(θ)dEdθdϕ denote the probability of reflection of an incident
particle with energy E0 and incident polar angle θ0 against the surface normal, with energy
E and into the solid angle ΩdΩ with dΩ = sin(θ)dθdϕ.
Hence: f is, up to normalization, a conditional (on E0 and θ0) distribution for the energy
E and angle (θ, ϕ) of the reflected particle. The azimuthal angle ϕ is measured against the
incident velocity, i.e. ϕ0 = 0.
The “Particle Reflection Coefficient” RN is the probability of reflection:

RN(E0, θ0) =
∫ E0

0

∫ π

0

∫ 2π

0
dEdθdϕ sin(θ)f(E, θ, ϕ | E0, θ0) (1)

RN is the last number in the first line of the data tables (see: “downloads”, and Figure
below, in Section 4), i.e. given for each incident E0 and θ0.
With the normalization

f̃ =
1

RN

· f (2)

= f̃1(E) · f̃2(θ | E) · f̃3(ϕ | E, θ) (3)

one obtains a multivariate probability density f̃ for the velocity space coordinates of the
reflected particle, for each given E0 and θ0.
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1.2 Energy reflection coefficient
The energy reflection coefficient is defined as

RE(E0, θ0) =
1

E0

∫ E0

0

∫ π

0

∫ 2π

0
dEdθdϕ sin(θ) E f(E, θ, ϕ | E0, θ0) (4)

=
RN

E0

∫ E0

0
dE E f̃1(E | E0, θ0) = RN

Eref

E0

(5)

i.e., as RN times the ratio of the mean energy of the reflected particle to the incident energy
E0.
The second row of the data files, i.e., one row for each fixed E0 and θ0, contains five
numbers (quantiles) E1, E3, E5, E7, E9 which are defined by the relation:

P{E < Ei} = Qi, with Qi = 0.1, 0.3, 0.5, 0.7, 0.9 (6)

with P{E < Ei} denoting the (cumulative) probability that the energy of the reflected
particle is not larger than Ei.
Hence, by construction, each of the 5 energies Ei of reflected particles has the same prob-
ability p = 0.2. The mean energy Eref of reflected particles is therefore simply:

Eref = Eref (E0, θ0) =
1

5

5∑
i=1

Ei (7)

1.3 Momentum reflection coefficient
The (parallel) momentum reflection coefficient is analogously defined as

RM(E0, θ0) =
1

M0,∥

∫ E0

0

∫ π

0

∫ 2π

0
dEdθdϕ sin(θ) M∥ f(E, θ, ϕ | E0, θ0) (8)

=
RN

M0,∥

∫ E0

0
dE M∥ f̃1(E | E0, θ0) = RN

M ref,∥

M0,∥
= RN

vref,∥
v0,∥

(9)

i.e., as RN times the ratio of the mean (parallel) momentum M∥ of the reflected particle to
the incident (parallel) momentum M0,∥.
The incident velocity v⃗0 is defined as

v⃗0 = (v0,⊥, v0,∥, 0) = (v0 cos θ0, v0 sin θ0, 0) (10)

with v⊥ and v∥ denoting the velocity components normal and parallel to the surface, re-
spectively, v0 =

√
2E0/m, with m being the mass of the incident particle.

The velocity of the reflected particle is given as

v⃗ref = (vref,⊥, vref,∥, vref,⊤) = (vref cos θ, vref sin θ cosϕ, vref sin θ sinϕ) (11)

The next block of 5 rows of the data files, i.e., one such block for each fixed E0 and
θ0, contains 25 numbers (quantiles), 5 numbers in each row i, θi1, θ

i
3, θ

i
5, θ

i
7, θ

i
9 which are

defined by the relation:

P{cos θ < cos(θij)|Ei} = Qi
j, with Qi

j = 0.1, 0.3, 0.5, 0.7, 0.9 (12)
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Hence, by construction, for each given energy of the reflected particle Ei, each of the 5
polar angles cos(θij) of the reflected particles has the same probability p = 0.2.
Analogously, there are then 5 blocks, each block with 5 rows, each row with 5 numbers, for
the quantiles of the conditional distribution of the cosines of azimuthal angles ϕ. The ith

block corresponds to given energy E0,i, and the jth row in block i contains these 5 quantiles
for given Ei and θj:

P{cosϕ < cos(ϕi,j
k )|Ei, θj} = Qi,j

k , with Qi,j
k = 0.1, 0.3, 0.5, 0.7, 0.9 (13)

Hence, again by construction, the mean parallel velocity vref,∥ of reflected particles, given
that the reflected energy is Ei and that the polar angle of reflection is θj is therefore simply:

vi,jref,∥ =
1

5

5∑
i=1

viref sin(θ
i
j) cos(ϕ

i,j
k ) (14)

with viref =
√
2Ei/m.

Since all the 5 polar angles θij also have same probability p = 0.2 by construction (Eq.
12), we can average this over polar angles to obtain for the mean reflected parallel velocity,
given that Eref = Ei:

viref,∥ =
1

5

5∑
j=1

vi,jref,∥ =
1

25

5∑
j=1

5∑
k=1

viref sin(θ
i
j) cos(ϕ

i,j
k ) (15)

and, finally, averaging over the 5 energies Ei (all have the same probability p = 0.2), we
find

vref,∥ =
1

5

5∑
j=1

viref,∥ =
1

125

5∑
i=1

5∑
j=1

5∑
k=1

viref sin(θ
i
j) cos(ϕ

i,j
k ) (16)

Hence, RM can be evaluated from each table, i.e. for each target-projectile combination
and for each incident energy E0 and angle θ0. Of course, for normal incidence (θ0 = 0)
also v0,∥ = 0 , Eq. (10). In this case RM is not defined and set to zero.

2 Target-projectile combinations
The databases had been set up in references [3] and [4] for the following target-projectile
combinations:

D onto Fe (Ref. [3], MARLOWE code, “Histogram quantile estimator”)
T onto Fe (ditto)
He onto Fe (ditto)
(This database is available upon request, but not in use anymore in the EIRENE Monte
Carlo code package)

H onto Fe and H onto C (Ref. [4], TRIM code, “Histogram quantile estimator”)
D onto Fe and D onto C (ditto)
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We have, until June 2001, added the following combinations:

H onto Cu , H onto Mo and H onto W (TRIM Code)
D onto Mo, D onto W and D onto Be (ditto)
T onto Fe, T onto C, T onto Mo and T onto W (ditto)
He onto Fe, He onto C, He onto W and He onto Mo (ditto)
Ne onto C, and Ne onto Be (ditto)

(Further updates: see below: section 6)
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3 The input data
The TRIM code version used here is NEWTRD, which is a static vectorized version for
reflection off a one-component target.
Some of the physical input parameters which have been specified for the TRIM code calcu-
lations for these particular combinations are listed in the table below. A detailed description
of the physical model is given in [2]. The short description given below is from W.Eckstein,
IPP Garching, April 1991, private communication.

The input data file consists of 4 cards:

Z1 M1 Z2 M2 RHO TT ED
E0 EF X0 ALPHA CK CA CW
NH RI ESB KDEE KK0 INEL DGI
H1 H2 H3 H4 H5

First card:

• Z1 atomic number of projectile

• M1 mass (in amu) of projectile

• Z2 atomic number of target atom

• M2 mass (in amu) of target atom

• RHO target density ( in g/cm**3)

The reflection coefficients should be independent of RHO.

• TT target thickness ( in Å)

• ED displacement energy (in eV)

Not relevant for sputtering or reflection as used here, but only for radiation damage
calculations.

Second card

• E0 energy of projectile (in eV)

• EF cutoff energy of projectiles (in eV)
must be larger than zero

• X0 starting depth of projectile (in Å)
If x0 is zero or negative the projectile starts at x = −su = −2. · pmax. The
uppermost target atoms are at x=0. They do not form a complete layer, they are
distributed randomly.

• ALPHA angle of incidence (in degree) with respect to surface normal

• CK correction factor to the Lindhard-Scharff nonlocal inelastic energy loss of the
projectile
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• CA correction factor to the Firsov screening length for collisions between projectile
and target atom (only for application of Moliere-potential)

• CW depth interval for calculated depth distribution (in Å)

Not relevant for sputtering or reflection as used here, but only for depth profile eval-
uation. In this latter case reasonable choices for CW depend also on incident energy
and angle.

Third card

• NH number of test projectiles (Monte Carlo histories)

• RI initial random number

• ESB surface binding energy for projectiles (in eV)

• KDEE inelastic energy loss model for projectiles

– = 1 nonlocal, Lindhard-Scharff

– = 2 local, Oen-Robinson

– = 3 equipartition of 1 and 2

– = 4 nonlocal, Andersen-Ziegler tables for hydrogen,
for energies larger than 20 keV, i.e. irrelevant for present database.

– = 5 nonlocal, Ziegler tables for helium,
for energies larger than 80 keV, i.e. irrelevant for present database.

• KK0 maximum order of weak (simultaneous) collisions between projectiles and tar-
get atoms. KK0 must be between 0 and 4 (4 means: no weak collisions included)

• INEL inelastic energy loss outside the surface
= 0: no inelastic energy loss outside the target
̸= 0: see hlm (below)

• DGI angular interval of the azimuthal angle for matrices

Fourth card

• H1,. . . ,H5 constants for the nonlocal inelastic energy loss given by Andersen-Ziegler
tables for hydrogen or by Ziegler tables for helium. See remarks for KDEE flag
above. I.e., these parameters are irrelevant for present database.

Fixed parameters for all cases documented here:

• TT =99000.

• X0 =0.0

• CK =1.0

• CA =1.0
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• NH =200000

• RI =29303.0

• KDEE =3

• DGI =30.0

• H1 =4.652

• H2 =0.4571

• H3 =80.73

• H4 =22.0

• H5 =4.952

Fixed Parameters for all Be targets

• Z2 =4

• M2 =9.012

• RHO =1.85 (also in use: RHO=1.80)

Fixed Parameters for all C targets

• Z2 =6

• M2 =12.01

• RHO =2.26 (for graphite used in fusion often also: RHO=1.85)

Fixed Parameters for all Fe targets

• Z2 =26

• M2 =55.85

• RHO =7.87

Fixed Parameters for all W targets

• Z2 =74

• M2 =183.85

• RHO =19.30
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3.1 Hydrogen projectiles
Fixed Parameters for all H - projectile cases

• Z1 =1

• M1 =1.01

• ESB =1.0

Hydrogen Projectiles onto:
Be C Fe Cu Mo W

Ref. Knauf Eckstein Eckstein ? ? Knauf
ED ? 25 17 19 33 35.0 ?
EF ? 0.95 0.95 ? ? 0.95

CW ? 5 5 ? ? 10.0
KK0 ? 2 2 2 2 3

3.2 Deuteron projectiles
Fixed Parameters for all D - projectile cases

• Z1 =1

• M1 =2.01

• ESB =1.0

Deuteron Projectiles onto:
Be C Fe Mo W

Ref. Knauf Eckstein Eckstein ? Knauf
ED ? 25 17.0 33 35.0 ?
EF 0.98 0.95 0.98 ? 0.95

CW 4.0 5.0 4.0 ? 10.0
KK0 2 2 3 ? 3

3.3 Triton projectiles
Fixed Parameters for all T - projectile cases

• Z1 =1

• M1 =3.02

• ESB =1.0
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Triton Projectiles onto:
Be C Fe Mo W

Ref. ? Reiter Reiter ? Reiter
ED ? 25.0 17.0 33 38
EF ? 0.98 0.98 ? 0.95

CW ? 4.0 4.0 ? 5
KK0 ? 2 2 ? 3

3.4 Helium projectiles
Fixed Parameters for all He - projectile cases

• Z1 =2

• M1 =4.00

• ESB =0.0

Helium Projectiles onto:
Be C Fe Mo W

Ref. ? Reiter Reiter ? Eckstein
ED ? 25.0 17.0 33 35
EF ? 0.20 0.20 ? 0.10

CW ? 10.0 3.0 ? 10.0
KK0 ? 2 2 ? 2

3.5 Neon projectiles
Fixed Parameters for all Ne - projectile cases

• Z1 =10

• M1 =20.183

• ESB =0.0

Neon Projectiles onto:
Be C Fe Mo W

Ref. ? Knauf ? ? Eckstein
ED ? 25.0 17 33 38
EF ? 0.20 ? ? 0.5

CW ? 10.0 ? ? 5
KK0 ? 2 ? ? 2
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4 Data format, and random sampling
Distribution functions for back-scattered particles are available for incident energies of 1,
2, 5, 10, 20, 50, 100, 200, ..., 5000 eV, and for incident polar angles of 0, 30, 45, 60, 80
and 85 degrees against the surface normal.
The distribution function for back-scattered particles in velocity space is represented by
tables of conditional quantile functions, as explained in [3] (although this statistical termi-
nology is not mentioned explicitly there). Each such table corresponds to one particular
target projectile combination, one particular incident energy and one particular incident
polar angle. Hence there are 84 (= 12 · 7) tables for each target projectile combination.
In the first line of each table the nuclear mass and charge numbers of target and projec-
tile, respectively, are given, followed by incident energy (eV) and angle (degrees) and the
particle reflection coefficient.
The next line is a list of 5 numbers for the backscattered energy distribution (corresponding
to the 5 energy values, which belong to the 5 (uniformly distributed) random numbers 0.1,
0.3, 0.5, 0.7 and 0.9). Next there is a table of 25 numbers for the cosine of the polar
emission angle (5 rows of 5 numbers each). Each row corresponds to one of the five energy
values from the previously mentioned energy distribution. Within each row (i.e., for fixed
backscattered energy) the values correspond to the 5 polar angles, which correspond to the
5 uniformly distributed random numbers 0.1, 0.3, 0.5, 0.7, 0.9 .
Finally there is a block of 125 numbers for the azimuthal distribution, 5 blocks consisting
of 5 rows of 5 numbers each. The choice of a block is made with the same random number
as used for the energy, the row number within one block is selected using the second (polar
angle) random number, and the column in this row is determined then by a third random
number.
The full database for one particular target - projectile combination consists of 84 such
tables (12 incident energies and 7 incident polar angles).
Use of these tables has been explained in [5] and [4]. However, unfortunately the examples
for the one particular triple of random numbers given in these references [5] and [4] are
wrong. A projectile-target case: D on Fe was chosen. For the three random numbers
ξ1 = 0.3, ξ2 = 0.5 and ξ3 = 0.9 and for an incident energy of 200 eV and an incident polar
angle of 30 degrees as chosen in [5], the sampled energy of the reflected particle should be
91.665 eV (as correctly stated in [5]) but for the polar and azimuthal angles θ and ϕ one
must find cos θ = 0.778114 and cosϕ = 0.942824 in this case, distinct from the values
given in the references by Heifetz and Eckstein.
The same triple of random numbers, for example, applied to the table for helium onto
carbon, 200 eV, normal incidence, would yield: 26.905 eV, cos θ = 0.83113 and cosϕ =
0.94738.
The correct interpretation of the data can be easily checked, e.g., by using the fact that for
the tables corresponding to normal incidence, the resulting azimuthal distribution must be
isotropic. Note that, e.g. in the faulty example in Ref. [5] and [4], this is not the case.
The EIRENE code uses these tables, for a continuous spectrum of incident energies and
angles, as well as for a continuous triple of independent, uniformly distributed random
numbers by multiple linear interpolation in the tables.
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E2

Ein Jin
RN

cos J3

2

cos j5

2,3

cos Jj

i

cos jk

i,j

i=1

i=5

i=4

i=3

i=2

E , i=1,5i

D --> Fe

1. 2.00 26. 56.00 2.00E+02 3.00E+01 4.80E-01

4.11620E+01 9.16650E+01 1.25390E+02 1.50840E+02 1.72260E+02

4.82510E-01 6.71020E-01 7.93260E-01 8.86500E-01 9.64970E-01

4.64730E-01 6.53370E-01 7.78110E-01 8.76670E-01 9.60970E-01

4.33170E-01 6.27780E-01 7.58580E-01 8.67410E-01 9.57180E-01

4.18910E-01 6.07690E-01 7.37670E-01 8.49380E-01 9.52100E-01

3.16180E-01 4.77130E-01 6.08050E-01 7.38090E-01 8.90090E-01

-9.40740E-01 -5.56890E-01 6.39960E-02 6.32580E-01 9.56660E-01

-9.43650E-01 -5.83060E-01 -2.24480E-02 5.53250E-01 9.38340E-01

-9.42090E-01 -5.90000E-01 -3.12500E-02 5.86500E-01 9.51360E-01

-9.48140E-01 -5.63720E-01 3.37290E-03 6.00100E-01 9.56280E-01

-9.48830E-01 -5.67360E-01 -1.34340E-02 5.95890E-01 9.56690E-01

-9.39810E-01 -5.87230E-01 -2.29360E-02 5.59450E-01 9.44810E-01

-9.54800E-01 -5.73700E-01 3.88110E-02 5.87850E-01 9.49180E-01

-9.45890E-01 -5.85990E-01 -4.72020E-02 5.59330E-01 9.42820E-01

-9.46810E-01 -6.23760E-01 -4.98030E-02 5.61960E-01 9.39650E-01

-9.52460E-01 -5.42690E-01 5.07270E-02 6.15900E-01 9.60990E-01

-9.45580E-01 -5.56640E-01 2.38740E-02 6.11950E-01 9.62670E-01

-9.42630E-01 -5.42540E-01 3.99670E-02 6.07410E-01 9.51140E-01

-9.52150E-01 -5.53460E-01 4.96280E-02 6.20170E-01 9.55360E-01

-9.36370E-01 -5.59120E-01 2.80660E-02 6.24860E-01 9.44440E-01

-9.48420E-01 -5.61020E-01 3.99420E-03 5.94790E-01 9.49920E-01

-9.35360E-01 -4.59090E-01 1.55120E-01 6.70960E-01 9.52260E-01

-9.36900E-01 -4.98860E-01 1.52800E-01 6.60320E-01 9.60450E-01

-9.37110E-01 -5.15800E-01 1.07910E-01 6.31570E-01 9.61270E-01

-9.35620E-01 -5.13910E-01 1.37290E-01 6.88520E-01 9.63320E-01

-9.43480E-01 -5.41080E-01 7.34930E-02 6.16980E-01 9.47230E-01

-7.03640E-01 -2.60170E-02 4.62110E-01 8.07130E-01 9.81170E-01

-6.50590E-01 -7.77770E-04 5.20590E-01 8.27840E-01 9.80430E-01

-6.36710E-01 -3.04950E-02 4.52520E-01 7.94420E-01 9.75290E-01

-6.26120E-01 -5.22300E-02 4.84880E-01 8.20230E-01 9.78380E-01

-5.59810E-01 -7.71550E-02 3.96120E-01 7.88740E-01 9.76690E-01

Figure 1: Sample reflection data table, for D on Fe, 200 eV, 30 degrees incident energy and
angle, respectively. Marked are the reflection energy, polar and azimuthal angles for the
triple of random number (0.3, 0.5, 0.9)

5 Scaling to other target – projectile combinations
In case a particular target (B) projectile (A) data file A_on_B is not available in an
EIRENE run, then the following reduced energy scaling procedure is applied:
Let A be the incident particle, with energy E, mass mA, nuclear charge ZA and let B be
the stationary (EB = 0) target, characterized by mB, ZB. Then the reduced energy ϵA,B is
defined as:

ϵA,B = E/ETF = Er/C = Er/

(
ZAZBe

2

a

)
(17)

with Er the center of mass collision energy: Er = E ·mB/(mA +mB), e the elementary
charge: e2 = 14.39 eV Å and a is the Thomas Fermi screening length (also: Lindhard
screening length):
a = 0.4685(Z

2/3
A + Z

2/3
B )−1/2 Å.
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The energy ETF

ETF = 30.74
mA +mB

mB

ZAZB(Z
2/3
A + Z

2/3
B )1/2

implicitly defined by the above relation is the so called Thomas Fermi energy, a parameter
that appears in a natural way when reflection (and physical sputtering) is predominantly
determined by the nuclear stopping cross section.
ϵA,B is a universal dimensionless energy, resulting from the binary collision approximation
and elastic collision kinetics, and this reduced energy often allows a unified presentation
of surface reflection data vs. energy for different target projectile combinations, see for
example [2].
The procedure in an EIRENE run is now as follows:
Given a particle of species A has hit a surface of material B. If the surface reflection data
file TRIM-A_on_B is available in a particular EIRENE run, then this data file is used
to determine the reflection probability, energy and angles.
If this file is not active in a particular run (e.g.: if it was not selected in the input file,
or if this particular target-projectile combination is not available in the EIRENE surface
database at all), then EIRENE computes the Thomas Fermi energies ETF (Ai, Bi) for all
target-projectile combinations Ai, Bi, for which it does have such TRIM data files. It then
identifies amongst those the one Ai′ , Bi′ for which the ratio

ETF (A,B)/ETF (Ai′ , Bi′) = ϵA,B/ϵAi′ ,Bi′ =: f−1
reduc

is closest to one. The target projectile combination selected in this way can hence be re-
garded as being “physically most similar” to the system A_on_B. EIRENE then changes
the incident energy E to Ẽ = E · freduc = E · ϵAi′ ,Bi′

/ϵA,B and then carries out its surface
reflection procedure according to TRIM model Ai′ , Bi′ for incident energy Ẽ. The energy
Ẽref of the reflected particle is then finally scaled back to the A_on_B system by the
relation Eref == Ẽref/freduc = Ẽref · ϵA,B/ϵAi′ ,Bi′

.
Note that due to the wide range of available TRIM data files in the EIRENE database the
scaling factors turn out to be close to one, typically, and this entire procedure can therefore
be regarded as being a quite robust interpolation scheme in the TRIM database.
Finally we note that in case of physical sputtering a similar reduced energy scaling can be
carried out, because the same Thomas Fermi energy also appears in theoretical treatments
of sputtering. But strictly this scaling is justified only for the high energy region E ≫ Eth

with Eth denoting the finite threshold energy. A generalized “reduced energy scaling for
sputtering”, involving both controlling parameters ETF and Eth, and hence accounting for
the different scaling near the important threshold energy for the sputtering process, has
been given e.g. in [7].

6 Updates
The TRIM surface reflection database has been updated in 2007 by a number of further
target-projectile combinations, obtained from S. Droste, FZ-Juelich, see:

Stefan Droste, “Simulation von Erosions- und Depositionsprozessen mehrkomponentiger
Oberflächenschichten in Fusionsanlagen”, Report Jül-4253, August 2007, ISSN 0944-2952
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