The data file HYDHEL: Atomic and Molecular Data for EIRENE based upon: Janev, Langer, Evans, Post, "Elementary Processes in Hydrogen-Helium Plasmas", Springer 1987

D. Reiter FZJ, Forschungszentrum Jülich GmbH 52425 Jülich Germany

Version: January 13, 2020

Available via E-mail from d.reiter@fz-juelich.de, or as part of the EIRENE code git-repository hosted at FZ Jülich

Contents

Ta	ble of contents	II
Ι	Errata, list of modifications as compared to the original 1987 book [1]	VII
II	to be done	IX
1	H.1 FITS FOR σ	1
	Reaction 2.1.1 $e + H(1s) \rightarrow e + H(2p)$	1
	Reaction 2.1.2 $e + H(1s) \rightarrow e + H(2s)$	2
	Reaction 2.1.3 $e + H(2s) \rightarrow e + H(2p)$	3
	Reaction 2.1.4 $e + H(n) \rightarrow e + H(m)(m > n, m \neq 2)$	4
	Reaction 2.1.5 $e + H(1s) \rightarrow e + H^+ + e$	5
	Reaction 2.1.6 $e + H(2s) \rightarrow e + H^+ + e$	6
	Reaction 2.1.7 $e + H(n = 3) \rightarrow e + H^+ + e$	7
	Reaction 2.2.1a $e + H_2(v = 0) \rightarrow e + H_2(v = 1) \dots \dots \dots \dots \dots \dots \dots \dots \dots$	8
	Reaction 2.2.1b $e + H_2(v = 0) \rightarrow e + H_2(v = 2) \dots \dots \dots \dots \dots \dots \dots \dots$	9
	Reaction 2.2.2 $e + H_2(X^1\Sigma_g^+) \rightarrow e + H_2(B^1\Sigma_u^+ 2p\sigma)$	10
	Reaction 2.2.3 $e + H_2(X^1\Sigma_q^+) \rightarrow e + H_2(C^1\Pi_u 2p\pi) \ldots \ldots \ldots \ldots \ldots \ldots$	11
	Reaction 2.2.4 $e + H_2(X^1\Sigma_g^+) \rightarrow e + H_2(E, F^1\Sigma_g^+)$	12
	Reaction 2.2.5 $e + H_2(X^1\Sigma_q^+) \to e + H_2(b^3\Sigma_u^+, a^3\Sigma_q^+, c^3\Pi_u) \to e + H(1s) + H(1s)$) 13
	Reaction 2.2.6 $e + H_2(X^1\Sigma_q^+) \rightarrow e + H_2(1s\sigma_g, nl\lambda ^1\Lambda) \rightarrow e + H(1s) + H(2s)$.	14
	Reaction 2.2.7 $e + H_2(X^1\Sigma_g^+) \rightarrow e + H_2(2p\sigma_u, nl\lambda Q_2^1\Pi_u) \rightarrow e + H(2p) + H(2s)$	15
	Reaction 2.2.8 $e + H_2(X^1\Sigma_g^+) \to e + H_2(2p\sigma_u; n = 3) \to e + H(1s) + H(n = 3)$.	16
	Reaction 2.2.9 $e + H_2(X^1\Sigma_g^+) \rightarrow e + H_2^+(v) + e \dots \dots \dots \dots \dots \dots \dots$	17
	Reaction 2.2.10 $e + H_2(X^1 \Sigma_g^+) \to e + [H_2^+(\Sigma_g, \Sigma_u) + e] \to e + H^+ + H(1s) + e$.	18
	Reaction 2.2.11 $e + H_2^+(v) \rightarrow e + H^+ + H^+ + e, (v = 09)$	19
	Reaction 2.2.12 $e + H_2^+(v) \to e + H_2^+(2p\sigma_u) \to e + H^+ + H(1s), (v = 09)$.	20
	Reaction 2.2.13 $e + H_2^+(v) \to e + H_2^+(2p\pi_u) \to e + H^+ + H(n=2), (v=0\dots9)$	21
	Reaction 2.2.14 $e + H_2^+(v) \to H(1s) + H(n), (v = 0 \dots 9, n \ge 2)$	22
	Reaction 2.2.15 $e + H_3^+ \to H + H + H$ or $\to H_2(v > 5) + H(n = 2)$	23
	Reaction 2.2.16 $e + H_3^+ \to e + H^+ + 2H$	24
	Reaction 2.2.17 $e + H_2(v \ge 4) \to (H_2^-) \to H^- + H$	25
	Reaction 2.3.1a $e + He(1s^21S) \rightarrow e + He(1s^22p^11P)$	26
	Reaction 2.3.1b $e + He(1s^21S) \rightarrow e + He(1s^33p^11P) \dots \dots \dots \dots \dots$	27
	Reaction 2.3.2 $e + He(1s^21S) \rightarrow e + He(1s^22s^11S)$	28
	Reaction 2.3.3a $e + He(1s^21S) \rightarrow e + He(1s^22s^3S)$	29
	Reaction 2.3.3b $e + He(1s^21S) \rightarrow e + He(1s^22p^13P) \dots \dots \dots \dots \dots$	30
	Reaction 2.3.3c $e + He(1s^21S) \rightarrow e + He(1s^13s^13S)$	31
	Reaction 2.3.3d $e + He(1s^21S) \rightarrow e + He(1s^33p^3P) \dots \dots \dots \dots \dots$	32
	Reaction 2.3.4a $e + He(1s^12s^13S) \rightarrow e + He(1s^12s^11S)$	33
	Reaction 2.3.4b $e + He(1s^12s^13S) \rightarrow e + He(1s^12p^11P)$	34
	Reaction 2.3.4c $e + He(1s^12s^11S) \rightarrow e + He(1s^12p^13P)$	35
	Reaction 2.3.4d $e + He(1s^12p^13P) \rightarrow e + He(1s^12p^11P)$	36
	Reaction 2.3.5a $e + He(1s^12s^11S) \rightarrow e + He(1s^12p^11P)$	37
	Reaction 2.3.5b $e + He(1s^12s^13S) \rightarrow e + He(1s^12p^13P) \ldots \ldots \ldots \ldots \ldots$	38

Reaction 2.3.6a $e + He(1s^{1}2s^{1}1S) \rightarrow e + He(1s^{1}3p^{1}1P)$	39
Reaction 2.3.6b $e + He(1s^12s^13S) \rightarrow e + He(1s^13p^13P)$	40
Reaction 2.3.7a $e + He(1s^12p^11P) \rightarrow e + He(1s^13d^11D) \dots \dots \dots \dots \dots$	41
Reaction 2.3.7b $e + He(1s^{1}2p^{1}3P) \rightarrow e + He(1s^{1}3d^{1}3D) \dots \dots \dots \dots \dots$	42
Reaction 2.3.9 $e + He(1s^21S) \rightarrow e + He^+(1s) + e$	43
Reaction 2.3.10a $e + He(1s^{1}2s^{1}1S) \rightarrow e + He^{+}(1s) + e$	44
Reaction 2.3.10b $e + He(1s^{1}2p^{1}1P) \rightarrow e + He^{+}(1s) + e$	45
Reaction 2.3.10c $e + He(1s^{1}2s^{1}3S) \rightarrow e + He^{+}(1s) + e$	46
Reaction 2.3.10d $e + He(1s^{1}2p^{1}3P) \rightarrow e + He^{+}(1s) + e$	47
Reaction 2.3.12 $e + He(1s^1nl^1\{2S+1\}L) \rightarrow e + He^+(nl) + e$	48
Reaction 2.3.13 $e + He^+(1s) \rightarrow He(1s^1nl^1\{2S+1\}L) + hv$	49
Reaction 2.3.14 $e + He^+(1s) \rightarrow e + He^+(2p)$	50
Reaction 2.3.15 $e + He^+(1s) \rightarrow e + He^+(2s)$	51
Reaction 2.3.19 $e + He^+(1s) \to e + He^{++} + e$	52
Reaction 3.1.1 $p + H(1s) \rightarrow p + H(2p) \dots \dots$	53
Reaction 3.1.2 $p + H(1s) \rightarrow p + H(2s) \dots \dots$	54
Reaction 3.1.3 $p + H(2s) \rightarrow p + H(2p) \dots \dots$	55
Reaction 3.1.6 $p + H(1s) \rightarrow p + H^+ + e$	56
Reaction 3.1.8 $p + H(1s) \rightarrow H(1s) + p \dots \dots$	57
Reaction 3.1.9 $p + H(1s) \rightarrow H(2p) + p \dots \dots$	58
Reaction 3.1.10 $p + H(1s) \rightarrow H(2s) + p$	59
Reaction 3.1.11a $p + H(n = 2) \rightarrow H(n = 2) + p$	60
Reaction 3.1.11b $p + H(n = 3) \rightarrow H(n = 3) + p$	61
Reaction 3.2.1a $p + H_2(j = 0) \rightarrow p + H_2(j')(j' \ge 2)$	62
Reaction 3.2.1b $p + H_2(j = 1) \rightarrow p + H_2(j')(j' \ge 3)$	63
Reaction 3.2.2 $p + H_2(v = 0) \rightarrow p + H_2(v > 0)$	64
Reaction 3.2.3 $p + H_2 \rightarrow H(1s) + H_2^+$	65
Reaction 3.2.4a $p + D_2 \rightarrow D^+ + HD$ (or $H + D$)	66
Reaction 3.2.4b $p + D_2 \rightarrow D + HD^+ \dots \dots$	67
Reaction 3.2.5 $p + H_2 \rightarrow p + H_2^+ (v \le 9) + e \dots \dots$	68
Reaction 3.2.6 $p + H_2^+(v) \to p + H(1s) + H^+$	69
Reaction 3.3.1 $p + He \rightarrow H + He^+(1s)$	70
Reaction 3.3.2 $p + He \rightarrow p + He^+(1s) + e$	71
Reaction 3.3.2n $p + He \rightarrow p + He^+(1s) + e$	71
Reaction 3.3.3 $p + He(1s^21S) \rightarrow p + He(1s^12p^11P)$	72
Reaction 3.3.6a $p + He(1s^{1}2s^{1}1S) \to H(2s) + He^{+}(1s)$	73
Reaction 3.3.6an $p + He(1s^{1}2s^{1}1S) \to H(2s) + He^{+}(1s) \dots \dots \dots \dots \dots$	73
Reaction 3.3.6b $p + He(1s^{1}2s^{1}3S) \to H(2s) + He^{+}(1s)$	74
Reaction 3.3.6bn $p + He(1s^{1}2s^{1}3S) \to H(2s) + He^{+}(1s) \dots \dots \dots \dots \dots$	74
Reaction 3.3.7a $p + He(1s^{1}2p^{1}1P) \to H(2p) + He^{+}(1s) \dots \dots \dots \dots \dots$	75
Reaction 3.3.7b $p + He(1s^{1}2p^{1}3P) \to H(2p) + He^{+}(1s) \dots \dots \dots \dots \dots$	76
Reaction 4.2.1 $H_2^+(v) + H(1s) \to H_2^+(2p\sigma_u) + H(1s) \to H^+ + H + H(1s), (v = 1)$	
$0\ldots 9)\ldots$	77
Reaction 4.3.1 $H_2^+ + H_2 \to H_2 + H_2^+ \dots \dots$	78
Reaction 4.3.2 $H_2^+ + H_2 \rightarrow H_2^+ + H_2^+ + e$	79
Reaction 4.3.3 $H_2^+ + H_2 \to H_3^+ + H$	80
Reaction 4.4.1 $H_2^+ + He \to H_2^+ + He^+(1s) + e$	81

	Reaction 5.2.1 $He^+(1s) + H_2 \to He^+(1s) + H_2^+ + e$	82
	Reaction 5.2.2 $He^+(1s) + H_2 \rightarrow He(1s^21S) + H_2^+$	83
	Reaction 5.2.3 $He^+(1s) + H_2 \rightarrow He(1s^21S) + H^+ + H$	84
	Reaction 5.3.1 $He^+(1s) + He \rightarrow He^+(1s)$	85
	Reaction 5.3.2 $He^+ + He \rightarrow He^+ + He^+ + e^-$	86
	Reaction 6.1.1 $He^{++} + H(1s) \rightarrow He^{++} + H(2p)$	87
	Reaction 6.1.3 $He^{++} + H(1s) \rightarrow He^{++} + H^{+} + e$	88
	Reaction 6.1.4 $He^{++} + H(n) \rightarrow He^{++} + H^+ + e(n \ge 2)$	89
	Reaction 6.1.5 $He^{++} + H(2s) \rightarrow He^{++} + H(2p)$	90
	Reaction 6.1.6 $He^{++} + H \rightarrow He^{+}(n = 2) + H^{+}$	91
	Reaction 6.1.7 $He^{++} + H(n) \rightarrow He^{+}(n') + H^{+}$	92
	Reaction 6.2.1 $He^{++} + H_2 \rightarrow He^{++} + H_2^+(v) + e$	93
	Reaction 6.2.1n $He^{++} + H_2 \rightarrow He^{++} + H_2^+(v) + e$	93
	Reaction 6.3.1 $He^{++} + He \rightarrow He + He^{++}$	94
	Reaction 6.3.2 $He^{++} + He \rightarrow He^{++} + He^{+}(1s) + e$	95
	Reaction 6.3.2n $He^{++} + He \rightarrow He^{++} + He^{+}(1s) + e$	95
	Reaction 7.1.1 $e + H^- \rightarrow e + H(1s) + e$	96
	Reaction 7.1.2 $e + H^- \rightarrow e + H^+ + 2e$	97
	Reaction 7.2.1 $p + H^- \rightarrow p + H + e$	98
	Reaction 7.2.2 $p + H^- \rightarrow H(n = 2) + H(1s)$	99
	Reaction 7.2.3 $p + H^- \rightarrow H(n = 3) + H(1s)$	100
	Reaction 7.3.1 $H^- + H(1s) \rightarrow H(1s) + H^-(1s)$	101
	Reaction 7.3.2a $H^- + H \rightarrow H^{\mathbb{P}}(\Sigma_c) \rightarrow H + H + e$	102
	Reaction 7.3.2b $H^- + H \rightarrow H^2(\Sigma_{q_1}) \rightarrow H_2 + e$	103
2	H.2 POLYNOMIAL FITS FOR $< \sigma v >$ FOR FIXED <i>E</i>	104
2	H.2 POLYNOMIAL FITS FOR $< \sigma v >$ FOR FIXED <i>E</i> Reaction 2.1.1 $e + H(1s) \rightarrow e + H(2p) \dots \dots$	104 104
2	H.2 POLYNOMIAL FITS FOR $\langle \sigma v \rangle$ FOR FIXED <i>E</i> Reaction 2.1.1 $e + H(1s) \rightarrow e + H(2p) \dots \dots$	104 104 105
2	H.2 POLYNOMIAL FITS FOR $\langle \sigma v \rangle$ FOR FIXED <i>E</i> Reaction 2.1.1 $e + H(1s) \rightarrow e + H(2p) \dots \dots \dots \dots \dots \dots \dots \dots$ Reaction 2.1.2 $e + H(1s) \rightarrow e + H(2s) \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots$ Reaction 2.1.3 $e + H(2s) \rightarrow e + H(2p) \dots \dots$	104 104 105 106
2	H.2 POLYNOMIAL FITS FOR $\langle \sigma v \rangle$ FOR FIXED <i>E</i> Reaction 2.1.1 $e + H(1s) \rightarrow e + H(2p) \dots \dots \dots \dots \dots \dots \dots \dots$ Reaction 2.1.2 $e + H(1s) \rightarrow e + H(2s) \dots \dots \dots \dots \dots \dots \dots \dots \dots$ Reaction 2.1.3 $e + H(2s) \rightarrow e + H(2p) \dots \dots$ Reaction 2.1.4 $e + H(n = 1) \rightarrow e + H(n = 3) \dots \dots \dots \dots \dots \dots \dots \dots \dots$	104 104 105 106 107
2	H.2 POLYNOMIAL FITS FOR $\langle \sigma v \rangle$ FOR FIXED <i>E</i> Reaction 2.1.1 $e + H(1s) \rightarrow e + H(2p) \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots$ Reaction 2.1.2 $e + H(1s) \rightarrow e + H(2s) \dots \dots$ Reaction 2.1.3 $e + H(2s) \rightarrow e + H(2p) \dots \dots$ Reaction 2.1.4a $e + H(n = 1) \rightarrow e + H(n = 3) \dots $	104 104 105 106 107 108
2	H.2 POLYNOMIAL FITS FOR $\langle \sigma v \rangle$ FOR FIXED <i>E</i> Reaction 2.1.1 $e + H(1s) \rightarrow e + H(2p) \dots$ Reaction 2.1.2 $e + H(1s) \rightarrow e + H(2s) \dots$ Reaction 2.1.3 $e + H(2s) \rightarrow e + H(2p) \dots$ Reaction 2.1.4 $e + H(n = 1) \rightarrow e + H(n = 3) \dots$ Reaction 2.1.4 $b + H(n = 2) \rightarrow e + H(n = 3) \dots$ Reaction 2.1.5 $e + H(1s) \rightarrow e + H^+ + e$	104 104 105 106 107 108 109
2	H.2 POLYNOMIAL FITS FOR $\langle \sigma v \rangle$ FOR FIXED <i>E</i> Reaction 2.1.1 $e + H(1s) \rightarrow e + H(2p) \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots$ Reaction 2.1.2 $e + H(1s) \rightarrow e + H(2s) \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots$ Reaction 2.1.3 $e + H(2s) \rightarrow e + H(2p) \dots \dots$ Reaction 2.1.4a $e + H(n = 1) \rightarrow e + H(n = 3) \dots \dots \dots \dots \dots \dots \dots \dots \dots$ Reaction 2.1.4b $e + H(n = 2) \rightarrow e + H(n = 3) \dots $	104 104 105 106 107 108 109 110
2	H.2 POLYNOMIAL FITS FOR $\langle \sigma v \rangle$ FOR FIXED <i>E</i> Reaction 2.1.1 $e + H(1s) \rightarrow e + H(2p) \dots$ Reaction 2.1.2 $e + H(1s) \rightarrow e + H(2s) \dots$ Reaction 2.1.3 $e + H(2s) \rightarrow e + H(2p) \dots$ Reaction 2.1.4 $e + H(n = 1) \rightarrow e + H(n = 3) \dots$ Reaction 2.1.4 $b + H(n = 2) \rightarrow e + H(n = 3) \dots$ Reaction 2.1.5 $e + H(1s) \rightarrow e + H^+ + e \dots$ Reaction 2.1.6 $e + H(2s) \rightarrow e + H^+ + e \dots$ Reaction 2.1.7 $e + H(n = 3) \rightarrow e + H^+ + e$	104 104 105 106 107 108 109 110 111
2	H.2 POLYNOMIAL FITS FOR $\langle \sigma v \rangle$ FOR FIXED <i>E</i> Reaction 2.1.1 $e + H(1s) \rightarrow e + H(2p) \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots$ Reaction 2.1.2 $e + H(1s) \rightarrow e + H(2s) \dots \dots$ Reaction 2.1.3 $e + H(2s) \rightarrow e + H(2p) \dots \dots$ Reaction 2.1.4a $e + H(n = 1) \rightarrow e + H(n = 3) \dots \dots \dots \dots \dots \dots \dots \dots \dots$ Reaction 2.1.4b $e + H(n = 2) \rightarrow e + H(n = 3) \dots $	104 104 105 106 107 108 109 110 111 112
2	$\begin{array}{l} \textbf{H.2 POLYNOMIAL FITS FOR} < \sigma v > \textbf{FOR FIXED } E \\ \text{Reaction } 2.1.1 \ e + H(1s) \rightarrow e + H(2p) \\ \dots \\ \text{Reaction } 2.1.2 \ e + H(1s) \rightarrow e + H(2s) \\ \dots \\ \text{Reaction } 2.1.3 \ e + H(2s) \rightarrow e + H(2p) \\ \dots \\ \text{Reaction } 2.1.4a \ e + H(n = 1) \rightarrow e + H(n = 3) \\ \text{Reaction } 2.1.4b \ e + H(n = 2) \rightarrow e + H(n = 3) \\ \text{Reaction } 2.1.4b \ e + H(n = 2) \rightarrow e + H(n = 3) \\ \text{Reaction } 2.1.5 \ e + H(1s) \rightarrow e + H^+ + e \\ \text{Reaction } 2.1.6 \ e + H(2s) \rightarrow e + H^+ + e \\ \text{Reaction } 2.1.7 \ e + H(n = 3) \rightarrow e + H^+ + e \\ \text{Reaction } 2.1.8 \ e + H^+ \rightarrow H(1s) + hv \\ \text{Reaction } 2.1.8a \ e + H^+ \rightarrow H(2s) + hv \\ \end{array}$	104 104 105 106 107 108 109 110 111 112 112
2	$\begin{array}{l} \textbf{H.2 POLYNOMIAL FITS FOR} < \sigma v > \textbf{FOR FIXED } E\\ \text{Reaction } 2.1.1 \ e + H(1s) \rightarrow e + H(2p) \\ \text{Reaction } 2.1.2 \ e + H(1s) \rightarrow e + H(2s) \\ \text{Reaction } 2.1.3 \ e + H(2s) \rightarrow e + H(2p) \\ \text{Reaction } 2.1.4a \ e + H(n = 1) \rightarrow e + H(n = 3) \\ \text{Reaction } 2.1.4b \ e + H(n = 2) \rightarrow e + H(n = 3) \\ \text{Reaction } 2.1.4b \ e + H(n = 2) \rightarrow e + H(n = 3) \\ \text{Reaction } 2.1.5 \ e + H(1s) \rightarrow e + H^+ + e \\ \text{Reaction } 2.1.5 \ e + H(1s) \rightarrow e + H^+ + e \\ \text{Reaction } 2.1.6 \ e + H(2s) \rightarrow e + H^+ + e \\ \text{Reaction } 2.1.7 \ e + H(n = 3) \rightarrow e + H^+ + e \\ \text{Reaction } 2.1.8e \ e + H^+ \rightarrow H(1s) + hv \\ \text{Reaction } 2.1.8a \ e + H^+ \rightarrow H(2s) + hv \\ \text{Reaction } 2.1.8b \ e + H^+ \rightarrow H(2p) + hv \\ \end{array}$	104 104 105 106 107 108 109 110 111 112 112
2	$\begin{array}{l} \textbf{H.2 POLYNOMIAL FITS FOR} < \sigma v > \textbf{FOR FIXED } E \\ \text{Reaction } 2.1.1 \ e + H(1s) \rightarrow e + H(2p) \\ \text{Reaction } 2.1.2 \ e + H(1s) \rightarrow e + H(2s) \\ \text{Reaction } 2.1.3 \ e + H(2s) \rightarrow e + H(2p) \\ \text{Reaction } 2.1.4a \ e + H(n = 1) \rightarrow e + H(n = 3) \\ \text{Reaction } 2.1.4b \ e + H(n = 2) \rightarrow e + H(n = 3) \\ \text{Reaction } 2.1.5 \ e + H(1s) \rightarrow e + H^+ + e \\ \text{Reaction } 2.1.5 \ e + H(1s) \rightarrow e + H^+ + e \\ \text{Reaction } 2.1.6 \ e + H(2s) \rightarrow e + H^+ + e \\ \text{Reaction } 2.1.7 \ e + H(n = 3) \rightarrow e + H^+ + e \\ \text{Reaction } 2.1.8 \ e + H^+ \rightarrow H(1s) + hv \\ \text{Reaction } 2.1.8b \ e + H^+ \rightarrow H(2p) + hv \\ \text{Reaction } 2.1.8b \ e + H^+ \rightarrow H(2p) + hv \\ \text{Reaction } 2.1.a \ e + H_2(v = 0) \rightarrow e + H_2(v = 1) \\ \end{array}$	104 104 105 106 107 108 109 110 111 112 112 112 112
2	$\begin{array}{l} \textbf{H.2 POLYNOMIAL FITS FOR} < \sigma v > \textbf{FOR FIXED } E\\ \text{Reaction } 2.1.1 \ e + H(1s) \rightarrow e + H(2p) \\ \hline \text{Reaction } 2.1.2 \ e + H(1s) \rightarrow e + H(2s) \\ \hline \text{Reaction } 2.1.2 \ e + H(1s) \rightarrow e + H(2p) \\ \hline \text{Reaction } 2.1.3 \ e + H(2s) \rightarrow e + H(2p) \\ \hline \text{Reaction } 2.1.4a \ e + H(n = 1) \rightarrow e + H(n = 3) \\ \hline \text{Reaction } 2.1.4b \ e + H(n = 2) \rightarrow e + H(n = 3) \\ \hline \text{Reaction } 2.1.5 \ e + H(1s) \rightarrow e + H^+ + e \\ \hline \text{Reaction } 2.1.5 \ e + H(2s) \rightarrow e + H^+ + e \\ \hline \text{Reaction } 2.1.6 \ e + H(2s) \rightarrow e + H^+ + e \\ \hline \text{Reaction } 2.1.7 \ e + H(n = 3) \rightarrow e + H^+ + e \\ \hline \text{Reaction } 2.1.8 \ e + H^+ \rightarrow H(1s) + hv \\ \hline \text{Reaction } 2.1.8a \ e + H^+ \rightarrow H(2s) + hv \\ \hline \text{Reaction } 2.1.8b \ e + H^+ \rightarrow H(2p) + hv \\ \hline \text{Reaction } 2.2.1a \ e + H_2(v = 0) \rightarrow e + H_2(v = 1) \\ \hline \text{Reaction } 2.2.1b \ e + H_2(v = 0) \rightarrow e + H_2(v = 2) \\ \hline \end{array}$	104 104 105 106 107 108 109 110 111 112 112 112 113 114
2	$\begin{array}{l} \textbf{H.2 POLYNOMIAL FITS FOR} < \sigma v > \textbf{FOR FIXED } E \\ \text{Reaction } 2.1.1 \ e + H(1s) \rightarrow e + H(2p) \\ \dots \\ \text{Reaction } 2.1.2 \ e + H(1s) \rightarrow e + H(2s) \\ \dots \\ \text{Reaction } 2.1.3 \ e + H(2s) \rightarrow e + H(2p) \\ \dots \\ \text{Reaction } 2.1.4a \ e + H(n = 1) \rightarrow e + H(n = 3) \\ \text{Reaction } 2.1.4b \ e + H(n = 2) \rightarrow e + H(n = 3) \\ \text{Reaction } 2.1.5 \ e + H(1s) \rightarrow e + H^+ + e \\ \text{Reaction } 2.1.5 \ e + H(1s) \rightarrow e + H^+ + e \\ \text{Reaction } 2.1.6 \ e + H(2s) \rightarrow e + H^+ + e \\ \text{Reaction } 2.1.7 \ e + H(n = 3) \rightarrow e + H^+ + e \\ \text{Reaction } 2.1.8 \ e + H^+ \rightarrow H(1s) + hv \\ \text{Reaction } 2.1.8a \ e + H^+ \rightarrow H(2s) + hv \\ \text{Reaction } 2.1.8b \ e + H^+ \rightarrow H(2p) + hv \\ \text{Reaction } 2.1.8b \ e + H^+ \rightarrow H(2p) + hv \\ \text{Reaction } 2.2.1a \ e + H_2(v = 0) \rightarrow e + H_2(v = 1) \\ \text{Reaction } 2.2.2 \ e + H_2(X^1\Sigma_{n}^+) \rightarrow e + H_2(B^1\Sigma_{n}^+2p\sigma) \\ \end{array}$	104 104 105 106 107 108 109 110 111 112 112 112 112 113 114 115
2	$\begin{array}{l} \textbf{H.2 POLYNOMIAL FITS FOR} < \sigma v > \textbf{FOR FIXED } E \\ \text{Reaction } 2.1.1 \ e + H(1s) \rightarrow e + H(2p) \\ \text{Reaction } 2.1.2 \ e + H(1s) \rightarrow e + H(2p) \\ \text{Reaction } 2.1.3 \ e + H(2s) \rightarrow e + H(2p) \\ \text{Reaction } 2.1.4 \ e + H(n = 1) \rightarrow e + H(n = 3) \\ \text{Reaction } 2.1.4 \ e + H(n = 2) \rightarrow e + H(n = 3) \\ \text{Reaction } 2.1.4 \ b \ e + H(n = 2) \rightarrow e + H(n = 3) \\ \text{Reaction } 2.1.5 \ e + H(1s) \rightarrow e + H^+ + e \\ \text{Reaction } 2.1.5 \ e + H(2s) \rightarrow e + H^+ + e \\ \text{Reaction } 2.1.6 \ e + H(2s) \rightarrow e + H^+ + e \\ \text{Reaction } 2.1.7 \ e + H(n = 3) \rightarrow e + H^+ + e \\ \text{Reaction } 2.1.8 \ e + H^+ \rightarrow H(1s) + hv \\ \text{Reaction } 2.1.8 \ e + H^+ \rightarrow H(2s) + hv \\ \text{Reaction } 2.1.8 \ e + H^+ \rightarrow H(2p) + hv \\ \text{Reaction } 2.1.8 \ e + H^+ \rightarrow H(2p) + hv \\ \text{Reaction } 2.1.8 \ e + H^+ \rightarrow H(2p) + hv \\ \text{Reaction } 2.2.1 \ e + H_2(v = 0) \rightarrow e + H_2(v = 1) \\ \text{Reaction } 2.2.1 \ b \ e + H_2(v = 0) \rightarrow e + H_2(v = 2) \\ \text{Reaction } 2.2.2 \ e + H_2(X^1\Sigma_g^+) \rightarrow e + H_2(B^1\Sigma_u^+2p\sigma) \\ \text{Reaction } 2.2.3 \ e + H_2(X^1\Sigma_g^+) \rightarrow e + H_2(C^1\Pi_u 2p\pi) \\ \end{array}$	104 104 105 106 107 108 109 110 111 112 112 112 112 113 114 115 116
2	$\begin{array}{l} \textbf{H.2 POLYNOMIAL FITS FOR} < \sigma v > \textbf{FOR FIXED } E\\ \text{Reaction } 2.1.1 \ e + H(1s) \rightarrow e + H(2p) \\ \text{Reaction } 2.1.2 \ e + H(1s) \rightarrow e + H(2s) \\ \text{Reaction } 2.1.3 \ e + H(2s) \rightarrow e + H(2p) \\ \text{Reaction } 2.1.3 \ e + H(2s) \rightarrow e + H(2p) \\ \text{Reaction } 2.1.4a \ e + H(n = 1) \rightarrow e + H(n = 3) \\ \text{Reaction } 2.1.4b \ e + H(n = 2) \rightarrow e + H(n = 3) \\ \text{Reaction } 2.1.5 \ e + H(1s) \rightarrow e + H^+ + e \\ \text{Reaction } 2.1.5 \ e + H(1s) \rightarrow e + H^+ + e \\ \text{Reaction } 2.1.6 \ e + H(2s) \rightarrow e + H^+ + e \\ \text{Reaction } 2.1.6 \ e + H(2s) \rightarrow e + H^+ + e \\ \text{Reaction } 2.1.8 \ e + H^+ \rightarrow H(1s) + hv \\ \text{Reaction } 2.1.8a \ e + H^+ \rightarrow H(2s) + hv \\ \text{Reaction } 2.1.8b \ e + H^+ \rightarrow H(2s) + hv \\ \text{Reaction } 2.1.8b \ e + H^+ \rightarrow H(2p) + hv \\ \text{Reaction } 2.2.1a \ e + H_2(v = 0) \rightarrow e + H_2(v = 1) \\ \text{Reaction } 2.2.1b \ e + H_2(v = 0) \rightarrow e + H_2(v = 2) \\ \text{Reaction } 2.2.2 \ e + H_2(X^1\Sigma_g^+) \rightarrow e + H_2(B^1\Sigma_u^+2p\sigma) \\ \text{Reaction } 2.2.3 \ e + H_2(X^1\Sigma_g^+) \rightarrow e + H_2(C^1\Pi_u 2p\pi) \\ \text{Reaction } 2.2.4 \ e + H_2(X^1\Sigma_g^+) \rightarrow e + H_2(E, F^1\Sigma_g^+) \\ \end{array}$	104 104 105 106 107 108 109 110 111 112 112 112 112 113 114 115 116 117
2	$\begin{array}{l} \textbf{H.2 POLYNOMIAL FITS FOR} < \sigma v > \textbf{FOR FIXED } E \\ \textbf{Reaction } 2.1.1 \ e + H(1s) \rightarrow e + H(2p) \\ \textbf{Reaction } 2.1.2 \ e + H(1s) \rightarrow e + H(2s) \\ \textbf{Reaction } 2.1.3 \ e + H(2s) \rightarrow e + H(2p) \\ \textbf{Reaction } 2.1.3 \ e + H(n = 1) \rightarrow e + H(n = 3) \\ \textbf{Reaction } 2.1.4a \ e + H(n = 1) \rightarrow e + H(n = 3) \\ \textbf{Reaction } 2.1.4b \ e + H(n = 2) \rightarrow e + H(n = 3) \\ \textbf{Reaction } 2.1.5 \ e + H(1s) \rightarrow e + H^+ + e \\ \textbf{Reaction } 2.1.5 \ e + H(1s) \rightarrow e + H^+ + e \\ \textbf{Reaction } 2.1.6 \ e + H(2s) \rightarrow e + H^+ + e \\ \textbf{Reaction } 2.1.6 \ e + H(2s) \rightarrow e + H^+ + e \\ \textbf{Reaction } 2.1.7 \ e + H(n = 3) \rightarrow e + H^+ + e \\ \textbf{Reaction } 2.1.8 \ e + H^+ \rightarrow H(1s) + hv \\ \textbf{Reaction } 2.1.8b \ e + H^+ \rightarrow H(2s) + hv \\ \textbf{Reaction } 2.1.8b \ e + H^+ \rightarrow H(2p) + hv \\ \textbf{Reaction } 2.1.8b \ e + H^+ \rightarrow H(2p) + hv \\ \textbf{Reaction } 2.2.1b \ e + H_2(v = 0) \rightarrow e + H_2(v = 1) \\ \textbf{Reaction } 2.2.2 \ e + H_2(X^1\Sigma_g^+) \rightarrow e + H_2(B^1\Sigma_u^+2p\sigma) \\ \textbf{Reaction } 2.2.3 \ e + H_2(X^1\Sigma_g^+) \rightarrow e + H_2(C^1\Pi_u 2p\pi) \\ \textbf{Reaction } 2.2.4 \ e + H_2(X^1\Sigma_g^+) \rightarrow e + H_2(E, F^1\Sigma_g^+) \\ \textbf{Reaction } 2.2.5 \ e + H_2(X^1\Sigma_g^+) \rightarrow e + H_2(b^3\Sigma_u^+, a^3\Sigma_a^+, c^3\Pi_u) \rightarrow e + H(1s) + H(1s) \end{array}$	104 104 105 106 107 108 109 110 111 112 112 112 113 114 115 116 117 118
2	$\begin{aligned} \textbf{H.2 POLYNOMIAL FITS FOR} &< \sigma v > \textbf{FOR FIXED } E \\ \text{Reaction } 2.1.1 \ e + H(1s) \rightarrow e + H(2p) \\ \text{Reaction } 2.1.2 \ e + H(1s) \rightarrow e + H(2s) \\ \text{Reaction } 2.1.3 \ e + H(2s) \rightarrow e + H(2p) \\ \text{Reaction } 2.1.3 \ e + H(n = 1) \rightarrow e + H(n = 3) \\ \text{Reaction } 2.1.4a \ e + H(n = 1) \rightarrow e + H(n = 3) \\ \text{Reaction } 2.1.4b \ e + H(n = 2) \rightarrow e + H(n = 3) \\ \text{Reaction } 2.1.4b \ e + H(n = 2) \rightarrow e + H^+ + e \\ \text{Reaction } 2.1.5 \ e + H(1s) \rightarrow e + H^+ + e \\ \text{Reaction } 2.1.6 \ e + H(2s) \rightarrow e + H^+ + e \\ \text{Reaction } 2.1.6 \ e + H(2s) \rightarrow e + H^+ + e \\ \text{Reaction } 2.1.6 \ e + H(n = 3) \rightarrow e + H^+ + e \\ \text{Reaction } 2.1.7 \ e + H(n = 3) \rightarrow e + H^+ + e \\ \text{Reaction } 2.1.8 \ e + H^+ \rightarrow H(2s) + hv \\ \text{Reaction } 2.1.8 \ e + H^+ \rightarrow H(2s) + hv \\ \text{Reaction } 2.1.8b \ e + H^+ \rightarrow H(2p) + hv \\ \text{Reaction } 2.2.1a \ e + H_2(v = 0) \rightarrow e + H_2(v = 1) \\ \text{Reaction } 2.2.1b \ e + H_2(v = 0) \rightarrow e + H_2(v = 2) \\ \text{Reaction } 2.2.2e \ H_2(X^1\Sigma_g^+) \rightarrow e + H_2(B^1\Sigma_u^+2p\sigma) \\ \text{Reaction } 2.2.3e \ H_2(X^1\Sigma_g^+) \rightarrow e + H_2(C^1\Pi_u 2p\pi) \\ \text{Reaction } 2.2.4e \ H_2(X^1\Sigma_g^+) \rightarrow e + H_2(E, F^1\Sigma_g^+) \\ \text{Reaction } 2.2.5e \ H_2(X^1\Sigma_g^+) \rightarrow e + H_2(b^3\Sigma_u^+, a^3\Sigma_g^+, c^3\Pi_u) \rightarrow e + H(1s) + H(1s) \\ \text{Reaction } 2.2.6e \ H_2(X^1\Sigma_g^+) \rightarrow e + H_2(1s\sigma_g, nl\lambda ^1\Lambda) \rightarrow e + H(1s) + H(2s) \\ \end{array}$	104 104 105 106 107 108 109 110 111 112 112 112 112 113 114 115 116 117 118 119
2	$\begin{aligned} \textbf{H.2 POLYNOMIAL FITS FOR} &< \sigma v > \textbf{FOR FIXED } E \\ \text{Reaction } 2.1.1 \ e + H(1s) \rightarrow e + H(2p) \dots \dots \dots \dots \dots \dots \\ \text{Reaction } 2.1.2 \ e + H(1s) \rightarrow e + H(2s) \dots \dots \dots \dots \\ \text{Reaction } 2.1.3 \ e + H(2s) \rightarrow e + H(2p) \dots \dots \dots \\ \text{Reaction } 2.1.4a \ e + H(n = 1) \rightarrow e + H(n = 3) \dots \dots \\ \text{Reaction } 2.1.4b \ e + H(n = 2) \rightarrow e + H(n = 3) \dots \\ \text{Reaction } 2.1.4b \ e + H(n = 2) \rightarrow e + H(n = 3) \dots \\ \text{Reaction } 2.1.5 \ e + H(1s) \rightarrow e + H^+ + e \dots \\ \text{Reaction } 2.1.6 \ e + H(2s) \rightarrow e + H^+ + e \dots \\ \text{Reaction } 2.1.6 \ e + H(2s) \rightarrow e + H^+ + e \dots \\ \text{Reaction } 2.1.6 \ e + H^+ \rightarrow H(1s) + hv \dots \\ \text{Reaction } 2.1.8 \ e + H^+ \rightarrow H(2s) + hv \dots \\ \text{Reaction } 2.1.8 \ e + H^+ \rightarrow H(2s) + hv \dots \\ \text{Reaction } 2.1.8b \ e + H^+ \rightarrow H(2p) + hv \dots \\ \text{Reaction } 2.2.1a \ e + H_2(v = 0) \rightarrow e + H_2(v = 1) \dots \\ \text{Reaction } 2.2.1b \ e + H_2(v = 0) \rightarrow e + H_2(v = 2) \dots \\ \text{Reaction } 2.2.2 \ e + H_2(X^{1}\Sigma_{g}^+) \rightarrow e + H_2(B^{1}\Sigma_{u}^{1}2p\sigma) \dots \\ \text{Reaction } 2.2.3 \ e + H_2(X^{1}\Sigma_{g}^+) \rightarrow e + H_2(C^{1}\Pi_u 2p\pi) \dots \\ \text{Reaction } 2.2.5 \ e + H_2(X^{1}\Sigma_{g}^+) \rightarrow e + H_2(E, F^{1}\Sigma_{g}^+) \\ \text{Reaction } 2.2.6 \ e + H_2(X^{1}\Sigma_{g}^+) \rightarrow e + H_2(B^{1}\Sigma_{u}^{1}, a^{3}\Sigma_{g}^{1}, c^{3}\Pi_{u}) \rightarrow e + H(1s) + H(1s) \\ \text{Reaction } 2.2.7 \ e + H_2(X^{1}\Sigma_{g}^+) \rightarrow e + H_2(2p\sigma_u, nl\lambda Q_1^{1}\Pi_u) \rightarrow e + H(2p) + H(2s) \\ \end{array}$	104 104 105 106 107 108 109 110 111 112 112 112 112 113 114 115 116 117 118 119 120
2	$ \begin{array}{l} \textbf{H.2 POLYNOMIAL FITS FOR} < \sigma v > \textbf{FOR FIXED } E \\ \textbf{Reaction } 2.1.1 \ e + H(1s) \rightarrow e + H(2p) \dots \dots \dots \dots \dots \dots \dots \dots \dots \\ \textbf{Reaction } 2.1.2 \ e + H(1s) \rightarrow e + H(2s) \dots \dots \dots \dots \dots \dots \dots \\ \textbf{Reaction } 2.1.3 \ e + H(2s) \rightarrow e + H(2p) \dots \dots \dots \dots \dots \dots \\ \textbf{Reaction } 2.1.3 \ e + H(2s) \rightarrow e + H(2p) \dots \dots \dots \dots \dots \\ \textbf{Reaction } 2.1.4b \ e + H(n = 1) \rightarrow e + H(n = 3) \dots \dots \dots \\ \textbf{Reaction } 2.1.4b \ e + H(n = 2) \rightarrow e + H(n = 3) \dots \dots \dots \\ \textbf{Reaction } 2.1.5 \ e + H(1s) \rightarrow e + H^+ + e \dots \\ \textbf{Reaction } 2.1.5 \ e + H(1s) \rightarrow e + H^+ + e \dots \\ \textbf{Reaction } 2.1.6 \ e + H(2s) \rightarrow e + H^+ + e \dots \\ \textbf{Reaction } 2.1.7 \ e + H(n = 3) \rightarrow e + H^+ + e \dots \\ \textbf{Reaction } 2.1.8 \ e + H^+ \rightarrow H(1s) + hv \dots \\ \textbf{Reaction } 2.1.8 \ e + H^+ \rightarrow H(2s) + hv \dots \\ \textbf{Reaction } 2.1.8b \ e + H^+ \rightarrow H(2p) + hv \dots \\ \textbf{Reaction } 2.2.1b \ e + H_2(v = 0) \rightarrow e + H_2(v = 1) \dots \\ \textbf{Reaction } 2.2.1b \ e + H_2(v = 0) \rightarrow e + H_2(v = 2) \dots \\ \textbf{Reaction } 2.2.2 \ e + H_2(X^{1}\Sigma_g^+) \rightarrow e + H_2(D^{1}\Sigma_u^2p\sigma) \dots \\ \textbf{Reaction } 2.2.3 \ e + H_2(X^{1}\Sigma_g^+) \rightarrow e + H_2(C^{1}\Pi_u 2p\pi) \dots \\ \textbf{Reaction } 2.2.5 \ e + H_2(X^{1}\Sigma_g^+) \rightarrow e + H_2(E, F^{1}\Sigma_g^+) \\ \textbf{Reaction } 2.2.5 \ e + H_2(X^{1}\Sigma_g^+) \rightarrow e + H_2(1s\sigma_g, nl\lambda ^{1}\Lambda) \rightarrow e + H(1s) + H(1s) \\ \textbf{Reaction } 2.2.7 \ e + H_2(X^{1}\Sigma_g^+) \rightarrow e + H_2(2p\sigma_u, nl\lambda Q_2^{1}\Pi_u) \rightarrow e + H(2p) + H(2s) \\ \textbf{Reaction } 2.2.8 \ e + H_2(X^{1}\Sigma_g^+) \rightarrow e + H_2(2p\sigma_u, nl\lambda Q_2^{1}\Pi_u) \rightarrow e + H(1s) + H(n = 3) . \end{array}$	104 104 105 106 107 108 109 110 111 112 112 112 112 113 114 115 116 117 118 119 120 121
2	$ \begin{array}{l} \textbf{H.2 POLYNOMIAL FITS FOR} < \sigma v > \textbf{FOR FIXED } E \\ \textbf{Reaction } 2.1.1 \ e + H(1s) \rightarrow e + H(2p) \\ & \qquad \qquad$	104 104 105 106 107 108 109 110 111 112 112 112 112 113 114 115 116 117 118 119 120 121 122

Reaction 2.2.10 $e + H_2(X^1\Sigma_q^+) \to e + [H_2^+(\Sigma_g, \Sigma_u) + e] \to e + H^+ + H(1s) + e$.	123
Reaction 2.2.11 $e + H_2^+(v) \rightarrow e + H^+ + H^+ + e, (v = 09)$	124
Reaction 2.2.12 $e + H_2^+(v) \rightarrow e + H_2^+(2p\sigma_u) \rightarrow e + H^+ + H(1s), (v = 09)$.	125
Reaction 2.2.13 $e + H_2^+(v) \rightarrow e + H_2^+(2p\pi_u) \rightarrow e + H^+ + H(n=2), (v=09)$	126
Reaction 2.2.14 $e + H_2^+(v) \to H(1s) + H(n)(v = 0 \dots 9, n \ge 2)$	127
Reaction 2.2.15 $e + H_3^+ \to H + H + H$ or $\to H_2(v > 5) + H(n = 2)$	128
Reaction 2.2.16 $e + H_3^+ \to e + H^+ + 2H$	129
Reaction 2.2.17 $e + H_2(v \ge 4) \to (H_2^-) \to H^- + H$	130
Reaction 2.3.1a $e + He(1s^21S) \rightarrow e + He(1s^12p^11P)$	131
Reaction 2.3.1b $e + He(1s^21S) \rightarrow e + He(1s^13p^11P)$	132
Reaction 2.3.2 $e + He(1s^21S) \rightarrow e + He(1s^12s^11S) \dots \dots \dots \dots \dots$	133
Reaction 2.3.3a $e + He(1s^21S) \rightarrow e + He(1s^12s^13S)$	134
Reaction 2.3.3b $e + He(1s^21S) \rightarrow e + He(1s^12p^13P) \dots \dots \dots \dots \dots$	135
Reaction 2.3.3c $e + He(1s^21S) \rightarrow e + He(1s^13s^13S) \ldots \ldots \ldots \ldots \ldots$	136
Reaction 2.3.3d $e + He(1s^21S) \rightarrow e + He(1s^13p^13P) \dots \dots \dots \dots \dots$	137
Reaction 2.3.4a $e + He(1s^{1}2s^{1}3S) \rightarrow e + He(1s^{1}2s^{1}1S)$	138
Reaction 2.3.4b $e + He(1s^{1}2s^{1}3S) \rightarrow e + He(1s^{1}2p^{1}1P)$	139
Reaction 2.3.4c $e + He(1s^{1}2s^{1}1S) \rightarrow e + He(1s^{1}2p^{1}3P)$	140
Reaction 2.3.4d $e + He(1s^12p^13P) \rightarrow e + He(1s^12p^11P) \dots \dots \dots \dots \dots$	141
Reaction 2.3.5a $e + He(1s^{1}2s^{1}1S) \rightarrow e + He(1s^{1}2p^{1}1P)$	142
Reaction 2.3.5b $e + He(1s^{1}2s^{1}3S) \rightarrow e + He(1s^{1}2p^{1}3P)$	143
Reaction 2.3.6a $e + He(1s^{1}2s^{1}1S) \rightarrow e + He(1s^{1}3p^{1}1P)$	144
Reaction 2.3.6b $e + He(1s^{1}2s^{1}3S) \rightarrow e + He(1s^{1}3p^{1}3P)$	145
Reaction 2.3.7a $e + He(1s^{1}2p^{1}1P) \rightarrow e + He(1s^{1}3d^{1}1D) \dots \dots \dots \dots \dots$	146
Reaction 2.3.7b $e + He(1s^12s^13P) \rightarrow e + He(1s^13d^13D) \dots \dots \dots \dots \dots$	147
Reaction 2.3.9 $e + He(1s^21S) \rightarrow e + He^+ + e$	148
Reaction 2.3.10a $e + He(1s^{1}2s^{1}1S) \rightarrow e + He^{+}(1s) + e$	149
Reaction 2.3.10b $e + He(1s^{1}2p^{1}1P) \rightarrow e + He^{+}(1s) + e$	150
Reaction 2.3.10c $e + He(1s^{1}2s^{1}3S) \rightarrow e + He^{+}(1s) + e$	151
Reaction 2.3.10d $e + He(1s^{1}2p^{1}3P) \rightarrow e + He^{+}(1s) + e$	152
Reaction 2.3.12 $e + He(1s^1nl^1\{2S+1\}L) \to e + He^+(nl) + e \dots \dots \dots$	153
Reaction 2.3.13 $e + He^+(1s) \to He(1s^1nl^1\{2S+1\}L) + hv$	154
Reaction 2.3.14 $e + He^+(1s) \rightarrow e + He^+(2p)$	155
Reaction 2.3.15 $e + He^+(1s) \rightarrow e + He^+(2s)$	156
Reaction 2.3.19 $e + He^+(1s) \rightarrow e + He^{++} + e \dots \dots \dots \dots \dots \dots \dots$	157
Reaction 3.1.8 $p + H(1s) \rightarrow H(1s) + p \dots$	158
Reaction 3.2.3 $p + H_2(v = 0) \rightarrow H(1s) + H_2^+$	158
Reaction 7.1.1 $e + H^- \rightarrow e + H(1s) + e$	159
Reaction 7.1.2 $e + H^- \rightarrow e + H^+ + 2e$	160
H.3 DOUBLE POLYNOMIAL FITS FOR $< \sigma v >$	161
Reaction 3.1.1 $p + H(1s) \rightarrow p + H(2p) \dots \dots$	161
Reaction 3.1.2 $p + H(1s) \rightarrow p + H(2s)$	162
Reaction 3.1.3 $p + H(2s) \rightarrow p + H(2p)$	163
Reaction 3.1.6 $p + H(1s) \rightarrow p + H^+ + e$	164
Reaction 3.1.8 $p + H(1s) \rightarrow H(1s) + p \dots \dots$	165
Reaction 3.1.9 $p + H(1s) \rightarrow H(2p) + p \dots$	166

3

Reaction 3.1.10 $p + H(1s) \rightarrow H(2s) + p$	167
Reaction 3.1.11a $p + H(n = 2) \rightarrow H(n = 2) + p$	168
Reaction 3.1.11b $p + H(n = 3) \rightarrow H(n = 3) + p$	169
Reaction 3.2.1a $p + H_2(j = 0) \rightarrow p + H_2(j'), (j' \ge 2) \dots \dots \dots \dots \dots \dots$	170
Reaction 3.2.1b $p + H_2(j = 1) \rightarrow p + H_2(j'), (j' \ge 3) \dots \dots \dots \dots \dots \dots$	171
Reaction 3.2.2 $p + H_2(v = 0) \rightarrow p + H_2(v > 0)$	172
Reaction 3.2.3 $p + H_2 \rightarrow H(1s) + H_2^+$	173
Reaction 3.2.4a $p + D_2 \rightarrow D^+ + HD$, (or $H + D$)	174
Reaction 3.2.4b $p + D_2 \rightarrow D + HD^+ \dots \dots$	175
Reaction 3.2.5 $p + H_2 \rightarrow p + H_2^+(v) + e, (v \le 9)$	176
Reaction 3.2.6 $p + H_2^+(v) \to p + H(1s) + H^+$	177
Reaction 3.3.1 $p + He \rightarrow H + He^+$	178
Reaction 3.3.2 $p + He \rightarrow p + He^+ + e$	179
Reaction 3.3.6a $p + He(1s^{1}2s^{1}1S) \rightarrow H(2s) + He^{+}(1s)$	180
Reaction 3.3.6b $p + He(1s^{1}2s^{1}3S) \rightarrow H(2s) + He^{+}(1s)$	181
Reaction 3.3.7a $p + He(1s^{1}2p^{1}1P) \rightarrow H(2p) + He^{+}(1s)$	182
Reaction 3.3.7b $p + He(1s^{1}2p^{1}3P) \to H(2p) + He^{+}(1s) \dots \dots \dots \dots \dots$	183
Reaction 4.2.1 $H_2^+(v) + H(1s) \to H_2^+(2p\sigma_u) + H(1s) \to H^+ + H + H(1s), (v = 1)$	
$0\ldots 9)\ldots$	184
Reaction 4.3.1 $H_2^+ + H_2 \to H_2 + H_2^+ \dots \dots$	185
Reaction 4.3.2 $H_2^+ + H_2 \rightarrow H_2^+ + H_2^+ + e$	186
Reaction 4.3.3 $H_2^+ + H_2 \to H_3^+ + H$	187
Reaction 4.4.1 $H_2^+ + He \to H_2^+ + He^+ + e^-$	188
Reaction 5.2.1 $He^+ + H_2 \rightarrow He^+ + H^+ + e$	189
Reaction 5.2.2 $He^+ + H_2 \rightarrow He + H^+$	190
Reaction 5.2.3 $He^+ + H_2 \rightarrow He + H^+ + H$	191
Reaction 5.3.1 $He^+ + He \rightarrow He + He^+$	192
Reaction 5.3.2 $He^+ + He \rightarrow He^+ + He^+ + e$	193
Reaction 6.1.1 $He^{++} + H(1s) \to He^{++} + H(2p)$	194
Reaction 6.1.3 $He^{++} + H(1s) \rightarrow He^{++} + H^{+} + e \dots \dots \dots \dots \dots \dots \dots \dots$	195
Reaction 6.1.6 $He^{++} + H \to He^{+}(n = 2) + H^{+} \dots \dots \dots \dots \dots \dots \dots$	196
Reaction 6.2.1 $He^{++} + H_2 \rightarrow He^{++} + H_2^+(v) + e$	197
Reaction 6.3.1 $He^{++} + He \rightarrow He + He^{++} \dots \dots \dots \dots \dots \dots \dots \dots \dots$	198
Reaction 6.3.2 $He^{++} + He \rightarrow He^{++} + He^{+} + e \dots \dots \dots \dots \dots \dots \dots \dots$	199
Reaction 7.2.1 $p + H^- \rightarrow p + H + e$	200
Reaction 7.2.2 $p + H^- \rightarrow H(n = 2) + H(1s)$	201
Reaction 7.2.3 $p + H^- \rightarrow H(n = 3) + H(1s)$	202
Reaction 7.3.1 $H^- + H(1s) \to H(1s) + H^-(1s) \dots \dots \dots \dots \dots \dots$	203
Reaction 7.3.2a $H^- + H \rightarrow H_2^-(\Sigma_g) \rightarrow H + H + e$	204
Reaction 7.3.2b $H^- + H \rightarrow H_2^-(\Sigma_g) \rightarrow H_2 + e$	205
	•••
H.8 : Fits for $\langle \sigma \cdot v \cdot E_p \rangle (T_b) [cm^3/s \cdot eV]$	206
Reaction 2.1.8 $e + H^+ \rightarrow H(1s) + hv$	207
Reaction 2.2.14 $e + H_2^+(v) \to H(1s) + H^*(n)(v = 0 - 9, n \ge 2)$	207

4

I Errata, list of modifications as compared to the original 1987 book [1]

A first set of corrections, errata, modifications was published by Reiter et al, in [2]. Most of them are also contained in the following, more comprehensive list.

• Reaction 2.2.5

The cross-section and rate coefficients for this reaction are about a factor 3 too low. This error has been introduced between the draft version and the final printed version of the book in 1987. Here we have corrected this error, i.e., the fit coefficients from the (unpublished) draft version of the book are given here, whereas the erroneous fit coefficients from the printed version of the book are retained in the database AMJUEL, (reaction 2.2.50), for reference purposes.

• Reaction 3.1.8

The cross-section H.1, 3.1.8 has been improved by adding the low energy extrapolation coefficients.

The fit H.3, 3.1.8 has been replaced with a better one, such that it becomes more consistent with the cross-section H.1 3.1.8. This leads to significantly improved energy balance in case of tracklength estimators for the CX energy loss.

The original fits from the 1987 book have been kept in file amjuel.tex, under H.3, 3.1.8org

In Aug. 2017 the cross section fit was further improved. It had a tiny remaining discontinuity at E=0.1 eV, which is now removed.

• Feb 2013

Some reaction and species formulas in section headers slightly changed to permit automated CR model construction (species and reaction type identification) for HYDKIN online tool

• Mar 2013

Added: H.1 (cross-sections): *Eth* (threshold energy), used for online plots and Maxwellian rate integration

Added: H.1 (cross-sections) *Mcross* (Mass as used in energy scale. Electron mass (kg), or heavy particle mass, (AMU).)

• Reaction 2.1.3

cross-section and reaction rate of electron-impact process 2.1.3 (Chibisov) are both a factor 10 too small. Also Chibisov analytic formula for cross-section given in 1987 book: factor 10 too small. Not yet corrected here in fits. (Can be done by a modification of coefficients a_0 and b_0) The corresponding proton-impact data (3.1.3) seem to be correct.

• Reaction 2.2.13

The cross-section and rate coefficient plotted on page 61 of the 1987 version of the book are both by a factor 10 too large. The fitting coefficients for cross-section and rate coefficient appear to be correct, however.

• Reaction 3.1.7

The BEA cross-section formula given in text give cross-section results that are by a factor 4 too small, due to a corresponding error in numerical factors given (page 126)

• Reaction 7.3.1

Both the cross-section and rate coefficient for this reaction are incorrect, by several orders of magnitude. Do not use these data !

• Reaction 2.1.8

In the original book a closed form expression is given for the radiative recombination rate coefficients for protons into the *nl* states of H atom. Added in Jan. 2014: H.2 rate coefficient polynomial fitting of these rate coefficients, for recombination into 1s, 2s and 2p states, to allow automated processing with same format as for other cross-sections and rate coefficients in this data-base

• June 2015: H.2 for Reaction 3.1.8

A single parameter fit: H.2 3.1.8 is added, vs. proton temperature only and for "stationary" H(1s). It has been derived algebraically from the H.3 fit, evaluated at E=0.1 eV, and this procedure was verified by independent Maxwellian averaging of the asymptotically correct cross-section fit H.1 3.1.8, (vs. E) The mass used on the temperature scale is the proton mass.

• July 2015-I

Some state notations, in particular for He excited states in section headers slightly changed to permit automated CR model construction (species and reaction type identification) for HYDKIN online tool. Notation also now consistent with AMJUEL He CR model data.

• July 2015-II, 2.2.14

Reaction 2.2.14: In AMJUEL the reaction fits for H.1 and H.2 are reduced to be linear in log-log scale and hence $\ln \sigma(E) = a_0 + a_1 \ln(T)$ and $\ln \langle \sigma v \rangle(T) = b_0 + b_1 \ln(T)$, respectively, because higher non- zero coefficients in original book [1] seem to be spurious for this reaction. In this simpler (AMJUEL) form for the rate coefficient H.2 the corresponding H.8 fit is exact: $\ln \langle \sigma v E_{elec} \rangle(T) = h_0 + h_1 \ln(T)$ with $h_0 = b_0 + \ln(3/2 + b_1)$ and $h_1 = b_1 + 1$, see H.8 2.2.14 in AMJUEL. An independently computed H.8 fit using a table from the full H.2 rate fit is still retained in the present HYDHEL file here, (formerly at AMJUEL H.8), for backward compatibility

- Sept. 2015: state notation for process 2.3.4b: final state notation was wrong. Now corrected
- Jan 16: asymptotically better cross-sections for some processes. Reaction H.1: 3.3.2, 3.3.6a, 3.3.6b, 6.2.1, 6.3.1 fitted to a wider energy range, asymptotically correct at high collision energies. The corresponding new cross-sections are labeled: 3.3.2n, 3.3.6an 3.3.6bn, 6.2.1n and 6.3.1n
- H.8 2.2.14 added here, consistent with H.2 2.2.14 dissociative. recomb. A better representation is given in AMJUEL. from the linearity on a log-log scale exact consistency can

be achieved, and is stored there, and is also the hard-coded EIRENE default for process 2.2.14

- Feb 16 added for various cross-sections: ELABMAX and high energy end extrapolation: H.1: 3.1.1, 3.1.2, 3.1.6, 3.1.8, 3.1.9, 3.1.11b, 3.2.1b, 3.2.4a, 3.2.5, 3.2.6, 3.3.1, 3.3.6a, 3.3.6b, 4.2.1, 4.3.1, 4.3.3, 4.4.1, 5.2.3, 6.1.6, and 7.2.2
- May 2016: H.2 3.2.3 added: H.2 for 3.2.3. same as earlier done (June 15) for 3.1.8: thermal rate coefficient, evaluated at Eb =0.1 eV ≈ 0.0 eV Ebmin of H.3 fit for 3.2.3 is about 0.1 eV.
- May 2016 H.2 2.2.10 and 2.2.12:

Process 2.2.12, starting from bound state H_2^+ , is not contained in two step process 2.2.10, which starts from H_2 , because in 2.2.10 the transition from H_2 to $H + H^+$ proceeds either via the repulsive part of the H_2^+ ground state, or by direct transition from H_2 to the first excited H_2^+ B state, without an intermediate bound H_2^+ state.

II to be done

- 2.1.8 and 2.3.13 missing fits for H.2 rate coeffs. (for stationary (E0=0.0) beam)
- H.2 rad rec coeff:

In original monograph only closed form analytic expressions are given for H+ and He+ rad rec. rate coefficients. (and nothing for the cross-sections). 2.1.8, 2.1.8a and 2.1.8b fits for H.2 rad rec rate coefficients had already been added earlier (see list of changes/errata in previous section). The same is needed still for 2.3.13 (helium rad. rec), in particular since the closed form expression from the book is hard wired as default recombination rate in EIRENE code for He⁺.

Perhaps the closed form expression allows a direct (analytical) translation into polynomial fit? It seems to be the case indeed from the new 2.1.8 fits that only two coefficients may be needed. No: two different slopes Te**s at low Te and at high Te. Cannot be accomodated by a single fit which is linear in log-log scale.

• H.8 rates for recombination processes

for the closed form expressions for 2.1.8 and 2.3.13 these rates can be given also in closed form (and are coded in the EIRENE default A&M model routines). It might be desirable to add them also as H.8 into the database. Same for 2.2.14 (diss. rec of H2+). This latter is already here in HYDHEL (update from July 2015), and EIRENE default was 0.88*Te times rate 2.2.14. So the H.8 2.2.14 was approximately, but not exactly, the previous EIRENE default. The H.8 fit can not be derived from the H.2 fit exactly. H.8 follows from H.2 directly, if only the b0 and b1 coefficients in the H.2 fit are non-zero, see: AMJUEL.tex For 2.2.14: Change EIRENE default (H.2 and H.8) to that 2 parameter fit from AMJUEL for H.8, Done.

In Sept. 18 a fit for recombination: H.8 2.1.8 has been added, using only the first 2 coefficients b0 and b1 from the corresponding H.2 fit. (In an attempt to mimik the closed form analytical default model in EIRENE): However: in case of process 2.1.8 this turns

out to be unsatisfactory. Apparently the higher coefficients in H.2, although small, matter, to provide the $T^{**}-3/2$ decay of the rate at high Te (rather than the near $T^{**}-1/2$ decay at low Te.

• process 2.2.15 is linear in log log scale.

Check coefficients, make H.8, set spurious coeffs. to zero

- H.2 5.3.1 and 6.3.1 to be added, at Eb=0.1
 m_lab=4, but m_reduced=2 for these processes
- Maxrate: sigma * v_lab

started to implement the maximum of product sigma * v_lab, for heavy particle process cross-sections: Done for 7.2.2

• corrections from 1992 PSI paper (Reiter, Bogen, Samm, [2]) various KER values....

This next string is searched by EIRENE in subroutine SLREAC to initialize search for a particular set of fit coefficients.

1 H.1 FITS FOR σ

Reaction 2.1.1 $e + H(1s) \rightarrow e + H(2p)$

```
a0 -4.991816994666e+02 a1 6.320402753550e+02 a2 -3.652213752597e+02
a3 1.165699645892e+02 a4 -2.250557133404e+01 a5 2.695101794905e+00
a6 -1.958839549072e-01 a7 7.917154881015e-03 a8 -1.365267533573e-04
Emin 1.08e+01 s(Emin) 1.00e-19 smax 7.50e-17 Error 2.36e-01
Eth 10.2
Mcross 9.1093826E-31
aBorn,1= 1.68301e-16 nBorn,1= 8.44454e-01
Emin 1.08e+01 s(Emin) 1.00e-19 Error 5.16e-01
```

aBorn, 2= 2.08151e-16 nBorn, 2= 9.18070e-01

Emin 1.08e+01 s(Emin) 1.00e-19 Error 3.95e-01

Reaction 2.1.2 $e + H(1s) \rightarrow e + H(2s)$

```
a0 -1.773223143614e+03 a1 2.868021256119e+03 a2 -2.019174875577e+03
a3 7.913558639288e+02 a4 -1.890880793711e+02 a5 2.824418882926e+01
a6 -2.579116350676e+00 a7 1.318146425812e-01 a8 -2.890652428531e-03
Emin 1.08e+01 s(Emin) 1.00e-19 smax 1.91e-17 Error 3.00e-01
Eth 10.2
Mcross 9.1093826E-31
```

Reaction 2.1.3 $e + H(2s) \rightarrow e + H(2p)$

a0 -3.015144307129e+01 a1 -8.929446571004e-01 a2 -5.730368414517e-03 a3 4.111473087803e-04 a4 -3.370055284368e-05 a5 2.817934394179e-06 a6 -1.944521853229e-07 a7 8.570956054828e-09 a8 -1.688382595819e-10 Emin 1.00e-01 s(Emin) 6.06e-13 smax 6.06e-13 Error 1.75e-10 Eth 1.934e-5 Mcross 9.1093826E-31

A more extensive analytic formula is given in the text.

Reaction 2.1.4 $e + H(n) \rightarrow e + H(m)(m > n, m \neq 2)$

An analytic formula is given in the text.

Reaction 2.1.5 $e + H(1s) \rightarrow e + H^+ + e$

```
a0 -7.778213049931e+02 a1 9.540190857268e+02 a2 -5.227766973807e+02
a3 1.592701052833e+02 a4 -2.952557198074e+01 a5 3.413024145539e+00
a6 -2.405520814365e-01 a7 9.465181268476e-03 a8 -1.594325350979e-04
Emin 1.43e+01 s(Emin) 1.00e-19 smax 7.15e-17 Error 1.11e-01
Eth 13.6
Mcross 9.1093826E-31
aBorn,1= 1.53753e-16 nBorn,1= 8.61942e-01
Emin 1.43e+01 s(Emin) 1.00e-19 Error 8.84e-01
aBorn,2= 2.34616e-16 nBorn,2= 1.02119e+00
```

Emin 1.43e+01 s(Emin) 1.00e-19 Error 5.01e-01

Reaction 2.1.6 $e + H(2s) \rightarrow e + H^+ + e$

```
a0 -1.323829114032e+02 a1 1.651239202115e+02 a2 -1.140121644712e+02
a3 4.230980472378e+01 a4 -9.296147227462e+00 a5 1.243911606504e+00
a6 -9.947722917370e-02 a7 4.367280737208e-03 a8 -8.092922245217e-05
Emin 3.58e+00 s(Emin) 1.00e-19 smax 8.30e-16 Error 2.93e-01
Eth 3.4
Mcross 9.1093826E-31
aBorn,1= 1.87046e-15 nBorn,1= 8.93875e-01
Emin 3.58e+00 s(Emin) 1.00e-19 Error 7.51e-01
```

aBorn, 2= 2.57396e-15 nBorn, 2= 1.01823e+00

Emin 3.58e+00 s(Emin) 1.00e-19 Error 7.62e-01

Reaction 2.1.7 $e + H(n = 3) \rightarrow e + H^+ + e$

```
a0 -5.210905240460e+01 a1 4.541756148570e+01 a2 -3.994563990284e+01
a3 1.774554892576e+01 a4 -4.490170942194e+00 a5 6.717581547587e-01
a6 -5.875054514668e-02 a7 2.774373803025e-03 a8 -5.460792035331e-05
Emin 1.55e+00 s(Emin) 1.00e-19 smax 5.76e-15 Error 5.89e-01
Eth 1.5111
Mcross 9.1093826E-31
```

A more extensive analytic formula for all n > 2 is given in the text.

Reaction 2.2.1a $e + H_2(v = 0) \rightarrow e + H_2(v = 1)$

```
a0 -4.063959689566e+01 a1 1.636189705461e+01 a2 -3.342841685940e+01
a3 3.479549344686e+01 a4 -2.082704506646e+01 a5 7.301916128338e+00
a6 -1.477679988432e+00 a7 1.596127782326e-01 a8 -7.118499383243e-03
Emin 8.95e-01 s(Emin) 1.00e-19 smax 4.79e-17 Error 3.82e-02
Eth 0.5
Mcross 9.1093826E-31
```

Reaction 2.2.1b $e + H_2(v = 0) \rightarrow e + H_2(v = 2)$

a0 -4.401593275820e+01 a1 -5.428337849062e+00 a2 2.781894563620e+01 a3 -3.059898206514e+01 a4 1.618430684710e+01 a5 -4.799622608369e+00 a6 8.162961901622e-01 a7 -7.445555845412e-02 a8 2.825425451852e-03 Emin 1.38e+00 s(Emin) 1.00e-19 smax 8.61e-18 Error 7.10e-04 Eth 1.0 Emax 3.0E+02 Mcross 9.1093826E-31

Not valid for E < 1.1 or E > 300 eV.

Reaction 2.2.2 $e + H_2(X^1\Sigma_g^+) \rightarrow e + H_2(B^1\Sigma_u^+2p\sigma)$

a0 -4.293519441750e+02 a1 5.112210939087e+02 a2 -2.848127939455e+02 a3 8.831033879636e+01 a4 -1.665959177505e+01 a5 1.957960915869e+00 a6 -1.401282416514e-01 a7 5.591134833381e-03 a8 -9.537010324465e-05 Emin 1.25e+01 s(Emin) 1.00e-19 smax 2.94e-17 Error 1.04e-01 Eth 11.37 Mcross 9.1093826E-31 aBorn,1= 1.10665e-17 nBorn,1= 8.08245e-01

Emin 1.38e+00 s(Emin) 1.00e-19 Error 1.52e+00

aBorn, 2= 4.71632e-17 nBorn, 2= 1.37760e+00

Emin 1.38e+00 s(Emin) 1.00e-19 Error 1.86e+00

Reaction 2.2.3 $e + H_2(X^1\Sigma_g^+) \to e + H_2(C^1\Pi_u 2p\pi)$

```
a0 -8.194268487911e+02 a1 9.870509999996e+02 a2 -5.309554319119e+02
a3 1.591702330888e+02 a4 -2.912103674573e+01 a5 3.332102780153e+00
a6 -2.330596118299e-01 a7 9.119178195801e-03 a8 -1.529895022672e-04
Emin 1.58e+01 s(Emin) 1.00e-19 smax 3.80e-17 Error 1.18e-01
Eth 11.7
Mcross 9.1093826E-31
aBorn,1= 6.74162e-17 nBorn,1= 8.01562e-01
Emin 1.58e+01 s(Emin) 1.00e-19 Error 4.64e-01
```

aBorn, 2= 1.15646e-16 nBorn, 2= 1.00587e+00

Emin 1.58e+01 s(Emin) 1.00e-19 Error 1.15e+00

Reaction 2.2.4 $e + H_2(X^1\Sigma_g^+) \to e + H_2(E, F^1\Sigma_g^+)$

a0 -1.285300373043e+03 a1 1.791037396609e+03 a2 -1.109180722424e+03 a3 3.858482892334e+02 a4 -8.239751178005e+01 a5 1.105885445011e+01 a6 -9.113361334764e-01 a7 4.218997111854e-02 a8 -8.407951365268e-04 Emin 1.65e+01 s(Emin) 1.00e-19 smax 4.77e-18 Error 2.51e-02 Eth 12.2 Mcross 9.1093826E-31 **Reaction 2.2.5** $e + H_2(X^1 \Sigma_g^+) \to e + H_2(b^3 \Sigma_u^+, a^3 \Sigma_g^+, c^3 \Pi_u) \to e + H(1s) + H(1s)$

a0	-1.019870329452e+	05 al	2.2526014	130192e+05	5 a2	-2.158143	3676206e+05
a3	1.171042848075e+	05 a4	-3.9364948	349617e+04	l a5	8.395340	0835067e+03
a6	-1.109486871647e+	03 a7	8.3084215	522823e+01	. a8	-2.699781	l210407e+00
	Emin 1.08e+01	s(Emin)	1.00e-19	smax 8	8.84e-1	7 Error	5.39e-01
	Eth 8.5						
	Mcross 9.1093826	E-31					

Reaction 2.2.6 $e + H_2(X^1\Sigma_g^+) \rightarrow e + H_2(1s\sigma_g, nl\lambda|^1\Lambda) \rightarrow e + H(1s) + H(2s)$

a0 -1.157041752123e+03 a1 1.501936271844e+03 a2 -8.611938700508e+02 a3 2.754926257351e+02 a4 -5.380465012731e+01 a5 6.573972423327e+00 a6 -4.912318139657e-01 a7 2.054926773000e-02 a8 -3.689035889972e-04 Emin 1.65e+01 s(Emin) 1.00e-19 smax 1.64e-17 Error 1.12e-01 Eth 14.9 Mcross 9.1093826E-31 aBorn,1= 3.90596e-17 nBorn,1= 9.29053e-01 Emin 1.65e+01 s(Emin) 1.00e-19 Error 3.41e-01 aBorn,2= 4.72962e-17 nBorn,2= 1.00759e+00

Emin 1.65e+01 s(Emin) 1.00e-19 Error 2.72e-01

Reaction 2.2.7 $e + H_2(X^1\Sigma_g^+) \rightarrow e + H_2(2p\sigma_u, nl\lambda|Q_2^1\Pi_u) \rightarrow e + H(2p) + H(2s)$

```
a0 -2.057786420733e+04 a1 2.950256031919e+04 a2 -1.831052572622e+04
a3 6.414232477826e+03 a4 -1.387462186158e+03 a5 1.898300554210e+02
a6 -1.604843781908e+01 a7 7.667894395976e-01 a8 -1.585946768503e-02
Emin 2.88e+01 s(Emin) 1.00e-19 smax 3.19e-18 Error 1.73e-02
Eth 23.0
Mcross 9.1093826E-31
```

aBorn, 1= 1.14191e-17 nBorn, 1= 1.29810e+00

Emin 2.88e+01 s(Emin) 1.00e-19 Error 9.63e-02

aBorn, 2= 1.05756e-17 nBorn, 2= 1.25115e+00

Emin 2.88e+01 s(Emin) 1.00e-19 Error 7.37e-02

Reaction 2.2.8 $e + H_2(X^1 \Sigma_g^+) \to e + H_2(2p\sigma_u; n = 3) \to e + H(1s) + H(n = 3)$

```
a0 -3.287645365957e+03 a1 5.014406168806e+03 a2 -3.348881857725e+03
a3 1.262084567851e+03 a4 -2.934110683163e+02 a5 4.308239201745e+01
a6 -3.902409019508e+00 a7 1.994401403354e-01 a8 -4.405117731369e-03
Emin 1.90e+01 s(Emin) 1.00e-19 smax 1.79e-18 Error 5.54e-03
Eth 19.0
Mcross 9.1093826E-31
aBorn,1= 4.23517e-18 nBorn,1= 9.45107e-01
```

```
Emin 1.90e+01 s(Emin) 1.00e-19 Error 1.02e-01
```

aBorn, 2= 6.12160e-18 nBorn, 2= 1.10089e+00

Emin 1.90e+01 s(Emin) 1.00e-19 Error 1.17e-01

Reaction 2.2.9 $e + H_2(X^1\Sigma_g^+) \to e + H_2^+(v) + e$

a0 -1.387609624141e+03 a1 1.699141305899e+03 a2 -9.108411850551e+02 a3 2.719534700245e+02 a4 -4.949789923430e+01 a5 5.628121884179e+00 a6 -3.908551117391e-01 a7 1.517692897197e-02 a8 -2.526183660091e-04 Emin 1.87e+01 s(Emin) 1.00e-19 smax 1.11e-16 Error 1.94e-01 Eth 15.4 Mcross 9.1093826E-31

aBorn, 2= 3.58910e-16 nBorn, 2= 1.01326e+00

Emin 1.87e+01 s(Emin) 1.00e-19 Error 7.46e-01

Reaction 2.2.10 $e + H_2(X^1\Sigma_g^+) \to e + [H_2^+(\Sigma_g, \Sigma_u) + e] \to e + H^+ + H(1s) + e$

a0 -3.833822745947e+03 a1 5.694871055047e+03 a2 -3.683040395270e+03 a3 1.338526896657e+03 a4 -2.988408134179e+02 a5 4.197687137005e+01 a6 -3.624797562843e+00 a7 1.760638946986e-01 a8 -3.685905968490e-03 Emin 2.11e+01 s(Emin) 1.00e-19 smax 5.75e-18 Error 2.17e-02

Eth 18.0 Mcross 9.1093826E-31

Reaction 2.2.11 $e + H_2^+(v) \rightarrow e + H^+ + H^+ + e, (v = 0 \dots 9)$

a0 -7.175166253949e+02 a1 8.527284836302e+02 a2 -4.615650223553e+02 a3 1.402626692658e+02 a4 -2.611719315325e+01 a5 3.047273508837e+00 a6 -2.175218173132e-01 a7 8.689141623830e-03 a8 -1.488365280435e-04 Emin 1.79e+01 s(Emin) 1.00e-19 smax 1.74e-17 Error 2.37e-02 Eth 14.7 Mcross 9.1093826E-31

Reaction 2.2.12 $e + H_2^+(v) \rightarrow e + H_2^+(2p\sigma_u) \rightarrow e + H^+ + H(1s), (v = 0 \dots 9)$

a0 -8.734971153234e+01 a1 1.018145800541e+02 a2 -7.763161913681e+01 a3 3.095286370113e+01 a4 -7.178129093553e+00 a5 1.001376002948e+00 a6 -8.276605899370e-02 a7 3.731813613454e-03 a8 -7.068946002778e-05 Emin 2.70e+00 s(Emin) 1.00e-19 smax 1.01e-15 Error 6.04e-01 Eth 2.4 Mcross 9.1093826E-31 **Reaction 2.2.13** $e + H_2^+(v) \rightarrow e + H_2^+(2p\pi_u) \rightarrow e + H^+ + H(n = 2), (v = 0...9)$

```
a0 -1.261570316476e+03 a1 1.600546555479e+03 a2 -8.875792683132e+02
a3 2.730297710707e+02 a4 -5.103300875879e+01 a5 5.943996543464e+00
a6 -4.220104525394e-01 a7 1.672668012176e-02 a8 -2.838410215959e-04
Emin 1.44e+01 s(Emin) 1.00e-19 smax 5.06e-17 Error 4.05e-02
Eth 14.0
Mcross 9.1093826E-31
aBorn,1= 1.35488e-16 nBorn,1= 1.04143e+00
Emin 1.44e+01 s(Emin) 1.00e-19 Error 4.20e-01
aBorn,2= 1.38216e-16 nBorn,1= 1.04143e+00
```

Emin 1.44e+01 s(Emin) 1.00e-19 Error 4.20e-01

Reaction 2.2.14 $e + H_2^+(v) \to H(1s) + H(n), (v = 0 \dots 9, n \ge 2)$

a0 -3.479249259777e+01 a1 -1.103564847459e+00 a2 -1.817595501089e-13 a3 1.913718292296e-13 a4 -8.296778314084e-15 a5 -3.945007662626e-14 a6 1.480375530361e-14 a7 -2.096231848232e-15 a8 1.067937159826e-16 Emin 1.00e-01 s(Emin) 9.85e-15 smax 9.85e-15 Error 1.74e-25 Eth 0.0 Mcross 9.1093826E-31

Reaction 2.2.15 $e + H_3^+ \to H + H + H$ or $\to H_2(v > 5) + H(n = 2)$

a0 -3.497403537065e+01 a1 -9.050073352581e-01 a2 -6.875577121635e-13 a3 1.212286779103e-13 a4 1.320680420105e-13 a5 -6.368710212825e-14 a6 1.136465595184e-14 a7 -9.184755712215e-16 a8 2.814743077081e-17 Emin 1.00e-01 s(Emin) 5.20e-15 smax 5.20e-15 Error 1.12e-24 Eth 0.0 Mcross 9.1093826E-31

Reaction 2.2.16 $e + H_3^+ \to e + H^+ + 2H$

```
a0 -1.180802127731e+03 a1 1.469242595864e+03 a2 -8.010903182743e+02
a3 2.427879961198e+02 a4 -4.477455604823e+01 a5 5.150533546464e+00
a6 -3.613881605497e-01 a7 1.416168832727e-02 a8 -2.376509206426e-04
Emin 1.65e+01 s(Emin) 1.00e-19 smax 7.36e-16 Error 5.22e-01
Eth 14.0
Mcross 9.1093826E-31
aBorn,1= 1.38785e-15 nBorn,1= 7.41773e-01
Emin 1.65e+01 s(Emin) 1.00e-19 Error 9.17e-01
aBorn,2= 1.75195e-15 nBorn,2= 8.18483e-01
```

Emin 1.65e+01 s(Emin) 1.00e-19 Error 9.58e-01

Reaction 2.2.17 $e + H_2(v \ge 4) \to (H_2^-) \to H^- + H$

a0-3.533068072400e+01a1-1.305146001161e+00a2-5.402400752335e-01a3-1.929128735755e-01a4-3.998229471894e-01a5-2.442412657121e-01a67.577527589687e-03a74.268454076562e-02a89.029646852927e-03Emin1.00e-01s(Emin)8.94e-16smax1.03e-15Error6.40e-04

Eth 0.1 Emax 5.0E+00 Mcross 9.1093826E-31

Not valid for E > 5 eV.
```
Reaction 2.3.1a e + He(1s^21S) \rightarrow e + He(1s^12p^11P)
```

a0 -1.035570462579e+03 a1 1.215931704603e+03 a2 -6.359454827397e+02 a3 1.861198276080e+02 a4 -3.333317507125e+01 a5 3.741542708002e+00 a6 -2.572201220135e-01 a7 9.910988972511e-03 a8 -1.640390854438e-04 Emin 2.18e+01 s(Emin) 1.00e-19 smax 9.79e-18 Error 3.00e-02 Eth 21.217 Mcross 9.1093826E-31

```
aBorn,1= 1.92235e-17 nBorn,1= 7.83233e-01
```

Emin 2.18e+01 s(Emin) 1.00e-19 Error 1.78e-01

aBorn, 2= 2.57557e-17 nBorn, 2= 8.83509e-01

Emin 2.18e+01 s(Emin) 1.00e-19 Error 1.03e-01

A more extensive analytic formula for transition to (1snl|1P) is given

```
Reaction 2.3.1b e + He(1s^21S) \rightarrow e + He(1s^13p^11P)
```

```
a0 -2.634840114580e+03 a1 3.509384108909e+03 a2 -2.045577442205e+03
a3 6.707125167844e+02 a4 -1.352829871406e+02 a5 1.719155337173e+01
a6 -1.344786986986e+00 a7 5.923822227197e-02 a8 -1.125813888453e-03
Emin 2.50e+01 s(Emin) 1.00e-19 smax 2.35e-18 Error 1.62e-02
Eth 23.086
Mcross 9.1093826E-31
```

```
aBorn,1= 4.99196e-18 nBorn,1= 8.11369e-01
```

Emin 2.50e+01 s(Emin) 1.00e-19 Error 1.08e-01

aBorn, 2= 6.56234e-18 nBorn, 2= 9.07863e-01

Emin 2.50e+01 s(Emin) 1.00e-19 Error 9.15e-02

A more extensive analytic formula for transition to (1snl|1P) is given

```
Reaction 2.3.2 e + He(1s^21S) \rightarrow e + He(1s^12s^11S)
```

```
a0 -1.340229681600e+04 a1 2.117221297932e+04 a2 -1.450345815377e+04
a3 5.610930330567e+03 a4 -1.341090060181e+03 a5 2.028369172741e+02
a6 -1.896426422663e+01 a7 1.002440728214e+00 a8 -2.294532805220e-02
Emin 2.17e+01 s(Emin) 1.00e-19 smax 2.72e-18 Error 1.23e-01
Eth 20.614
Mcross 9.1093826E-31
aBorn,1= 1.16605e-17 nBorn,1= 1.52195e+00
Emin 2.17e+01 s(Emin) 1.00e-19 Error 2.30e-01
aBorn,2= 1.01757e-17 nBorn,2= 1.42944e+00
Emin 2.17e+01 s(Emin) 1.00e-19 Error 1.68e-01
An analytic formula for s for transition to this and
```

```
other nl|1L states is given in the text.
```

Reaction 2.3.3a $e + He(1s^21S) \rightarrow e + He(1s^12s^13S)$

a0 -5.203190079746e+07 a1 1.114126390950e+08 a2 -1.041333130230e+08 a3 5.549110256155e+07 a4 -1.843990770358e+07 a5 3.912927216807e+06 a6 -5.177965474575e+05 a7 3.906790796143e+04 a8 -1.286793467718e+03 Emin 2.17e+01 s(Emin) 1.00e-19 smax 3.08e-18 Error 3.46e-01 Eth 19.818 Mcross 9.1093826E-31

This fit is not recommended.

aBorn, 1= 2.57061e-17 nBorn, 1= 4.07784e+00

17

Emin 2.17e+01 s(Emin) 1.00e-19 Error 6.90e-01

aBorn, 2= 4.23197e-17 nBorn, 2= 5.18074e+00

Emin 2.17e+01 s(Emin) 1.00e-19 Error 1.32e+00

An analytic formula for s for transition to this and other nl|3L states is g

Reaction 2.3.3b $e + He(1s^21S) \rightarrow e + He(1s^12p^13P)$

a0 -4.793169045161e+06 a1 9.882446793715e+06 a2 -8.888886013658e+06 a3 4.555681859005e+06 a4 -1.455138589620e+06 a5 2.966235458426e+05 a6 -3.768463275632e+04 a7 2.728166188657e+03 a8 -8.616903005294e+01 Emin 2.17e+01 s(Emin) 1.00e-19 smax 2.89e-18 Error 1.70e-01 Eth 20.936 Mcross 9.1093826E-31

aBorn,1= 1.87693e-17 nBorn,1= 2.84919e+00

Emin 2.17e+01 s(Emin) 1.00e-19 Error 6.02e-01

aBorn, 2= 2.73848e-17 nBorn, 2= 3.37724e+00

Emin 2.17e+01 s(Emin) 1.00e-19 Error 6.43e-01

An analytic formula for s for transition to this and other nl|3L states is g

Reaction 2.3.3c $e + He(1s^21S) \rightarrow e + He(1s^13s^13S)$

```
a0 -4.788014731830e+08 a1 1.022518413821e+09 a2 -9.540217735841e+08
a3 5.079285422983e+08 a4 -1.687812725605e+08 a5 3.584473999432e+07
a6 -4.751258664024e+06 a7 3.593838762943e+05 a8 -1.187665518764e+04
Emin 2.50e+01 s(Emin) 1.00e-19 smax 8.49e-19 Error 9.16e-02
Eth 22.717
Mcross 9.1093826E-31
This fit is not recommended.
aBorn,1= 6.73891e-18 nBorn,1= 3.38203e+00
Emin 2.50e+01 s(Emin) 1.00e-19 Error 2.57e-01
aBorn,2= 8.73337e-18 nBorn,2= 3.82261e+00
Emin 2.50e+01 s(Emin) 1.00e-19 Error 3.10e-01
An analytic formula for s for transition to this and other (n1|3L) states is
```

Reaction 2.3.3d $e + He(1s^21S) \rightarrow e + He(1s^13p^13P)$

```
a0 -3.936065650971e+07 a1 8.116028811410e+07 a2 -7.306391247418e+07
a3 3.750824079156e+07 a4 -1.200982299576e+07 a5 2.456048818627e+06
a6 -3.132802195794e+05 a7 2.278831373521e+04 a8 -7.237641204949e+02
Emin 2.50e+01 s(Emin) 1.00e-19 smax 1.62e-18 Error 1.85e-01
Eth 23.006
Mcross 9.1093826E-31
This fit is not recommended.
aBorn,1= 1.32373e-17 nBorn,1= 3.41922e+00
Emin 2.50e+01 s(Emin) 1.00e-19 Error 3.91e-01
aBorn,2= 1.67554e-17 nBorn,2= 3.81681e+00
Emin 2.50e+01 s(Emin) 1.00e-19 Error 4.46e-01
An analytic formula for s for transition to this and other n1|3L states is q
```

```
Reaction 2.3.4a e + He(1s^{1}2s^{1}3S) \rightarrow e + He(1s^{1}2s^{1}1S)
```

a0 -3.767284614946e+01 a1 1.242374777500e+01 a2 -1.733730671197e+01 a3 1.065193441154e+01 a4 -3.545021903004e+00 a5 6.760042577381e-01 a6 -7.381907066438e-02 a7 4.291139737209e-03 a8 -1.029193004464e-04 Emin 8.96e-01 s(Emin) 1.00e-19 smax 6.14e-16 Error 4.84e-01 Eth 0.796 Mcross 9.1093826E-31

aBorn,1= 2.18988e-15 nBorn,1= 1.34842e+00

Emin 8.96e-01 s(Emin) 1.00e-19 Error 1.14e+00

aBorn, 2= 2.23252e-15 nBorn, 2= 1.36293e+00

Emin 8.96e-01 s(Emin) 1.00e-19 Error 1.23e+00

```
Reaction 2.3.4b e + He(1s^{1}2s^{1}3S) \rightarrow e + He(1s^{1}2p^{1}1P)
```

a0 -5.319933965992e+01 a1 4.744554023140e+01 a2 -4.844985223676e+01 a3 2.500468700294e+01 a4 -7.374551620285e+00 a5 1.290076459738e+00 a6 -1.322635763531e-01 a7 7.335813534997e-03 a8 -1.698321860588e-04 Emin 1.56e+00 s(Emin) 1.00e-19 smax 3.07e-16 Error 4.17e-01 Eth 1.399 Mcross 9.1093826E-31 aBorn,1= 1.10118e-15 nBorn,1= 1.35219e+00 Emin 1.56e+00 s(Emin) 1.00e-19 Error 9.62e-01

aBorn, 2= 1.11692e-15 nBorn, 2= 1.36330e+00

Emin 1.56e+00 s(Emin) 1.00e-19 Error 1.02e+00

```
Reaction 2.3.4c e + He(1s^{1}2s^{1}1S) \rightarrow e + He(1s^{1}2p^{1}3P)
```

a0 -3.317860766309e+01 a1 -5.306038723803e-01 a2 -2.695255954243e+00 a3 2.632267872941e+00 a4 -1.099156687924e+00 a5 2.377305480208e-01 a6 -2.790496421908e-02 a7 1.688187005669e-03 a8 -4.125774276276e-05 Emin 3.90e-01 s(Emin) 1.00e-19 smax 2.41e-15 Error 6.04e-01 Eth 0.349 Mcross 9.1093826E-31 aBorn,1= 8.65146e-15 nBorn,1= 1.35184e+00 Emin 3.90e-01 s(Emin) 1.00e-19 Error 1.57e+00 aBorn,2= 8.78111e-15 nBorn,2= 1.36352e+00

Emin 3.90e-01 s(Emin) 1.00e-19 Error 1.67e+00

Reaction 2.3.4d $e + He(1s^{1}2p^{1}3P) \rightarrow e + He(1s^{1}2p^{1}1P)$

a0 -3.550958147337e+01 a1 -2.148096190520e+00 a2 3.301727694779e-01 a3 1.489817873888e+00 a4 -1.281057689191e+00 a5 4.334863480750e-01 a6 -7.269238026113e-02 a7 6.015845378859e-03 a8 -1.962092219181e-04 Emin 2.62e-01 s(Emin) 1.00e-19 smax 4.39e-16 Error 2.60e-01 Eth 0.254 Mcross 9.1093826E-31 aBorn,1= 1.62992e-15 nBorn,1= 1.37522e+00 Emin 2.62e-01 s(Emin) 1.00e-19 Error 1.37e+00

aBorn, 2= 1.59075e-15 nBorn, 2= 1.36145e+00

Emin 2.62e-01 s(Emin) 1.00e-19 Error 1.29e+00

```
Reaction 2.3.5a e + He(1s^{1}2s^{1}1S) \rightarrow e + He(1s^{1}2p^{1}1P)
```

```
a0 -3.325138159927e+01 a1 6.965673711167e+00 a2 -9.102522690164e+00
a3 5.178880611636e+00 a4 -1.570251042131e+00 a5 2.686249148763e-01
a6 -2.602715945748e-02 a7 1.332101581144e-03 a8 -2.797505613652e-05
Emin 6.77e-01 s(Emin) 1.00e-19 smax 1.44e-14 Error 7.36e-01
Eth 0.602
Mcross 9.1093826E-31
aBorn,2= 4.26417e-14 nBorn,2= 8.79209e-01
Emin 6.87e-01 s(Emin) 1.00e-19 Error 1.56e+00
An analytic formula for s is given in the text.
```

Reaction 2.3.5b $e + He(1s^{1}2s^{1}3S) \rightarrow e + He(1s^{1}2p^{1}3P)$

a0 -4.190861763587e+01 a1 2.589117787777e+01 a2 -2.543442341964e+01 a3 1.224262304780e+01 a4 -3.287256784979e+00 a5 5.142698379467e-01 a6 -4.655881399807e-02 a7 2.259789810984e-03 a8 -4.548031395449e-05 Emin 1.15e+00 s(Emin) 1.00e-19 smax 7.52e-15 Error 5.53e-01 Eth 1.145 Mcross 9.1093826E-31

Reaction 2.3.6a $e + He(1s^12s^11S) \rightarrow e + He(1s^13p^11P)$

a0 -7.945340796384e+01 a1 7.952123040074e+01 a2 -5.901873964305e+01 a3 2.336041841867e+01 a4 -5.418217641105e+00 a5 7.574234290606e-01 a6 -6.273863245111e-02 a7 2.833779484304e-03 a8 -5.374700574749e-05 Emin 2.72e+00 s(Emin) 1.00e-19 smax 2.68e-16 Error 2.62e-01 Eth 2.472 Mcross 9.1093826E-31

An analytic formula for s for transition to this and other np|1P states is g

Reaction 2.3.6b $e + He(1s^{1}2s^{1}3S) \rightarrow e + He(1s^{1}3p^{1}3P)$

a0 -8.720058224600e+01 a1 8.669127167337e+01 a2 -6.125632963824e+01
a3 2.323452528088e+01 a4 -5.206449941296e+00 a5 7.082705099324e-01
a6 -5.741257577852e-02 a7 2.548456501150e-03 a8 -4.765136776607e-05
Emin 3.14e+00 s(Emin) 1.00e-19 smax 7.66e-17 Error 1.61e-01
Eth 3.188
Mcross 9.1093826E-31
aBorn,2= 1.95245e-16 nBorn,2= 8.39781e-01
Emin 3.14e+00 s(Emin) 1.00e-19 Error 5.55e-01
An analytic formula for s for transition to this and other np|3P states is g

Reaction 2.3.7a $e + He(1s^{1}2p^{1}1P) \rightarrow e + He(1s^{1}3d^{1}1D)$

a0 -6.380148486246e+01 a1 6.207791717177e+01 a2 -5.009739526736e+01 a3 2.108909461860e+01 a4 -5.130498771379e+00 a5 7.448846309387e-01 a6 -6.362451646494e-02 a7 2.947637642636e-03 a8 -5.710909679690e-05 Emin 2.05e+00 s(Emin) 1.00e-19 smax 2.73e-15 Error 6.02e-01 Eth 1.856 Mcross 9.1093826E-31 aBorn,2= 7.85272e-15 nBorn,2= 8.59826e-01 Emin 2.05e+00 s(Emin) 1.00e-19 Error 1.21e+00 An analytic formula for s is given in the text.

Reaction 2.3.7b $e + He(1s^{1}2p^{1}3P) \rightarrow e + He(1s^{1}3d^{1}3D)$

a0 -7.355382422374e+01 a1 7.757733939986e+01 a2 -6.021028662561e+01 a3 2.456897613696e+01 a4 -5.830267812736e+00 a5 8.299661528547e-01 a6 -6.978241370066e-02 a7 3.191768833116e-03 a8 -6.118911403921e-05 Emin 2.35e+00 s(Emin) 1.00e-19 smax 2.01e-15 Error 5.79e-01 Eth 2.109 Mcross 9.1093826E-31 aBorn,2= 5.69936e-15 nBorn,2= 8.78100e-01 Emin 2.35e+00 s(Emin) 1.00e-19 Error 1.12e+00 An analytic formula for s is given in the text. **Reaction 2.3.9** $e + He(1s^21S) \rightarrow e + He^+(1s) + e$

a0 -1.864515653677e+03 a1 2.200039160012e+03 a2 -1.13502043008e+03 a3 3.275368136458e+02 a4 -5.782773248653e+01 a5 6.398861014578e+00 a6 -4.337092983841e-01 a7 1.647885719077e-02 a8 -2.690038700620e-04 Emin 2.50e+01 s(Emin) 1.00e-19 smax 3.75e-17 Error 5.25e-02 Eth 24.588 Mcross 9.1093826E-31 aBorn,2= 2.66551e-15 nBorn,2= 1.02404e+00 Emin 5.45e+00 s(Emin) 1.00e-19 Error 8.86e-01 **Reaction 2.3.10a** $e + He(1s^{1}2s^{1}1S) \rightarrow e + He^{+}(1s) + e$

a0 -1.588165958608e+02 a1 2.025096794972e+02 a2 -1.359677027927e+02 a3 4.931464639049e+01 a4 -1.062291122924e+01 a5 1.397102480527e+00 a6 -1.100503977820e-01 a7 4.767747225791e-03 a8 -8.732475392853e-05 Emin 4.11e+00 s(Emin) 1.00e-19 smax 8.05e-16 Error 4.12e-01 Eth 3.973 Mcross 9.1093826E-31 aBorn,1= 1.76528e-15 nBorn,1= 8.45023e-01 Emin 4.11e+00 s(Emin) 1.00e-19 Error 8.55e-01

aBorn,2= 2.22317e-15 nBorn,2= 9.31407e-01

Emin 4.11e+00 s(Emin) 1.00e-19 Error 6.68e-01

Reaction 2.3.10b $e + He(1s^{1}2p^{1}1P) \rightarrow e + He^{+}(1s) + e$

a0 -1.307379836148e+02 a1 1.632174408167e+02 a2 -1.129614525216e+02 a3 4.199589716864e+01 a4 -9.233643615441e+00 a5 1.235205673096e+00 a6 -9.868890735893e-02 a7 4.326993699443e-03 a8 -8.006280122436e-05 Emin 3.58e+00 s(Emin) 1.00e-19 smax 1.14e-15 Error 3.47e-01 Eth 3.371 Mcross 9.1093826E-31 aBorn,1= 2.44771e-15 nBorn,1= 8.44077e-01 Emin 3.58e+00 s(Emin) 1.00e-19 Error 1.02e+00 aBorn,2= 3.10641e-15 nBorn,2= 9.33260e-01

aBorn, Z = 3.10641e - 15 nBorn, Z = 9.33260e - 01

Emin 3.58e+00 s(Emin) 1.00e-19 Error 8.13e-01

Reaction 2.3.10c $e + He(1s^{1}2s^{1}3S) \rightarrow e + He^{+}(1s) + e$

a0 -2.339247199323e+02 a1 3.108263537901e+02 a2 -2.004035199806e+02 a3 7.013664348852e+01 a4 -1.464607997646e+01 a5 1.875537708304e+00 a6 -1.443996329241e-01 a7 6.134194672052e-03 a8 -1.104612714554e-04 Emin 5.45e+00 s(Emin) 1.00e-19 smax 9.37e-16 Error 5.07e-01 Eth 4.769 Mcross 9.1093826E-31 aBorn,1= 2.44417e-15 nBorn,1= 9.85122e-01 Emin 5.45e+00 s(Emin) 1.00e-19 Error 8.95e-01

aBorn, 2= 2.66551e-15 nBorn, 2= 1.02404e+00

Emin 5.45e+00 s(Emin) 1.00e-19 Error 8.86e-01

Reaction 2.3.10d $e + He(1s^{1}2p^{1}3P) \rightarrow e + He^{+}(1s) + e$

a0 -1.514909720389e+02 a1 1.917899987253e+02 a2 -1.291695579859e+02 a3 4.694225725512e+01 a4 -1.012623462168e+01 a5 1.333169086771e+00 a6 -1.050969063989e-01 a7 4.555911465700e-03 a8 -8.348482513741e-05 Emin 4.14e+00 s(Emin) 1.00e-19 smax 9.85e-16 Error 4.18e-01 Eth 3.625 Mcross 9.1093826E-31 aBorn,1= 2.09009e-15 nBorn,1= 8.39105e-01 Emin 4.14e+00 s(Emin) 1.00e-19 Error 1.16e+00

aBorn, 2= 2.72108e-15 nBorn, 2= 9.37659e-01

Emin 4.14e+00 s(Emin) 1.00e-19 Error 9.35e-01

```
Reaction 2.3.12 e + He(1s^{1}nl^{1}\{2S+1\}L) \rightarrow e + He^{+}(nl) + e
```

a0 -2.149046249050e+04 a1 2.587653680045e+04 a2 -1.349616963351e+04 a3 3.975822003764e+03 a4 -7.236994991416e+02 a5 8.336945178595e+01 a6 -5.937449760897e+00 a7 2.390910599514e-01 a8 -4.169354418025e-03 Emin 5.71e+01 s(Emin) 1.00e-19 smax 1.10e-17 Error 1.27e-01 Eth 54.4 Mcross 9.1093826E-31 aBorn,1= 4.41503e-17 nBorn,1= 1.48779e+00 Emin 5.71e+01 s(Emin) 1.00e-19 Error 3.50e-01

aBorn,2= 4.20803e-17 nBorn,2= 1.45655e+00

Emin 5.71e+01 s(Emin) 1.00e-19 Error 2.98e-01

Reaction 2.3.13 $e + He^+(1s) \rightarrow He(1s^1nl^1\{2S+1\}L) + hv$

See text for analytic formulas.

Reaction 2.3.14 $e + He^+(1s) \to e + He^+(2p)$

```
a0 -4.215091396506e+03 a1 4.764415543278e+03 a2 -2.333572119719e+03
a3 6.411861251368e+02 a4 -1.081470970453e+02 a5 1.147267078966e+01
a6 -7.480739782521e-01 a7 2.743315170494e-02 a8 -4.335336435784e-04
Emin 4.32e+01 s(Emin) 1.00e-19 smax 1.70e-17 Error 1.66e-01
Eth 40.8
Mcross 9.1093826E-31
aBorn,1= 4.51430e-17 nBorn,1= 9.28386e-01
Emin 4.32e+01 s(Emin) 1.00e-19 Error 1.96e-01
aBorn,2= 4.19403e-17 nBorn,2= 8.97086e-01
```

Emin 4.32e+01 s(Emin) 1.00e-19 Error 2.07e-01

Reaction 2.3.15 $e + He^+(1s) \to e + He^+(2s)$

```
a0 -4.363513156598e+04 a1 6.029422825525e+04 a2 -3.615014929003e+04
a3 1.227349742282e+04 a4 -2.581215777982e+03 a5 3.443868798585e+02
a6 -2.847203555533e+01 a7 1.333878006451e+00 a8 -2.711798666500e-02
Emin 4.33e+01 s(Emin) 1.00e-19 smax 3.29e-18 Error 1.27e-01
Eth 40.8
Mcross 9.1093826E-31
aBorn,1= 1.55600e-17 nBorn,1= 1.68750e+00
Emin 4.33e+01 s(Emin) 1.00e-19 Error 3.88e-01
aBorn,2= 1.31202e-17 nBorn,2= 1.55578e+00
```

Emin 4.33e+01 s(Emin) 1.00e-19 Error 2.24e-01

Reaction 2.3.19 $e + He^+(1s) \rightarrow e + He^{++} + e$

```
a0 -6.397975729831e+03 a1 7.234572604639e+03 a2 -3.553226640490e+03
a3 9.838309068727e+02 a4 -1.679762955979e+02 a5 1.811299630401e+01
a6 -1.205027911620e+00 a7 4.524170259779e-02 a8 -7.342485039293e-04
Emin 5.74e+01 s(Emin) 1.00e-19 smax 4.84e-18 Error 6.16e-02
Eth 54.4
Mcross 9.1093826E-31
aBorn,1= 1.11824e-17 nBorn,1= 8.89614e-01
Emin 5.74e+01 s(Emin) 1.00e-19 Error 1.88e-01
aBorn,2= 1.35777e-17 nBorn,2= 9.66349e-01
Emin 5.74e+01 s(Emin) 1.00e-19 Error 1.70e-01
```

Reaction 3.1.1 $p + H(1s) \rightarrow p + H(2p)$

```
a0 1.498711267601e+03 a1 -1.883748471843e+03 a2 9.798674598591e+02
a3 -2.840533664327e+02 a4 5.025004769585e+01 a5 -5.555355513127e+00
a6 3.748565821577e-01 a7 -1.412032135035e-02 a8 2.274926861613e-04
ar0 -1.196915681000E+02 ar1 1.572533096000E+01 ar2 -7.444839514000E-01
ELABMAX= 1.20000E+05 eV
Emin 5.01e+01 s(Emin) 1.00e-19 smax 3.09e-17 Error 2.54e-03
Eth 10.2
Mcross 1.0E+00
Not valid for E < 30 eV.
```

Reaction 3.1.2 $p + H(1s) \rightarrow p + H(2s)$

```
a0 2.829875237564e+03 a1 -6.116917512897e+03 a2 3.922809899060e+03
a3 -1.246183868116e+03 a4 2.285990672320e+02 a5 -2.546914306461e+01
a6 1.706611319064e+00 a7 -6.339871351017e-02 a8 1.005024483671e-03
ar0 -8.703695946000E+01 ar1 9.315160999000E+00 ar2 -4.461712204000E-01
ELABMAX= 8.00000E+04 eV
Emin 6.00e+02 s(Emin) 1.00e-19 smax 9.15e-18 Error 1.95e-03
Eth 10.2
Mcross 1.0E+00
Not valid for E < 400 eV.
```

Reaction 3.1.3 $p + H(2s) \rightarrow p + H(2p)$

```
a0 -7.074596259394e+01 a1 1.053200029604e+02 a2 -9.022427163873e+01
a3 3.938090329805e+01 a4 -9.804841353212e+00 a5 1.447083362703e+00
a6 -1.251503545319e-01 a7 5.855600339770e-03 a8 -1.143715732966e-04
Emin 1.76e+00 s(Emin) 1.00e-19 smax 3.61e-11 Error 2.20e+00
Eth 0.0
Mcross 1.0E+00
This fit is not recommended. Use the analytic formula for s given in the
text (Chibisov,1969).
```

Reaction 3.1.6 $p + H(1s) \rightarrow p + H^+ + e$

```
a0 -3.476414561951e+06 a1 2.961782930805e+06 a2 -1.100587541308e+06
a3 2.329850579421e+05 a4 -3.073181275800e+04 a5 2.586508086362e+03
a6 -1.356488358412e+02 a7 4.053120293214e+00 a8 -5.282803274226e-02
a10 -7.104410581000E+01 a11 5.699173611000E+00 a12 -2.002816430000E-01
ar0 -4.489505659000E+01 ar1 1.926156466000E+00 ar2 -1.091588336000E-01
ELABMIN= 2.00000E+03 eV
ELABMAX= 2.25000E+04 eV
Emin 1.52e+03 s(Emin) 1.00e-19 smax 1.53e-16 Error 1.16e-02
Eth 13.6
Mcross 1.0E+00
An analytic formula for s is given in the text.
```

Reaction 3.1.8 $p + H(1s) \rightarrow H(1s) + p$

```
a0 -3.274123792568e+01
                                              a2 -3.016990732025e-02
                         al -8.916456579806e-02
  a3 9.205482406462e-03
                        a4 2.400266568315e-03
                                               a5 -1.927122311323e-03
  a6 3.654750340106e-04 a7 -2.788866460622e-05
                                               a8 7.422296363524e-07
                                               al0 -3.294589600000E+01 al1 -1.713112000000E-01
 ar0 -5.787734011000E+01
                       ar1 7.671416829000E+00
                                               ar2 -5.208376804000E-01
ELABMIN= 0.10000E 00 eV
ELABMAX= 5.00000E+05 eV
      Emin 1.00e-01
                   s(Emin) 7.00e-15 smax 7.00e-15 Error 2.25e-03
      Eth 0.0
      Mcross 1.0E+00
```

Reaction 3.1.9 $p + H(1s) \rightarrow H(2p) + p$

```
a0 -2.197571949935e+01 a1 -4.742502251260e+01 a2 3.628013140596e+01
a3 -1.423003075866e+01 a4 3.273090240144e+00 a5 -4.557928912260e-01
a6 3.773588347458e-02 a7 -1.707904867106e-03 a8 3.251203344615e-05
ar0 -5.861021344000E+01 ar1 5.229876071000E+00 ar2 -3.222657437000E-01
ELABMAX= 6.50000E+04 eV
Emin 1.90e+01 s(Emin) 1.00e-19 smax 2.97e-17 Error 3.29e-03
Eth 10.2
Mcross 1.0E+00
Not valid for E < 10 eV.
```

Reaction 3.1.10 $p + H(1s) \rightarrow H(2s) + p$

a0 -1.327325087764e+04 a1 1.317576614520e+04 a2 -5.683932157858e+03 a3 1.386309780149e+03 a4 -2.089794561307e+02 a5 1.992976245274e+01 a6 -1.173800576157e+00 a7 3.902422810767e-02 a8 -5.606240339932e-04 Emin 2.62e+02 s(Emin) 1.00e-19 smax 3.20e-17 Error 1.03e-03 Eth 10.2 Mcross 1.0E+00

Reaction 3.1.11
a $p+H(n=2) \rightarrow H(n=2)+p$

a0 -3.160064085208e+01 a1 -1.063971267559e-01 a2 1.758632420708e-02 a3 -1.343032128288e-02 a4 -2.158483440621e-03 a5 2.016888852861e-03 a6 -3.768535435172e-04 a7 2.790447577960e-05 a8 -7.334007645451e-07 Emin 1.00e-01 s(Emin) 2.50e-14 smax 2.50e-14 Error 9.57e-04 Eth 0.0 Mcross 1.0E+00

Reaction 3.1.11b $p + H(n = 3) \rightarrow H(n = 3) + p$

a0 -3.007479360386e+01 a1 -1.033159234538e-01 a2 -5.813424077828e-03 a3 3.520834872493e-03 a4 -1.498488713106e-04 a5 -4.614034275366e-04 a6 1.226477420816e-04 a7 -1.180475816996e-05 a8 3.892872672032e-07 ar0 -3.732339082000E+01 ar1 1.751199692000E+00 ar2 -1.246752946000E-01 ELABMAX= 2.00000E+04 eV Emin 1.00e-01 s(Emin) 1.07e-13 smax 1.07e-13 Error 2.04e-04 Eth 0.0 Mcross 1.0E+00
Reaction 3.2.1a $p + H_2(j = 0) \rightarrow p + H_2(j')(j' \ge 2)$

a0 -3.351219959966e+01 a1 -1.635225977493e-01 a2 -6.547019337483e-02 a3 -2.075062265158e-03 a4 -4.874756961659e-03 a5 -4.660550753949e-03 a6 2.817993595595e-04 a7 2.508118915628e-04 a8 -2.791892312099e-05 Emin 1.00e-01 s(Emin) 3.23e-15 smax 3.23e-15 Error 8.28e-04 Eth 0.05 Mcross 1.0E+00

Reaction 3.2.1b $p + H_2(j = 1) \rightarrow p + H_2(j')(j' \ge 3)$

a0 -3.393406708822e+01 a1 -1.040291133860e-01 a2 -2.235808125213e-02 a3 -3.320456299848e-02 a4 -2.081525199080e-02 a5 1.897906681845e-03 a6 1.657385114123e-03 a7 -3.410682026726e-04 a8 1.868694684385e-05 ar0 -3.098471597000E+01 ar1 -1.645306432000E+00 ar2 -1.849934446000E-02 ELABMAX= 1.00000E+02 eV Emin 1.00e-01 s(Emin) 2.19e-15 smax 2.19e-15 Error 4.08e-04 Eth 0.05 Emax 2.0E+03 Mcross 1.0E+00 Not valid for E > 2000 eV.

Reaction 3.2.2 $p + H_2(v = 0) \rightarrow p + H_2(v > 0)$

a0 -4.048908822949e+01 a1 3.404344799771e+00 a2 -1.787578523150e+00 a3 1.394845302080e+00 a4 -5.775848321190e-01 a5 1.183902638008e-01 a6 -1.276577600153e-02 a7 6.983034334039e-04 a8 -1.531189559106e-05 Emin 6.02e-01 s(Emin) 1.00e-19 smax 1.24e-15 Error 2.22e-02 Eth 0.5 Mcross 1.0E+00

Reaction 3.2.3 $p + H_2 \rightarrow H(1s) + H_2^+$

a0 -8.965985910240e+01 a1 1.057326823133e+02 a2 -8.364373343149e+01 a3 3.396650519934e+01 a4 -7.931279499027e+00 a5 1.110667708159e+00 a6 -9.213077375317e-02 a7 4.170940125995e-03 a8 -7.937779949951e-05 Emin 2.72e+00 s(Emin) 1.00e-19 smax 1.03e-15 Error 2.46e-01 Eth 1.83 Mcross 1.0E+00

Reaction 3.2.4a $p + D_2 \rightarrow D^+ + HD$ (or H + D)

a0 -3.514598267631e+01 a1 -1.638772651981e+00 a2 -3.145916075331e-01 a3 2.614991388325e-01 a4 2.453621020680e-03 a5 -2.572795334322e-02 a6 5.870493979209e-03 a7 -5.239437578054e-04 a8 1.696795511874e-05 ar0 -3.711342385000E+01 ar1 -4.917503936000E-01 ar2 -2.634191267000E-02 ELABMAX= 5.00000E+03 eV Emin 1.00e-01 s(Emin) 2.47e-15 smax 2.47e-15 Error 3.74e-02 Eth 0.04 Mcross 1.0E+00

Reaction 3.2.4b $p + D_2 \rightarrow D + HD^+$

a0 -3.793844403725e+03 a1 1.562579182141e+04 a2 -2.785112864175e+04 a3 2.778553560654e+04 a4 -1.698201826254e+04 a5 6.517141981195e+03 a6 -1.535237801461e+03 a7 2.031763319972e+02 a8 -1.157681794201e+01 Emin 2.72e+00 s(Emin) 1.00e-19 smax 2.33e-17 Error 3.79e-01 Eth 1.87 Mcross 1.0E+00

Reaction 3.2.5 $p + H_2 \rightarrow p + H_2^+ (v \le 9) + e$

a0 1.681920096116e+01 a1 -8.751084517093e+01 a2 5.024534132103e+01 a3 -1.560982391827e+01 a4 2.931478842554e+00 a5 -3.421137108600e-01 a6 2.429148918124e-02 a7 -9.612735627840e-04 a8 1.625014598463e-05 ar0 -8.067212059000E+01 ar1 8.148943513000E+00 ar2 -3.720218589000E-01 ELABMAX= 1.00000E+05 eV Emin 4.36e+01 s(Emin) 1.00e-19 smax 1.19e-16 Error 2.51e-04 Eth 15.41 Mcross 1.0E+00

Not valid for E < 30 eV.

Reaction 3.2.6 $p + H_2^+(v) \to p + H(1s) + H^+$

```
a0 -5.100296089295e+01 a1 -7.618139241529e+00 a2 9.925169617893e+00
a3 -4.105615029225e+00 a4 9.552023306824e-01 a5 -1.333440043499e-01
a6 1.095282998853e-02 a7 -4.868705304669e-04 a8 9.034188174517e-06
ar0 -3.914276949000E+01 ar1 1.668753218000E+00 ar2 -1.266187689000E-01
ELABMAX= 2.00000E+04 eV
Emin 1.90e+01 s(Emin) 1.00e-19 smax 1.79e-15 Error 9.54e-04
Eth 6.0
Mcross 1.0E+00
```

Not valid for E < 10 eV.

Reaction 3.3.1 $p + He \rightarrow H + He^+(1s)$

```
a0 -4.883734637847e+01 a1 -7.864577316892e+00 a2 1.051518602966e+01
a3 -4.731600895321e+00 a4 1.169830752883e+00 a5 -1.750344914778e-01
a6 1.574934435872e-02 a7 -7.784849464356e-04 a8 1.611953487366e-05
ar0 -6.990672456000E+01 ar1 7.540193740000E+00 ar2 -4.130236463000E-01
ELABMAX= 8.00000E+04 eV
Emin 1.73e+01 s(Emin) 1.00e-19 smax 1.79e-16 Error 8.53e-04
Eth 11.2
Mcross 1.0E+00
```

Not valid for E < 10 eV.

Reaction 3.3.2 $p + He \rightarrow p + He^+(1s) + e$

```
a0 4.624871765081e+03 a1 -4.745692532499e+03 a2 2.081508647511e+03
a3 -5.150987820537e+02 a4 7.872087768079e+01 a5 -7.611766573851e+00
a6 4.549589444268e-01 a7 -1.537511000653e-02 a8 2.250170199350e-04
Emin 2.00e+02 s(Emin) 1.00e-19 smax 7.90e-17 Error 1.58e-04
Eth 24.58
Mcross 1.0E+00
```

Reaction 3.3.2n $p + He \rightarrow p + He^+(1s) + e$

revised version 2016, new fit. Better asymptotics

a0	4.195044321889E+02	a1	-3.711223698781E+02	a2	1.209086460598E+02
a3	-2.057942831375E+01	a4	1.924450806836E+00	a5	-8.969801627503E-02
a6	8.987363020501E-04	a7	7.919962773841E-05	a8	-2.232174653859E-06
	Eth 24.58				

```
Reaction 3.3.3 p + He(1s^21S) \rightarrow p + He(1s^12p^11P)
```

a0 -1.817859864600e+03 a1 1.862928035048e+03 a2 -8.556804144556e+02 a3 2.228609435255e+02 a4 -3.580573984427e+01 a5 3.624830875484e+00 a6 -2.255912682713e-01 a7 7.890547281314e-03 a8 -1.188134235646e-04 Emin 1.38e+02 s(Emin) 1.00e-19 smax 7.73e-17 Error 1.91e-05 Eth 19.819 Mcross 1.0E+00

A more extensive analytic formula is given in the text.

Reaction 3.3.6a $p + He(1s^{1}2s^{1}1S) \rightarrow H(2s) + He^{+}(1s)$

a0 -4.488921384477e+01 a1 4.960932531533e+00 a2 -3.262576803403e-01 a3 -2.936130156727e-01 a4 9.830719566023e-02 a5 -1.436613419090e-02 a6 1.109137228313e-03 a7 -4.365781757124e-05 a8 6.819428318304e-07 ar0 -1.490705981000E+02 ar1 2.580229694000E+01 ar2 -1.245093082000E+00 ELABMAX= 1.00000E+08 eV Emin 1.26e+00 s(Emin) 1.00e-19 smax 2.13e-15 Error 6.71e-04 Eth 0.57 Mcross 1.0E+00

Reaction 3.3.6an $p + He(1s^{1}2s^{1}1S) \rightarrow H(2s) + He^{+}(1s)$

revised version 2016, better asymptotics

a0	-4.538332073827E+01	a1	7.170783239771E+00	a2 -3.297134523000E+00
a3	1.487270508093E+00	a4	-4.585715075309E-01	a5 8.239364319341E-02
a6	-8.248906041886E-03	a7	4.255246239358E-04	a8 -8.812571753203E-06
	Eth 0.57			

Reaction 3.3.6b $p + He(1s^{1}2s^{1}3S) \rightarrow H(2s) + He^{+}(1s)$

a0 -4.848650583528e+01 a1 -3.932691714215e+00 a2 7.523124596576e+00 a3 -3.127572865354e+00 a4 6.776405973062e-01 a5 -8.713461726775e-02 a6 6.707424051145e-03 a7 -2.863198766538e-04 a8 5.218187112892e-06 ar0 -3.785059671000E+01 ar1 9.686976447000E-01 ar2 -5.936675659000E-02 ELABMAX= 1.00000E+05 eV Emin 6.06e+00 s(Emin) 1.00e-19 smax 1.85e-15 Error 7.93e-04 Eth 1.369 Mcross 1.0E+00 Not valid for E < 5.

Reaction 3.3.6bn $p + He(1s^{1}2s^{1}3S) \rightarrow H(2s) + He^{+}(1s)$

revised version, better asymptotics

a0 -8.074074443551E+01	a	5.555156807550E+01	a2	-3.738101128542E+01
a3 1.501104472390E+01	a	-3.618982367308E+00	a5	5.256859236453E-01
a6 -4.485164096934E-02	a	2.062076755012E-03	a8	-3.933113737905E-05
Eth 1.369				

Reaction 3.3.7
a $p + He(1s^12p^11P) \rightarrow H(2p) + He^+(1s)$

a0 -3.761174237974e+01 a1 3.151158037643e+00 a2 -9.333114666012e-01 a3 2.699732305042e-01 a4 -7.727620729277e-02 a5 1.499779990623e-02 a6 -1.669176505953e-03 a7 9.612733086019e-05 a8 -2.222038029912e-06 Emin 3.02e-01 s(Emin) 1.00e-19 smax 1.07e-14 Error 6.71e-03 Eth 0.0 Mcross 1.0E+00

Reaction 3.3.7b $p + He(1s^{1}2p^{1}3P) \rightarrow H(2p) + He^{+}(1s)$

a0 -3.567086579938e+01 a1 2.166873578000e+00 a2 -8.322452040300e-01 a3 3.967778327802e-01 a4 -1.418439656872e-01 a5 2.883195206911e-02 a6 -3.206621198950e-03 a7 1.828199967957e-04 a8 -4.182687867891e-06 Emin 2.61e-01 s(Emin) 1.00e-19 smax 1.32e-14 Error 7.49e-02 Eth 0.225 Mcross 1.0E+00 **Reaction 4.2.1** $H_2^+(v) + H(1s) \rightarrow H_2^+(2p\sigma_u) + H(1s) \rightarrow H^+ + H + H(1s), (v = 0...9)$

a0 1.885518121144e+04 a1 -1.730109845144e+04 a2 6.789143089426e+03 a3 -1.495308617111e+03 a4 2.025858786888e+02 a5 -1.731165351422e+01 a6 9.120053117120e-01 a7 -2.709481429950e-02 a8 3.476220959653e-04 ar0 -1.032118444000E+03 ar1 1.641681892000E+02 ar2 -6.789412670000E+00 ELABMAX= 1.00000E+06 eV Emin 3.96e+02 s(Emin) 1.00e-19 smax 1.99e-16 Error 2.02e-03 Eth 6.0 Mcross 2.0E+00

Not valid for E < 300 eV.

Reaction 4.3.1 $H_2^+ + H_2 \rightarrow H_2 + H_2^+$

a0 -3.427958758517e+01 a1 -7.121484125189e-02 a2 4.690466187943e-02 a3 -8.033946660540e-03 a4 -2.265090924593e-03 a5 -2.102414848737e-04 a6 1.948869487515e-04 a7 -2.208124950005e-05 a8 7.262446915488e-07 ar0 -7.463331048000E+01 ar1 8.629058909000E+00 ar2 -4.691006442000E-01 ELABMAX= 1.00000E+05 eV Emin 1.00e-01 s(Emin) 2.10e-15 smax 2.10e-15 Error 3.91e-04 Eth 0. Mcross 2.0E+00

Reaction 4.3.2 $H_2^+ + H_2 \rightarrow H_2^+ + H_2^+ + e$

a0 -2.383489439121e+02 a1 2.384368432909e+02 a2 -1.263102889116e+02 a3 3.746454397894e+01 a4 -6.767700946931e+00 a5 7.629123486032e-01 a6 -5.246096809457e-02 a7 2.014116839267e-03 a8 -3.310073123768e-05 Emin 3.67e+01 s(Emin) 1.00e-19 smax 3.30e-16 Error 1.11e-04 Eth 15.4 Mcross 2.0E+00

Reaction 4.3.3 $H_2^+ + H_2 \to H_3^+ + H$

a0 -3.422188283057e+01 a1 -7.733921420462e-01 a2 -4.625452844356e-01 a3 -2.307540053739e-01 a4 3.188925541844e-02 a5 3.622033742962e-02 a6 -5.093822617734e-03 a7 -2.420060478318e-03 a8 4.634259500837e-04 ar0 -3.242526389000E+01 ar1 -2.753789651000E+00 ar2 -9.217068775000E-02 ELABMAX= 3.00000E+01 eV Emin 1.00e-01 s(Emin) 4.26e-15 smax 4.26e-15 Error 2.99e-04 Eth 0.0 Emax 4.0E+01 Mcross 2.0E+00 Not valid for E > 40 eV.

Reaction 4.4.1 $H_2^+ + He \rightarrow H_2^+ + He^+(1s) + e$

a0 -1.279183240553e+02 a1 7.851907373534e+01 a2 -3.133748457688e+01 a3 6.817786375262e+00 a4 -8.395843945734e-01 a5 5.456579807937e-02 a6 -1.161799515932e-03 a7 -5.185457132932e-05 a8 2.416658401748e-06 ar0 -4.780235129000E+01 ar1 2.462576818000E+00 ar2 -1.322702144000E-01 ELABMAX= 1.00000E+05 eV Emin 4.52e+01 s(Emin) 1.00e-19 smax 1.30e-16 Error 1.34e-04 Eth 24.58 Mcross 2.0E+00

Reaction 5.2.1 $He^+(1s) + H_2 \to He^+(1s) + H_2^+ + e$

a0 -2.325294713788e+02 a1 2.137835372191e+02 a2 -1.060826620181e+02 a3 3.048034248334e+01 a4 -5.472938698614e+00 a5 6.242016892196e-01 a6 -4.400795546393e-02 a7 1.751040972949e-03 a8 -3.008006324086e-05 Emin 1.90e+01 s(Emin) 1.00e-19 smax 5.51e-17 Error 3.94e-03 Eth 15.4 Mcross 4.0E+00

Reaction 5.2.2 $He^+(1s) + H_2 \to He(1s^21S) + H_2^+$

a0 -1.108066480195e+04 a1 1.008755280085e+04 a2 -4.018540037373e+03 a3 9.114656395741e+02 a4 -1.288151812962e+02 a5 1.162404023738e+01 a6 -6.543944103705e-01 a7 2.101966590407e-02 a8 -2.949737399468e-04 Emin 5.84e+02 s(Emin) 1.00e-19 smax 1.39e-16 Error 1.86e-04 Eth 0.0 Mcross 4.0E+00

Reaction 5.2.3 $He^+(1s) + H_2 \rightarrow He(1s^21S) + H^+ + H$

a0 -4.311350879235e+01 a1 5.515944942674e-02 a2 -5.606069194725e-01 a3 1.291230751283e-01 a4 1.533686418592e-01 a5 -6.125769782521e-02 a6 8.886802346189e-03 a7 -5.806431060224e-04 a8 1.440125514216e-05 ar0 -5.560154242000E+01 ar1 5.037170638000E+00 ar2 -3.585460009000E-01 ELABMAX= 2.00000E+04 eV Emin 2.33e-01 s(Emin) 1.00e-19 smax 1.33e-16 Error 2.66e-02 Eth 0.0 Mcross 4.0E+00

Not valid for E < 0.3 eV.

Reaction 5.3.1 $He^+(1s) + He \rightarrow He + He^+(1s)$

a0 -3.369296194290e+01 a1 -8.324653178943e-02 a2 6.660151719388e-03 a3 -3.592504363592e-03 a4 -1.745382918016e-04 a5 1.497204460315e-04 a6 -2.152122621503e-05 a7 1.473684503283e-06 a8 -4.401831552698e-08 Emin 1.00e-01 s(Emin) 3.00e-15 smax 3.00e-15 Error 5.63e-05 Eth 0.0 Mcross 4.0E+00

Reaction 5.3.2 $He^+ + He \rightarrow He^+ + He^+ + e$

a0 -1.126408326504e+03 a1 1.221414787395e+03 a2 -5.910936989464e+02 a3 1.609170847736e+02 a4 -2.693537704047e+01 a5 2.837798810047e+00 a6 -1.837630539164e-01 a7 6.688462818228e-03 a8 -1.048046510736e-04 Emin 2.88e+01 s(Emin) 1.00e-19 smax 6.12e-17 Error 1.13e-02 Eth 24.58 Mcross 4.0E+00 **Reaction 6.1.1** $He^{++} + H(1s) \rightarrow He^{++} + H(2p)$

a0 -3.935171502778e+03 a1 3.121350934839e+03 a2 -1.090958722369e+03 a3 2.154761368634e+02 a4 -2.615076564408e+01 a5 1.988438495730e+00 a6 -9.217310084360e-02 a7 2.372722474405e-03 a8 -2.585687269696e-05 Emin 7.18e+02 s(Emin) 1.00e-19 smax 1.03e-16 Error 1.19e-05 Eth 10.275 Mcross 4.0E+00

A more extensive analytic formula for all n \geq 2 is given in the text.

Reaction 6.1.3 $He^{++} + H(1s) \rightarrow He^{++} + H^+ + e$

a0 -4.108092972648e+05 a1 3.538162825295e+05 a2 -1.328131904744e+05 a3 2.837637619784e+04 a4 -3.774364805704e+03 a5 3.200454272008e+02 a6 -1.689565219222e+01 a7 5.077317110574e-01 a8 -6.650084296041e-03 Emin 1.34e+03 s(Emin) 1.00e-19 smax 1.60e-16 Error 9.63e-04 Eth 13.6 Mcross 4.0E+00 **Reaction 6.1.4** $He^{++} + H(n) \rightarrow He^{++} + H^+ + e(n \ge 2)$

An analytic formula for the cross-section for all n is given in the text.

Reaction 6.1.5 $He^{++} + H(2s) \rightarrow He^{++} + H(2p)$

An analytic formula for cross-section is given in the text. Neutral particle at rest, charged particle energy $E_lab(eV)$

```
cross_cm = $6.336e-10/E_{lab}*log(0.5515*E_{lab})$
```

Reaction 6.1.6 $He^{++} + H \rightarrow He^{+}(n = 2) + H^{+}$

a0 -4.315145081040e+01 a1 1.153902751649e+00 a2 -1.770607674796e-03 a3 -4.249237424243e-02 a4 2.552430939448e-02 a5 -6.612097121922e-03 a6 8.587538946329e-04 a7 -5.501612272760e-05 a8 1.373936349802e-06 ar0 -4.052049207000E+01 ar1 1.753255540000E+00 ar2 -1.110727227000E-01 ELABMAX= 1.00000E+05 eV Emin 6.00e-01 s(Emin) 1.00e-19 smax 1.36e-15 Error 2.92e-04 Eth 0 Mcross 4.0E+00

Reaction 6.1.7 $He^{++} + H(n) \to He^{+}(n') + H^{+}$

```
An analytic formula for s is given in the text.
Neutral particle at rest, charged particle energy E_{lab}(eV)
Transition: n --> n', with n'=2n, n=2,4,6,...; E_th=0
            v = 3.1623e-3*sqrt(E_lab)
cross_cm = 4.69e-16*n**4/(1.+0.8*(n*v)**0.4+2.6*n*v)
Transition: n --> n', with n'=2n-1, n=2,4,6,...; E_th=...
cross(2 --> 3) = 0.75* cross(2 --> 4)
cross(3 --> 5) = 0.80* cross(3 --> 6)
cross(4 --> 7) = 0.85* cross(4 --> 8)
```

Reaction 6.2.1 $He^{++} + H_2 \rightarrow He^{++} + H_2^+(v) + e$

```
a0 -3.888955469991e+01 a1 -9.866429655660e+00 a2 5.655068418984e+00
a3 -1.577966214613e+00 a4 2.645599512156e-01 a5 -2.758466438253e-02
a6 1.761704594534e-03 a7 -6.345561877676e-05 a8 9.903373373326e-07
Emin 3.31e+01 s(Emin) 1.00e-19 smax 3.87e-16 Error 6.85e-05
Eth 15.4
Mcross 4.0E+00
```

Not valid for E < 30 eV.

Reaction 6.2.1n $He^{++} + H_2 \rightarrow He^{++} + H_2^+(v) + e^{-1}$

revised version, better asymptotics

a0	-1.348256538024E+02	al	9.118284774788E+01	a2 -3.835314779831E+()1
a3	8.719939323071E+00	a4	-1.142249374234E+00	a5 8.618810448200E-0)2
a6	-3.470340641765E-03	a7	5.759492568234E-05	a8 -9.73440000000E-2	24
	Eth 15.4				

Reaction 6.3.1 $He^{++} + He \rightarrow He + He^{++}$

a0 -3.459818117569e+01 a1 -8.748942423786e-02 a2 -2.445604128495e-02 a3 2.392295193337e-03 a4 9.876388162277e-04 a5 -2.282012750308e-04 a6 3.598361283629e-06 a7 1.940270105613e-06 a8 -1.105794797036e-07 Emin 1.00e-01 s(Emin) 1.03e-15 smax 1.03e-15 Error 1.74e-04 Eth 0 Mcross 4.0E+00

Reaction 6.3.2 $He^{++} + He \rightarrow He^{++} + He^{+}(1s) + e$

a0 1.416740796235e+06 a1 -1.119008170939e+06 a2 3.857965046775e+05 a3 -7.583813526516e+04 a4 9.297450568358e+03 a5 -7.279675981729e+02 a6 3.555154263032e+01 a7 -9.901755546104e-01 a8 1.204251833183e-02 Emin 4.75e+03 s(Emin) 1.00e-19 smax 2.50e-17 Error 3.33e-05 Eth 24.588 Mcross 4.0E+00

Reaction 6.3.2n $He^{++} + He \rightarrow He^{++} + He^{+}(1s) + e^{-1}(1s) +$

revised version, better asymptotics

a0	-1.055124995647E+04	a1	7.814313871085E+03	a2	-2.525546560126E+03
a3	4.623987021985E+02	a4	-5.238841605982E+01	a5	3.757793036669E+00
a6	-1.665366765547E-01	a7	4.167057779117E-03	a8	-4.505951553161E-05
	Eth 24.588				

Reaction 7.1.1 $e + H^- \rightarrow e + H(1s) + e$

a0 -3.934913643088e+01 a1 7.492484197616e+00 a2 -6.138735352362e+00 a3 3.326569253609e+00 a4 -1.040328294213e+00 a5 1.834296974839e-01 a6 -1.814008493227e-02 a7 9.403286251360e-04 a8 -1.989848289161e-05 Emin 9.06e-01 s(Emin) 1.00e-19 smax 3.75e-15 Error 2.64e-01 Eth 0.75 Mcross 9.1093826E-31

Reaction 7.1.2 $e + H^- \to e + H^+ + 2e$

a0 -7.448448227127e+02 a1 8.696721447863e+02 a2 -4.584681915725e+02 a3 1.353555608991e+02 a4 -2.446848674683e+01 a5 2.771980281770e+00 a6 -1.922085761453e-01 a7 7.462384021984e-03 a8 -1.243029551161e-04 Emin 1.66e+01 s(Emin) 1.00e-19 smax 5.06e-17 Error 3.39e-02 Eth 14.35 Mcross 9.1093826E-31
Reaction 7.2.1 $p + H^- \rightarrow p + H + e$

a0 -1.050889816750e+04 a1 1.054502629910e+04 a2 -4.618343915803e+03 a3 1.147184656009e+03 a4 -1.766806773292e+02 a5 1.727351520643e+01 a6 -1.046726308683e+00 a7 3.593652631660e-02 a8 -5.350831095528e-04 Emin 2.25e+02 s(Emin) 1.00e-19 smax 4.76e-15 Error 1.18e-03 Eth 0.75 Mcross 1.0E+00

Reaction 7.2.2 $p + H^- \to H(n = 2) + H(1s)$

```
a0 -3.498808881328e+01 a1 2.152450508307e-01 a2 -2.356286641829e-02
a3 5.494715530438e-02 a4 5.379328883390e-03 a5 -6.055070213687e-03
a6 9.991683287907e-04 a7 -6.636255640130e-05 a8 1.612283845094e-06
ar0 -2.918073629000e+01 ar1 -1.327281071000e-01 ar2 -4.679898982000e-02
ELABMAX= 2.00000E+04 eV
Emin 1.00e-01 s(Emin) 3.30e-16 smax 1.38e-14 Error 2.29e-03
Eth 0.
Mcross 1.0E+00
Maxrate (sigma * vlab) = 2.730823e-13 at Elab= 7.479523e+02
```

Reaction 7.2.3 $p + H^- \rightarrow H(n = 3) + H(1s)$

a0 -3.114793359560e+01 a1 -7.730205271965e-01 a2 5.492043775127e-02 a3 -2.733249841523e-03 a4 -1.228312883866e-03 a5 4.350498278844e-04 a6 -6.216595007254e-05 a7 4.120468065072e-06 a8 -1.039784996359e-07 Emin 1.00e-01 s(Emin) 2.25e-13 smax 2.25e-13 Error 5.93e-05 Eth 0. Mcross 1.0E+00

Reaction 7.3.1 $H^- + H(1s) \to H(1s) + H^-(1s)$

a0 -3.896158248196e+01 a1 -2.677306137623e-03 a2 -6.353177906590e-03 a3 -7.238847698066e-03 a4 1.297916639224e-03 a5 5.654591683916e-04 a6 -2.351925503212e-04 a7 2.913484058046e-05 a8 -1.229505901932e-06 Emin 1.00e-01 s(Emin) 1.23e-17 smax 1.23e-17 Error 4.04e-04 Eth 0. Mcross 1.0E+00

Reaction 7.3.2a $H^- + H \rightarrow H_2^-(\Sigma_g) \rightarrow H + H + e$

a0 -3.617990822381e+01 a1 1.166151722958e+00 a2 -1.419286024586e-01 a3 -1.111959587916e-02 a4 -1.725059947629e-03 a5 1.590403561378e-03 a6 -2.531961443012e-04 a7 1.669782349801e-05 a8 -4.097257966950e-07 Emin 1.00e-01 s(Emin) 6.09e-18 smax 1.54e-15 Error 3.23e-04 Eth 0. Mcross 1.0E+00

Reaction 7.3.2b $H^- + H \rightarrow H_2^-(\Sigma_u) \rightarrow H_2 + e$

a0 -3.441529065653e+01 a1 -3.393482086017e-01 a2 5.665917047817e-02 a3 -9.051504593339e-03 a4 7.660604175354e-04 a5 -4.271264623381e-05 a6 -1.572737493346e-07 a7 2.576076771707e-07 a8 -1.200719193800e-08 Emin 1.00e-01 s(Emin) 3.84e-15 smax 3.84e-15 Error 9.90e-05 Eth 0. Mcross 1.0E+00

2 H.2 POLYNOMIAL FITS FOR $< \sigma v >$ FOR FIXED E

Reaction 2.1.1 $e + H(1s) \rightarrow e + H(2p)$

b0-2.814949375869e+01b11.009828023274e+01b2-4.771961915818e+00b31.467805963618e+00b4-2.979799374553e-01b53.861631407174e-02b6-3.051685780771e-03b71.335472720988e-04b8-2.476088392502e-06Tmin1.26e+00<sv>(Tmin)4.78e-12<sv>max3.18e-08Error1.51e-05

Reaction 2.1.2 $e + H(1s) \rightarrow e + H(2s)$

b0-2.833259375256e+01b19.587356325603e+00b2-4.833579851041e+00b31.415863373520e+00b4-2.537887918825e-01b52.800713977946e-02b6-1.871408172571e-03b76.986668318407e-05b8-1.123758504195e-06Tmin1.26e+00<sv>(Tmin)3.54e-12<sv>max3.22e-09Error3.33e-06

Reaction 2.1.3 $e + H(2s) \rightarrow e + H(2p)$

b0-1.219616012805e+01b1-3.859057071006e-01b2-6.509976401685e-03b34.981099209058e-04b4-4.184102479407e-05b53.054358926267e-06b6-1.328567638366e-07b78.974535105058e-10b81.010269574757e-10Tmin1.00e-01<sv>(Tmin)1.18e-05<sv>max1.18e-05Error2.16e-11

Reaction 2.1.4a $e + H(n = 1) \rightarrow e + H(n = 3)$

b0-3.113714569232e+01b11.170494035550e+01b2-5.598117886823e+00b31.668467661343e+00b4-3.186788446245e-01b53.851704802605e-02b6-2.845199866183e-03b71.171512424827e-04b8-2.059295818495e-06Tmin1.58e+00<sv>(Tmin)2.32e-12<sv>max6.09e-09Error3.54e-06

Reaction 2.1.4b $e + H(n = 2) \rightarrow e + H(n = 3)$

b0-1.515830911091e+01b11.923956400537e+00b2-9.275338417712e-01b33.370367299915e-01b4-8.758162223598e-02b51.409066167839e-02b6-1.325225954526e-03b76.672025878086e-05b8-1.387615199713e-06Tmin1.58e-01<sv>(Tmin)9.92e-12<sv>max2.00e-06Error4.99e-05

Reaction 2.1.5 $e + H(1s) \rightarrow e + H^+ + e$

b0-3.271396786375e+01b11.353655609057e+01b2-5.739328757388e+00b31.563154982022e+00b4-2.877056004391e-01b53.482559773737e-02b6-2.631976175590e-03b71.119543953861e-04b8-2.039149852002e-06Tmin2.00e+00<sv>(Tmin)7.22e-12<sv>max3.11e-08Error1.71e-05

Reaction 2.1.6 $e + H(2s) \rightarrow e + H^+ + e$

b0-1.973476726029e+01b13.992702671457e+00b2-1.773436308973e+00b35.331949621358e-01b4-1.181042453190e-01b51.763136575032e-02b6-1.616005335321e-03b78.093908992682e-05b8-1.6866664454913e-06Tmin3.98e-01<sv>(Tmin)8.87e-12<sv>max1.71e-07Error7.10e-05

Reaction 2.1.7 $e + H(n = 3) \rightarrow e + H^+ + e$

b0-1.566968719411e+01b11.719661170920e+00b2-8.365041963678e-01b32.642794957304e-01b4-6.527754894629e-02b51.066883130107e-02b6-1.041488149422e-03b75.457216484634e-05b8-1.177539827071e-06Tmin1.26e-01<sv>(Tmin)2.00e-12<sv>max6.80e-07Error9.85e-05

A more extensive analytic formula for all n > 2 is given in the text.

Reaction 2.1.8 $e + H^+ \rightarrow H(1s) + hv$

general formula: see original text. Here: added fit to rate for recomb into 1s ground state

```
b0-2.95894689000e+01b1-0.529779950000e+00b2-0.005968130000e+00b3-0.00033543090e+00b4-0.003004446800e+00b5-0.000470231100e+00b60.00025139600e+00b7-2.776281210000e-05b89.833670340000e-07Tmin1.00e-01Tmax=1.00e+045-0.000470231100e+00
```

Reaction 2.1.8a $e + H^+ \rightarrow H(2s) + hv$

general formula: see original text. Here: added fit to rate for recomb into 2s excited state

```
b0-3.14497513000e+01b1-0.525649298000e+00b2-0.011206549700e+00b3-0.00823278120e+00b4-0.002464058500e+00b50.000284729200e+00b65.62007081000e-05b7-9.251862920000e-06b83.544559600000e-07Tmin1.00e-01Tmax=1.00e+04TmaxTmaxTmax
```

Reaction 2.1.8b $e + H^+ \rightarrow H(2p) + hv$

general formula: see original text. Here: added fit to rate for recomb into 2p excited state

```
b0-3.06473715000e+01b1-0.653170766000e+00b2-0.068667509300e+00b3-0.01770596520e+00b40.000560929000e+00b50.001091531300e+00b6-0.00020918050e+00b71.546343080000e-05b8-4.228481280000e-07Tmin1.00e-01Tmax=1.00e+04TmaxTmaxTmax
```

Reaction 2.2.1a $e + H_2(v = 0) \rightarrow e + H_2(v = 1)$

b0-2.017212494454e+01b19.563952280637e-01b2-6.931474225637e-01b31.673671529631e-01b4-3.228762898855e-02b55.838603222226e-03b6-8.580542691302e-04b77.456311623168e-05b8-2.666978300757e-06Tmin1.58e-01<sv>(Tmin)5.83e-12<sv>max2.60e-09Error2.55e-06

Reaction 2.2.1b $e + H_2(v = 0) \rightarrow e + H_2(v = 2)$

b0-2.265507686305e+01b12.239943592222e+00b2-1.099426577160e+00b32.339027647223e-01b4-2.528511103871e-02b56.851302489620e-04b61.253426182224e-04b7-1.253475051672e-05b83.545892878015e-07Tmin 3.98e-01<sv>(Tmin)5.93e-12<sv>max7.07e-10Error2.74e-07

Reaction 2.2.2 $e + H_2(X^1\Sigma_g^+) \rightarrow e + H_2(B^1\Sigma_u^+2p\sigma)$

b0-3.081902926338e+01b11.038866780735e+01b2-4.259768348687e+00b31.181228673120e+00b4-2.277513907465e-01b52.900576728856e-02b6-2.287591474628e-03b71.004346442778e-04b8-1.869930069131e-06Tmin2.00e+00<sv>(Tmin)9.88e-12<sv>max1.47e-08Error9.52e-06

Reaction 2.2.3 $e + H_2(X^1 \Sigma_g^+) \to e + H_2(C^1 \Pi_u 2p\pi)$

b0-3.348199796300e+01b11.371702271009e+01b2-5.922607900694e+00b31.709719148860e+00b4-3.505232830275e-01b54.834376067841e-02b6-4.131406425550e-03b71.948388368131e-04b8-3.854278715563e-06Tmin2.00e+00<sv>(Tmin)3.59e-12<sv>max1.39e-08Error8.14e-05

Reaction 2.2.4 $e + H_2(X^1\Sigma_g^+) \to e + H_2(E, F^1\Sigma_g^+)$

b0-3.646589741675e+01b11.430361969329e+01b2-6.074430521073e+00b31.677305768580e+00b4-3.128705597349e-01b53.805424730473e-02b6-2.860085821803e-03b71.199641410078e-04b8-2.142231851104e-06Tmin3.16e+00<sv>(Tmin)5.27e-12<sv>max2.23e-09Error2.11e-06

Reaction 2.2.5 $e + H_2(X^1 \Sigma_g^+) \to e + H_2(b^3 \Sigma_u^+, a^3 \Sigma_g^+, c^3 \Pi_u) \to e + H(1s) + H(1s)$

b0-2.787217511174e+01b11.052252660075e+01b2-4.973212347860e+00b31.451198183114e+00b4-3.062790554644e-01b54.433379509258e-02b6-4.096344172875e-03b72.159670289222e-04b8-4.928545325189e-06Tmin1.26e+00<sv>(Tmin)6.91e-12<sv>max9.81e-09Error5.94e-07

Reaction 2.2.6 $e + H_2(X^1\Sigma_g^+) \rightarrow e + H_2(1s\sigma_g, nl\lambda|^1\Lambda) \rightarrow e + H(1s) + H(2s)$

b0-3.454175591367e+01b11.412655911280e+01b2-6.004466156761e+00b31.589476697488e+00b4-2.775796909649e-01b53.152736888124e-02b6-2.229578042005e-03b78.890114963166e-05b8-1.523912962346e-06Tmin2.51e+00<sv>(Tmin)7.88e-12<sv>max6.92e-09Error2.74e-06

Reaction 2.2.7 $e + H_2(X^1\Sigma_g^+) \rightarrow e + H_2(2p\sigma_u, nl\lambda|Q_2^1\Pi_u) \rightarrow e + H(2p) + H(2s)$

b0-4.794288960529e+01b12.629649351119e+01b2-1.151117702256e+01b32.991954880790e+00b4-4.949305181578e-01b55.236320848415e-02b6-3.433774290547e-03b71.272097387363e-04b8-2.036079507592e-06Tmin5.01e+00<sv>(Tmin)6.48e-12<sv>max1.31e-09Error3.76e-07

Reaction 2.2.8 $e + H_2(X^1 \Sigma_g^+) \to e + H_2(2p\sigma_u; n = 3) \to e + H(1s) + H(n = 3)$

b0-3.884976142596e+01b11.520368281111e+01b2-6.078494762845e+00b31.535455119900e+00b4-2.628667482712e-01b52.994456451213e-02b6-2.156175515382e-03b78.826547202670e-05b8-1.558890013181e-06Tmin 3.98e+00<sv>(Tmin)4.09e-12<sv>max7.73e-10Error6.05e-06

Reaction 2.2.9 $e + H_2(X^1\Sigma_g^+) \to e + H_2^+(v) + e$

b0-3.568640293666e+01b11.733468989961e+01b2-7.767469363538e+00b32.211579405415e+00b4-4.169840174384e-01b55.088289820867e-02b6-3.832737518325e-03b71.612863120371e-04b8-2.893391904431e-06Tmin2.00e+00<sv>(Tmin)2.34e-12<sv>max5.18e-08Error6.45e-06

Reaction 2.2.10 $e + H_2(X^1\Sigma_g^+) \rightarrow e + [H_2^+(\Sigma_g, \Sigma_u) + e] \rightarrow e + H^+ + H(1s) + e$

b0-3.834597006782e+01b11.426322356722e+01b2-5.826468569506e+00b31.727940947913e+00b4-3.598120866343e-01b54.822199350494e-02b6-3.909402993006e-03b71.738776657690e-04b8-3.252844486351e-06Tmin3.98e+00<sv>(Tmin)3.74e-12<sv>max2.89e-09Error4.61e-05

Reaction 2.2.11 $e + H_2^+(v) \rightarrow e + H^+ + H^+ + e, (v = 0...9)$

b0-3.746192301092e+01b11.559355031108e+01b2-6.693238367093e+00b31.981700292134e+00b4-4.044820889297e-01b55.352391623039e-02b6-4.317451841436e-03b71.918499873454e-04b8-3.591779705419e-06Tmin3.16e+00<sv>(Tmin)5.23e-12<sv>max9.06e-09Error2.26e-05

Reaction 2.2.12 $e + H_2^+(v) \to e + H_2^+(2p\sigma_u) \to e + H^+ + H(1s), (v = 0...9)$

b0-1.781416067709e+01b12.277799785711e+00b2-1.266868411626e+00b34.296170447419e-01b4-9.609908013189e-02b51.387958040699e-02b6-1.231349039470e-03b76.042383126281e-05b8-1.247521040900e-06Tmin2.00e-01<sv>(Tmin)1.23e-12<sv>max1.15e-07Error8.64e-05

Reaction 2.2.13 $e + H_2^+(v) \rightarrow e + H_2^+(2p\pi_u) \rightarrow e + H^+ + H(n = 2), (v = 0...9)$

b0	-3	.4089059290	46e+01	b1	1.57356	0727511e+()1 b2	-6.99217	7456733e+00
b3	1	.8522162617	06e+00	b4	-3.13031	2806531e-0)1 b5	3.38370	4123189e-02
b6	-2	.2657705252	73e-03	b7	8.56560	3779673e-0)5 b8	-1.39813	1377085e-06
Τı	min	2.00e+00	<sv>(Tmir</sv>	ı) 5	.03e-12	<sv>max</sv>	1.77e-0	8 Error	2.05e-06

Reaction 2.2.14 $e + H_2^+(v) \to H(1s) + H(n)(v = 0 \dots 9, n \ge 2)$

b0-1.670435653561e+01b1-6.035644995682e-01b2-1.942745783445e-08b3-2.005952284492e-07b42.962996104431e-08b52.134293274971e-08b6-6.353973401838e-09b76.152557460831e-10b8-2.025361858319e-11Tmin1.00e-01<sv>(Tmin)2.23e-07<sv>max2.23e-07Error3.30e-13

Reaction 2.2.15 $e + H_3^+ \to H + H + H$ or $\to H_2(v > 5) + H(n = 2)$

b0-1.700270758355e+01b1-4.050073042947e-01b21.018733477232e-08b3-1.695586285687e-08b41.564311217508e-10b51.979725412288e-09b6-4.395545994733e-10b73.584926377078e-11b8-1.024189019465e-12Tmin1.00e-01<sv>(Tmin)1.05e-07<sv>max1.05e-07Error3.27e-15

Reaction 2.2.16 $e + H_3^+ \rightarrow e + H^+ + 2H$

b0-3.078408636631e+01b11.509421488513e+01b2-7.349167207324e+00b32.320966107642e+00b4-4.818077551719e-01b56.389229162737e-02b6-5.161880953089e-03b72.303985092606e-04b8-4.344846146197e-06Tmin1.26e+00<sv>(Tmin)9.46e-13<sv>max4.18e-07Error6.20e-05

Reaction 2.2.17 $e + H_2(v \ge 4) \to (H_2^-) \to H^- + H$

b0-1.774398466232e+01b1-6.207038732492e-01b2-2.811412695673e-01b32.540958044519e-02b46.643467825225e-03b5-8.877629159412e-04b6-3.705776394283e-04b79.313511559362e-05b8-5.995758360037e-06Tmin1.00e-01<sv>(Tmin)1.58e-08<sv>max2.70e-08Error4.67e-07

Reaction 2.3.1a $e + He(1s^21S) \rightarrow e + He(1s^12p^11P)$

b0-4.076450793433e+01b11.847216050626e+01b2-7.553534847500e+00b31.936036716566e+00b4-3.278509524847e-01b53.627243238755e-02b6-2.509995616613e-03b79.829302307697e-05b8-1.659516418994e-06Tmin 3.98e+00<sv>(Tmin)7.72e-12<sv>max6.23e-09Error1.17e-06

Reaction 2.3.1b $e + He(1s^21S) \rightarrow e + He(1s^13p^11P)$

b0-4.439802014466e+01b12.170928173941e+01b2-9.582182742745e+00b32.631183876455e+00b4-4.687644097236e-01b55.361959275824e-02b6-3.786601021417e-03b71.500190728471e-04b8-2.548241584846e-06Tmin5.01e+00<sv>(Tmin)5.50e-12<sv>max1.55e-09Error1.10e-06

Reaction 2.3.2 $e + He(1s^21S) \rightarrow e + He(1s^12s^11S)$

b0-3.944902284550e+01b11.801440475215e+01b2-7.941287139217e+00b32.108879073816e+00b4-3.656365579422e-01b54.130418209599e-02b6-2.921666597766e-03b71.171506777488e-04b8-2.027094391374e-06Tmin3.16e+00<sv>(Tmin)2.84e-12<sv>max7.92e-10Error4.16e-06
Reaction 2.3.3a $e + He(1s^21S) \rightarrow e + He(1s^12s^13S)$

b0-3.907389635096e+01b11.922614839789e+01b2-9.704341826798e+00b33.077375531860e+00b4-6.879793654863e-01b51.062748336765e-01b6-1.074378374967e-02b76.372192184143e-04b8-1.676476511183e-05Tmin3.16e+00<sv>(Tmin)4.52e-12<sv>max2.53e-10Error8.14e-10

Reaction 2.3.3b $e + He(1s^21S) \rightarrow e + He(1s^12p^13P)$

b0-4.126478834982e+01b12.115462440402e+01b2-1.037798544679e+01b33.223448557463e+00b4-7.047523358686e-01b51.058143518376e-01b6-1.030712489010e-02b75.837301581720e-04b8-1.454656422289e-05Tmin 3.98e+00<sv>(Tmin)8.87e-12<sv>max 3.32e-10Error 8.73e-10

Reaction 2.3.3c $e + He(1s^21S) \rightarrow e + He(1s^13s^13S)$

b0-4.403421631102e+01b12.245729554242e+01b2-1.077239790242e+01b33.245104419002e+00b4-6.897865199057e-01b51.022237988347e-01b6-1.003860681229e-02b75.860847901785e-04b8-1.537517028977e-05Tmin5.01e+00<sv>(Tmin)5.43e-12<sv>max9.25e-11Error7.14e-10

Reaction 2.3.3d $e + He(1s^21S) \rightarrow e + He(1s^13p^13P)$

b0-4.364496383346e+01b12.269089069271e+01b2-1.084808588246e+01b33.247690604813e+00b4-6.828905628843e-01b59.957070020879e-02b6-9.564409022565e-03b75.429268148822e-04b8-1.376622041888e-05Tmin5.01e+00<sv>(Tmin)9.95e-12<sv>max1.79e-10Error6.08e-10

Reaction 2.3.4a $e + He(1s^{1}2s^{1}3S) \rightarrow e + He(1s^{1}2s^{1}1S)$

b0-1.744584533214e+01b17.146118553487e-01b2-4.873579904205e-01b31.481188090592e-01b4-3.507761998312e-02b55.690374429946e-03b6-5.623763509155e-04b73.001973812574e-05b8-6.601806234046e-07Tmin1.00e-01<sv>(Tmin)1.46e-11<sv>max3.80e-08Error5.08e-05

Reaction 2.3.4b $e + He(1s^{1}2s^{1}3S) \rightarrow e + He(1s^{1}2p^{1}1P)$

b0-1.844735966200e+01b11.427274973351e+00b2-8.091153742158e-01b32.487008240878e-01b4-5.643723514177e-02b58.601493865150e-03b6-8.023972821093e-04b74.085320629082e-05b8-8.650886326975e-07Tmin1.58e-01<sv>(Tmin)3.93e-12<sv>max2.52e-08Error4.76e-05

Reaction 2.3.4c $e + He(1s^{1}2s^{1}1S) \rightarrow e + He(1s^{1}2p^{1}3P)$

b0-1.615322214290e+01b11.433777584524e-01b2-2.487826648613e-01b37.026918912149e-02b4-1.553687005936e-02b52.421396865761e-03b6-2.348531854752e-04b71.243991031364e-05b8-2.729353858047e-07Tmin1.00e-01<sv>(Tmin)4.15e-09<sv>max9.87e-08Error8.49e-06

Reaction 2.3.4d $e + He(1s^{1}2p^{1}3P) \rightarrow e + He(1s^{1}2p^{1}1P)$

b0-1.799224192385e+01b15.839648278021e-03b2-1.939973920965e-01b35.349246643243e-02b4-1.150308510199e-02b51.759192625459e-03b6-1.689530419550e-04b78.909865872231e-06b8-1.951982101314e-07Tmin1.00e-01<sv>(Tmin)1.76e-09<sv>max1.53e-08Error4.25e-06

Reaction 2.3.5a $e + He(1s^{1}2s^{1}1S) \rightarrow e + He(1s^{1}2p^{1}1P)$

b0-1.421481564800e+01b19.816324588875e-01b2-3.700239299608e-01b39.320731611434e-02b4-2.517642644099e-02b54.899403741414e-03b6-5.506956047085e-04b73.192647759391e-05b8-7.407861678228e-07Tmin1.00e-01<sv>(Tmin)1.01e-09<sv>max1.78e-06Error7.22e-05

Reaction 2.3.5b $e + He(1s^{1}2s^{1}3S) \rightarrow e + He(1s^{1}2p^{1}3P)$

b0-1.524234054303e+01b11.457459036199e+00b2-6.089961105515e-01b31.908341260995e-01b4-4.902955652013e-02b58.357212748265e-03b6-8.436990703093e-04b74.535984449474e-05b8-9.983744250475e-07Tmin1.00e-01<sv>(Tmin)3.98e-12<sv>max1.15e-06Error1.38e-04

Reaction 2.3.6a $e + He(1s^{1}2s^{1}1S) \rightarrow e + He(1s^{1}3p^{1}1P)$

b0-2.012491737344e+01b12.975868118455e+00b2-1.241263834768e+00b34.133514681102e-01b4-1.015874512196e-01b51.570108000623e-02b6-1.424919814936e-03b76.934961916285e-05b8-1.396714673826e-06Tmin 3.16e-01<sv>(Tmin)4.88e-12<sv>max7.94e-08Error9.99e-06

Reaction 2.3.6b $e + He(1s^{1}2s^{1}3S) \rightarrow e + He(1s^{1}3p^{1}3P)$

b0-2.168967273514e+01b13.469927386366e+00b2-1.500284971036e+00b34.514495446931e-01b4-9.830380729357e-02b51.412098625701e-02b6-1.235528152366e-03b75.912904162725e-05b8-1.182410155429e-06Tmin3.98e-01<sv>(Tmin)2.79e-12<sv>max1.86e-08Error2.22e-05

Reaction 2.3.7a $e + He(1s^{1}2p^{1}1P) \rightarrow e + He(1s^{1}3d^{1}1D)$

b0-1.685934192513e+01b12.084943159821e+00b2-8.554198255397e-01b32.987507152419e-01b4-8.260619461169e-02b51.427561766421e-02b6-1.419997912094e-03b77.446342219961e-05b8-1.594736923452e-06Tmin1.58e-01<sv>(Tmin)2.29e-12<sv>max6.12e-07Error6.74e-05

Reaction 2.3.7b $e + He(1s^{1}2s^{1}3P) \rightarrow e + He(1s^{1}3d^{1}3D)$

b0-1.733661165939e+01b12.317215831044e+00b2-9.924882089292e-01b33.415918344358e-01b4-9.030135166591e-02b51.508647305121e-02b6-1.468232978539e-03b77.588691677324e-05b8-1.608841144485e-06Tmin2.00e-01<sv>(Tmin)5.66e-12<sv>max4.46e-07Error6.51e-05

Reaction 2.3.9 $e + He(1s^21S) \to e + He^+ + e$

b0-4.409864886561e+01b12.391596563469e+01b2-1.075323019821e+01b33.058038757198e+00b4-5.685118909884e-01b56.795391233790e-02b6-5.009056101857e-03b72.067236157507e-04b8-3.649161410833e-06Tmin3.16e+00<sv>(Tmin)1.83e-12<sv>max2.46e-08Error1.06e-05

Reaction 2.3.10a $e + He(1s^{1}2s^{1}1S) \rightarrow e + He^{+}(1s) + e$

b0-2.043240580802e+01b14.673025479860e+00b2-2.068053911581e+00b36.103799741884e-01b4-1.268205164080e-01b51.740804412692e-02b6-1.474132011694e-03b76.914279610834e-05b8-1.368015031384e-06Tmin 3.98e-01<sv>(Tmin)1.72e-12<sv>max2.04e-07Error3.70e-05

Reaction 2.3.10b $e + He(1s^12p^11P) \rightarrow e + He^+(1s) + e$

b0-1.946719737710e+01b14.039554859050e+00b2-1.792264505398e+00b35.357588980704e-01b4-1.142854169815e-01b51.614022386298e-02b6-1.401937207088e-03b76.717110442234e-05b8-1.352531071210e-06Tmin3.16e-01<sv>(Tmin)1.07e-12<sv>max2.61e-07Error4.96e-05

Reaction 2.3.10c $e + He(1s^{1}2s^{1}3S) \rightarrow e + He^{+}(1s) + e$

b0-2.061635956597e+01b15.212998266179e+00b2-2.421560769610e+00b37.237890101587e-01b4-1.480837244899e-01b51.981796970055e-02b6-1.635383361916e-03b77.495465496705e-05b8-1.454005255301e-06Tmin5.01e-01<sv>(Tmin)7.17e-12<sv>max2.12e-07Error2.71e-05

Reaction 2.3.10d $e + He(1s^{1}2p^{1}3P) \rightarrow e + He^{+}(1s) + e$

b0-1.988624861383e+01b14.310402355871e+00b2-1.896654131474e+00b35.547033134672e-01b4-1.146241097190e-01b51.568822815337e-02b6-1.326558850059e-03b76.217750779265e-05b8-1.229838359991e-06Tmin 3.98e-01<sv>(Tmin)5.08e-12<sv>max 2.34e-07Error 3.01e-05

Reaction 2.3.12 $e + He(1s^{1}nl^{1}\{2S+1\}L) \rightarrow e + He^{+}(nl) + e$

b0-6.896861656133e+01b14.483212792736e+01b2-1.838301143477e+01b34.508647323762e+00b4-7.148481765711e-01b57.375319623123e-02b6-4.780158615887e-03b71.766513036839e-04b8-2.837371604097e-06Tmin7.94e+00<sv>(Tmin)7.62e-12<sv>max5.15e-09Error1.12e-06

Reaction 2.3.13 $e + He^+(1s) \rightarrow He(1s^1nl^1\{2S+1\}L) + hv$

See text for analytic formulas.

Reaction 2.3.14 $e + He^+(1s) \to e + He^+(2p)$

b0-5.731132225657e+01b13.618757468205e+01b2-1.568012557533e+01b34.060438624043e+00b4-6.700744538238e-01b57.100638013026e-02b6-4.682434354620e-03b71.749898327054e-04b8-2.831521166310e-06Tmin5.01e+00<sv>(Tmin)2.96e-12<sv>max1.37e-08Error1.24e-06

Reaction 2.3.15 $e + He^+(1s) \to e + He^+(2s)$

b0-5.754975783112e+01b13.459060731107e+01b2-1.462527320845e+01b33.680688204381e+00b4-5.969493660071e-01b56.279719136636e-02b6-4.138222038101e-03b71.551309719300e-04b8-2.522897333444e-06Tmin6.31e+00<sv>(Tmin)4.41e-12<sv>max1.23e-09Error1.19e-06

Reaction 2.3.19 $e + He^+(1s) \rightarrow e + He^{++} + e$

b0-6.871040990212e+01b14.393347632635e+01b2-1.848066993568e+01b34.701626486759e+00b4-7.692466334492e-01b58.113042097303e-02b6-5.324020628287e-03b71.975705312221e-04b8-3.165581065665e-06Tmin7.94e+00<sv>(Tmin)2.62e-12<sv>max4.01e-09Error1.04e-06

Reaction 3.1.8 $p + H(1s) \rightarrow H(1s) + p$

added by DR: single parameter Maxwellian rate coeff., vs. T_p , for neutral target at rest, obtained from corresponding fit for Beam-Maxwellian rate coeff. evaluated at $E_b = 0.1$ eV and then verified by independent integration of cross-section with proper low energy asymptotics.

```
b0-1.850280000000E+01b13.70840900000E-01b27.949876000000E-03b3-6.143769000000E-04b4-4.69896900000E-04b5-4.09680700000E-04b61.440382000000E-04b7-1.514243000000E-05b85.122435000000E-07
```

Reaction 3.2.3 $p + H_2(v = 0) \rightarrow H(1s) + H_2^+$

Note: Ground state H2 only.

added by DR: single parameter Maxwellian rate coeff., vs. T_p , for neutral target at rest, obtained from corresponding fit for Beam-Maxwellian rate coeff. evaluated at $E_b = 0.1$ eV and then verified by independent integration of cross-section with proper low energy asymptotics.

b0 -2.440996809955E+01	b1 2.552627389749E+00	b2 -2.608194219039E+00
b3 1.347571390219E+00	b4 -3.646182244708E-01	b5 5.938400660590E-02,
b6 -5.795480327782E-03	b7 3.075899232458E-04	b8 -6.769294455276E-06,

Reaction 7.1.1 $e + H^- \rightarrow e + H(1s) + e$

b0-1.801849334273e+01b12.360852208681e+00b2-2.827443061704e-01b31.623316639567e-02b4-3.365012031363e-02b51.178329782711e-02b6-1.656194699504e-03b71.068275202678e-04b8-2.631285809207e-06Tmin1.26e-01<sv>(Tmin)7.72e-12<sv>max9.73e-07Error3.51e-03

Reaction 7.1.2 $e + H^- \to e + H^+ + 2e$

b0-3.637051952368e+01b11.586803736621e+01b2-6.478287148158e+00b31.735140500106e+00b4-3.233529702765e-01b54.020531565638e-02b6-3.114827827749e-03b71.347768741748e-04b8-2.478586915713e-06Tmin2.51e+00<sv>(Tmin)4.61e-12<sv>max2.15e-08Error3.47e-06

3 H.3 DOUBLE POLYNOMIAL FITS FOR $< \sigma v >$

Reaction 3.1.1 $p + H(1s) \rightarrow p + H(2p)$

т	E Inde:	0	1	2
T	0 0	-6.261494333673e+01	1.976921673516e+01	-4.770700042332e+00
	1	2.417692686638e+01	-1.641857278453e+01	5.395012240434e+00
	2	-4.051480211975e+00	4.191026443943e+00	-2.252096048936e+00
	3	-1.318153914548e+00	1.189223903948e-01	4.211072262111e-01
	4	7.528061358848e-01	-2.607978652180e-01	-2.386725153241e-02
	5	-1.498666287447e-01	5.494605745283e-02	-3.642074979445e-03
	6	1.512983951035e-02	-5.414151972843e-03	6.902343394169e-04
	7	-7.735934229437e-04	2.658505260322e-04	-4.272194199546e-05
	8	1.590699544686e-05	-5.245923671227e-06	9.478841315945e-07
	E Inde:	x 3	4	5
Т	Index			
	0	1.033248569152e+00	-2.868779139503e-01	6.404381294137e-02
	1	-1.414868849757e+00	3.184423304843e-01	-4.982800665252e-02
	2	7.292508717933e-01	-1.433443925906e-01	1.696153624540e-02
	3	-1.843635318950e-01	3.265971640208e-02	-2.763613623053e-03
	4	2.201347577554e-02	-3.551163806974e-03	2.007525885427e-04
	5	-5.612540938735e-04	4.481699611261e-05	2.535074888925e-06
	6	-1.334876998570e-04	2.919499398918e-05	-1.991423479045e-06
	7	1.298404615938e-05	-2.701941401993e-06	1.791270932567e-07
	8	-3.581309543014e-07	7.633070244335e-08	-5.593302645030e-09
	E Inde:	х б	7	8
Т	Index			
	0	-8.140654835343e-03	5.192124519721e-04	-1.297112781664e-05
	1	4.662131405403e-03	-2.320827027679e-04	4.724538772162e-06
	2	-1.171374695689e-03	4.320048440550e-05	-6.523542632649e-07
	3	9.516447719628e-05	4.017247431177e-07	-7.031689068197e-08
	4	2.320428113156e-06	-6.344720465694e-07	1.688277259644e-08
	5	8.398201633252e-08	-4.021594027671e-08	1.420992975620e-09
	6	-1.026348613432e-07	1.519024137139e-08	-3.851106645960e-10
	7	5.539305326395e-09	-8.915090538633e-10	1.877667458640e-11
	8	-8.712370707504e-12	1.172349575278e-11	-1.236556517200e-13

Error 4.08e-03 (D)

Reaction 3.1.2 $p + H(1s) \to p + H(2s)$

	E Index 0		1	2	
Т	Index				
	0	-3.303672309056e+01	5.435398491796e-02	-4.479069874895e-01	
	1	8.129573868895e-02	-1.573070446304e-01	-2.343645075304e-01	
	2	-1.367357596276e+00	1.264162602757e-01	9.132454530131e-02	
	3	2.430769064611e-01	-4.277967668065e-03	4.379389784137e-02	
	4	1.762729645847e-01	-1.171278439692e-02	-2.284640793483e-02	
	5	-6.257579731175e-02	3.045403958595e-03	4.069924950563e-03	
	6	8.093824710704e-03	-3.259338404156e-04	-3.654555742323e-04	
	7	-4.766590709264e-04	1.630335031310e-05	1.697015649467e-05	
	8	1.073880975629e-05	-3.135178689449e-07	-3.290603109143e-07	
	E Index	x 3	4	5	
Т	Index				
	0	-6.207816515028e-02	4.982680171938e-02	2.631060067396e-03	
	1	4.641882710210e-02	7.584683292302e-03	-1.878798454594e-03	
	2	-2.504726147521e-02	3.623287819690e-03	-5.425414507567e-04	
	3	-3.802802560195e-03	-4.458407685510e-03	1.053772036026e-03	
	4	4.085275116537e-03	6.304577672385e-04	-2.393639075300e-04	
	5	-8.856894051785e-04	6.116944101767e-05	8.195766073173e-06	
	6	8.857371143951e-05	-1.967353079496e-05	2.374701722762e-06	
	7	-4.353073546873e-06	1.500381004201e-06	-2.478107830550e-07	

	E Index	6	7	8
Т	Index			
	0	-2.180659228486e-03	2.245818225902e-04	-7.072385408498e-06
	1	2.999568075912e-05	1.180308123781e-05	-5.753191579259e-07
	2	7.217756265772e-05	-5.369814852090e-06	1.555461051039e-07
	3	-8.298313802105e-05	1.948415887525e-06	1.941860942555e-08
	4	2.472786370494e-05	-1.023360259850e-06	1.277393659635e-08
	5	-2.180680441264e-06	1.728454123757e-07	-4.691407260680e-09
	6	-3.745411947057e-08	-1.145030836069e-08	5.454860678474e-10
	7	1.282096306376e-08	2.790689700798e-10	-2.878902181247e-11
	8	-4.240491240271e-10	-1.382267062457e-12	6.143782726250e-13

8.576165925108e-08 -3.781894053698e-08 6.945366389669e-09

Error 4.49e-03 (D)

8

Reaction 3.1.3 $p + H(2s) \rightarrow p + H(2p)$

	E Index	0	1	2
Т	Index			
	0	-9.990724901145e+00	5.351348305631e-01	4.939529241653e-02
	1	6.537727443011e-01	-5.280296904194e-01	6.425969893761e-02
	2	-1.241140027113e-01	2.060077489360e-01	-7.862588561762e-02
	3	7.149154773117e-03	-4.485819636159e-02	2.658545734784e-02
	4	-5.339018890395e-03	6.460674060103e-03	-3.577827264905e-03
	5	1.800856199793e-03	-6.601657449132e-04	8.937792817252e-05
	6	-2.467032039166e-04	4.579703537623e-05	2.480990637873e-05
	7	1.545051869941e-05	-1.863242109937e-06	-2.397125514853e-06
	8	-3.690040224068e-07	3.246974149460e-08	6.587817957450e-08
	E Index	3	4	5
т	Indox			

T Index			
0	-5.106541840021e-02	-1.828656123929e-03	3.278050583806e-03
1	3.146872034794e-02	-7.747008551462e-03	-2.009436212555e-05
2	-1.590857166173e-03	6.697068316092e-03	-1.587286144423e-03
3	-2.091225617309e-03	-1.807442248515e-03	5.583369851577e-04
4	6.191341147148e-04	1.098333544712e-04	-5.443789910797e-05
5	-1.018025884107e-04	3.338304419913e-05	-3.089670487553e-06
6	1.151440883472e-05	-6.871587246464e-06	8.975741200024e-07
7	-7.605187577154e-07	4.906237903385e-07	-5.574178438230e-08
8	2.067476350932e-08	-1.254526895853e-08	1.104305607237e-09

	E Index	6	7	8
Т	Index			
	0	-5.540100092190e-04	3.801593003417e-05	-9.608738344988e-07
	1	1.517188390097e-04	-1.513420504861e-05	4.584486596613e-07
	2	1.684564123048e-04	-8.692146674273e-06	1.773890443608e-07
	3	-6.883882904255e-05	4.004504488417e-06	-9.090763486841e-08
	4	7.663155026086e-06	-4.749223957327e-07	1.111022258304e-08
	5	-7.483785818283e-08	2.292140559850e-08	-8.177571335015e-10
	6	-1.732595885303e-08	-3.335002305887e-09	1.547780692175e-10
	7	-1.171822397960e-09	4.663773505803e-10	-1.825227169097e-11
	8	1.095408126793e-10	-1.896445830085e-11	6.805323199305e-13

Error 1.02e-03 (C)

Reaction 3.1.6 $p + H(1s) \rightarrow p + H^+ + e$

	E Inde	x 0	1	2
Т	Index			
	0	-1.617454916209e+02	1.767238902030e+01	-4.334843983767e+01
	1	1.021458246570e+02	-7.102574692619e+01	3.855259623260e+01
	2	-5.712267930902e+01	4.246688953154e+01	-1.316883030631e+01
	3	2.140540272484e+01	-1.128638171243e+01	2.145592145856e+00
	4	-4.767517412803e+00	1.661679851896e+00	-1.467281287038e-01
	5	6.293295208376e-01	-1.476754423056e-01	-2.915256218527e-03
	6	-4.858173640838e-02	8.175790218529e-03	1.092542891192e-03
	7	2.031177914273e-03	-2.732531913524e-04	-6.205102802216e-05
	8	-3.557982934756e-05	4.398387454014e-06	1.158798945435e-06
	E Inde	x 3	4	5
Т	E Inde: Index	x 3	4	5
Τ	E Inde: Index 0	x 3 2.464254915383e+01	4 -5.439093405254e+00	5 5.959975304236e-01
Τ	E Inde: Index 0 1	x 3 2.464254915383e+01 -1.283426276878e+01	4 -5.439093405254e+00 2.357085001656e+00	5 5.959975304236e-01 -2.391382925527e-01
Τ	E Inde: Index 0 1 2	x 3 2.464254915383e+01 -1.283426276878e+01 2.369698902002e+00	4 -5.439093405254e+00 2.357085001656e+00 -2.961732508220e-01	5 5.959975304236e-01 -2.391382925527e-01 2.789277301925e-02
Т	E Inde: Index 0 1 2 3	x 3 2.464254915383e+01 -1.283426276878e+01 2.369698902002e+00 -1.506665823159e-01	4 -5.439093405254e+00 2.357085001656e+00 -2.961732508220e-01 -9.917174972226e-04	5 5.959975304236e-01 -2.391382925527e-01 2.789277301925e-02 8.562387824450e-05
Т	E Inde: Index 0 1 2 3 4	x 3 2.464254915383e+01 -1.283426276878e+01 2.369698902002e+00 -1.506665823159e-01 -8.144926683660e-03	4 -5.439093405254e+00 2.357085001656e+00 -2.961732508220e-01 -9.917174972226e-04 1.935894665907e-03	5 5.959975304236e-01 -2.391382925527e-01 2.789277301925e-02 8.562387824450e-05 -1.340759667335e-04
Τ	E Inde: Index 0 1 2 3 4 5	x 3 2.464254915383e+01 -1.283426276878e+01 2.369698902002e+00 -1.506665823159e-01 -8.144926683660e-03 2.231505500086e-03	4 -5.439093405254e+00 2.357085001656e+00 -2.961732508220e-01 -9.917174972226e-04 1.935894665907e-03 -1.679264493005e-05	5 5.959975304236e-01 -2.391382925527e-01 2.789277301925e-02 8.562387824450e-05 -1.340759667335e-04 -5.927455645560e-06
Τ	E Inde: Index 0 1 2 3 4 5 6	x 3 2.464254915383e+01 -1.283426276878e+01 2.369698902002e+00 -1.506665823159e-01 -8.144926683660e-03 2.231505500086e-03 -2.210941355372e-04	4 -5.439093405254e+00 2.357085001656e+00 -2.961732508220e-01 -9.917174972226e-04 1.935894665907e-03 -1.679264493005e-05 5.532386419162e-08	5 5.959975304236e-01 -2.391382925527e-01 2.789277301925e-02 8.562387824450e-05 -1.340759667335e-04 -5.927455645560e-06 5.820264508685e-07
Τ	E Inde: Index 0 1 2 3 4 5 6 7	x 3 2.464254915383e+01 -1.283426276878e+01 2.369698902002e+00 -1.506665823159e-01 -8.144926683660e-03 2.231505500086e-03 -2.210941355372e-04 1.310924337643e-05	4 -5.439093405254e+00 2.357085001656e+00 -2.961732508220e-01 -9.917174972226e-04 1.935894665907e-03 -1.679264493005e-05 5.532386419162e-08 -1.121430499351e-06	5 5.959975304236e-01 -2.391382925527e-01 2.789277301925e-02 8.562387824450e-05 -1.340759667335e-04 -5.927455645560e-06 5.820264508685e-07 7.694068657107e-08

	E Index	6	7	8
Т	Index			
	0	-3.361958123977e-02	8.706597041685e-04	-6.359765062372e-06
	1	1.289667246580e-02	-3.140899683782e-04	1.742836004704e-06
	2	-1.858739201548e-03	7.343984485463e-05	-1.235536456998e-06
	3	9.235982885753e-05	-8.601564864429e-06	2.257852760280e-07
	4	9.875232214392e-06	-6.467790579320e-07	1.608335682237e-08
	5	-1.680823118052e-06	1.734797315767e-07	-3.855914336143e-09
	6	3.019916624608e-08	2.523651535182e-09	-3.556222618473e-10
	7	6.889325889968e-09	-1.719633613108e-09	7.627265694554e-11
	8	-3.171970185702e-10	7.332933714195e-11	-2.960493966948e-12

Error 2.51e-03 (C)

Reaction 3.1.8 $p + H(1s) \rightarrow H(1s) + p$

original fit from Springer book replaced by this one, which has better consistency with crosssection, hence: better energy conservation

E-	-Index:	0	1	2
T-Index:				
0	-1.8316	570498376D+01	1.650239332070D-01	5.025740610454D-02
1	2.1436	524996483D-01	-1.067658289373D-01	-5.304993033743D-03
2	5.1391	17192662D-02	9.536923957409D-03	-1.306075129405D-02
3	-9.8961	80369559D-04	6.315097684976D-03	2.655464630308D-03
4	-2.4953	327546080D-03	-1.265503371044D-03	7.569269700468D-04
5	-2.4170)46684097D-05	-6.945512319613D-05	-2.956984088728D-04
6	1.1774	106072793D-04	3.698501620365D-05	3.424317896619D-05
7	-1.4830)36457978D-05	-3.348172574417D-06	-1.527018819072D-06
8	5.3519	09441226D-07	9.728230870242D-08	1.676354786072D-08
E-	-Index:	3	4	5
T-Index:				
0	5.2883	358515136D-03	-2.437122342843D-03	-4.461891214720D-04
1	8.2893	383645942D-03	-9.698773663345D-05	-4.470180279338D-04
2	-1.0331	_66370333D-03	1.280464204775D-03	-8.453294908907D-05
3	-1.3657	781346175D-03	-1.859939123743D-04	1.237942304972D-04
4	2.7569	946036257D-04	-1.107375149384D-04	-7.217379426085D-06
5	2.3182	277483195D-05	3.704494397140D-05	-6.066558692480D-06
6	-9.8156	593511794D-06	-4.285719813022D-06	1.169257650609D-06
7	8.3620)50692462D-07	2.058392726953D-07	-7.463594884928D-08
8	-2.2375	567830699D-08	-3.081685803820D-09	1.450862501121D-09
E-	-Index:	6	7	8
T-Index:				
0	1.7316	531548110D-04	-1.588434781959D-05	4.482291414386D-07
1	7.9443	326905066D-05	-5.303688417551D-06	1.235167254501D-07
2	-3.0408	374906105D-05	4.747888095498D-06	-1.923953750574D-07
3	-1.5882	253432932D-05	6.603560345800D-07	-1.970606344918D-09
4	5.7699	971321188D-06	-6.717311113584D-07	2.440961351104D-08
5	-4.9515	573401626D-07	1.437520597154D-07	-6.998724470004D-09
6	-4.9689	953461875D-10	-1.618948982477D-08	9.440094842562D-10
7	5.9243	370389093D-10	1.078208689229D-09	-6.619767848464D-11
8	4.4342	231893204D-11	-3.324377862622D-11	1.935019679501D-12
Max. rel.	Error:	1.1026 %		

Mean rel. Error: 0.3105 %

Reaction 3.1.9 $p + H(1s) \rightarrow H(2p) + p$

	E Index 0		0	1	2	
Т	Inde	ex				
	0		-7.537230406957e+01	4.362515351094e+01	-1.318797741915e+01	
	1		5.056939990348e+01	-4.322632990301e+01	1.243803991192e+01	
	2		-2.304556023867e+01	1.808673367993e+01	-5.041889107660e+00	
	3		5.946693576057e+00	-4.192991836651e+00	1.150647211570e+00	
	4		-9.025227545139e-01	5.941171802341e-01	-1.616667927236e-01	
	5		8.062506740891e-02	-5.340479630862e-02	1.424698941315e-02	
	6		-3.996458180607e-03	3.028277898563e-03	-7.611581001083e-04	
	7		9.092787501258e-05	-1.009830499229e-04	2.216348373380e-05	
	8		-4.227552753922e-07	1.538300832396e-06	-2.615703495579e-07	
	г т,	ndov	2	1	5	
Ŧ		nuex	5	4	5	
T	THUE	ΞX	2 0040226062052 01	C 05C2001220CEc 01	1 7600512041540 01	
	0		3.8848326863956-01	6.9563991229656-01	-1./68051294154e-01	
	1		-6.391999122917e-01	-4.102677587957e-01	1.022299957977e-01	
	2		4.302521809170e-01	6.674825725277e-02	-1.905495347022e-02	
	3		-1.437283377093e-01	4.745169406603e-03	8.000515536149e-04	
	4		2.533878850824e-02	-2.550521752939e-03	1.202073413278e-04	
	5		-2.271818162002e-03	2.517099528196e-04	-1.115096374756e-05	

J	-2.2/10101020020-03	2.51/0995201908-04	-1.1130903747308-03
6	7.750647375638e-05	-3.466368199953e-06	1.352159519053e-07
7	1.503739282859e-06	-7.169612925965e-07	-3.978675907993e-09
8	-1.204847091978e-07	2.957975348352e-08	7.777167529587e-10

I	E Index	6	7	8
Т	Index			
	0	1.957698184804e-02	-1.056851602712e-03	2.265661905063e-05
	1	-1.064957247532e-02	5.395365812293e-04	-1.089046627301e-05
	2	1.819440410123e-03	-8.006107003062e-05	1.352840661769e-06
	3	-9.926992183313e-05	4.294899850373e-06	-6.488121891471e-08
	4	6.513242953616e-06	-1.107878363495e-06	3.840860903452e-08
	5	-1.478504972220e-06	2.121938496244e-07	-7.452662892489e-09
	6	1.959691983490e-08	-4.994907944039e-09	2.384601530335e-10
	7	1.365715388161e-08	-1.203216169780e-09	3.140684652583e-11
	8	-6.927312822621e-10	6.265289730204e-11	-1.756983474278e-12

Error 2.14e-03 (C)

Reaction 3.1.10 $p + H(1s) \rightarrow H(2s) + p$

_	E Inde>	s 0	1	2
T	Index			
	0	-9.454040572046e+01	3.5/5/45803548e+01	-1.510443829941e+01
	1 Q	6./6881/040/33e+01	-5.22/2/92/10/6e+01	1./013/018485/e+01
	2	-3.843/06//1660e+01	2.980450196644e+01	-8.131009677919e+00
	3	1.385221298623e+01	-9.039653668981e+00	2.086424489113e+00
	4	-3.11/564250516e+00	1.63143203628/e+00	-3.080/42439399e-01
	5	4.327242290244e-01	-1.819412845040e-01	2.620862225175e-02
	6	-3.575580797373e-02	1.236067989017e-02	-1.200955067032e-03
	./	1.606326046639e-03	-4.707337881721e-04	2.380595128998e-05
	8	-3.014539201968e-05	7.726558074630e-06	-5.572946409399e-08
	F Index	, 3	Δ	5
т	Index	X S	T	5
Ŧ	0	4 295083359171e+00	-5 229601897556e-01	-7 9463157759310-03
	1	-3.003110377892e+00	3.010370634031e-01	-1.508174268564e-02
	2	9,231651795395e-01	-3,487948145308e-02	1,651938581961e-03
	3	-1.650992173822e-01	-7.573668823425e-03	1.643120830451e-03
	4	1.839941901217e-02	1.873700049273e-03	-3.898508080526e-04
	5	-1.170843781709e-03	-7.837602630428e-05	1,901716727239e-05
	6	2,536771557591e-05	-8,991629432058e-06	1,917169241407e-06
	3 7	1,205300240917e-06	8,541173405977e-07	-2.062752779297e-07
	8	-5.817548248007e-08	-1.874443584825e-08	4.932865323528e-09
	E Index	к б	7	8
Т	Index			
	0	7.914390432835e-03	-6.838905496435e-04	1.882232072017e-05
	1	5.550437127230e-05	2.964326783525e-05	-9.736741374779e-07
	2	-6.142591967279e-04	6.119831154619e-05	-1.838162822528e-06
	2	7 110521566600 06	7 0454765160100 06	2 120407002240- 07

3	-7.419534566620e-06	-7.945476516010e-06	3.130407892340e-07
4	2.719285839940e-05	-8.813515513714e-07	1.079647425709e-08
5	-2.516543465515e-06	1.865515247748e-07	-5.301524876773e-09
6	-7.319251234821e-08	-5.372098865883e-09	3.196679636762e-10
7	1.560273243360e-08	-3.793947135803e-10	-2.054614693679e-12
8	-4.284893236218e-10	1.548062509417e-11	-1.558508528883e-13

Error 2.70e-03 (C)

Reaction 3.1.11
a $p+H(n=2) \rightarrow H(n=2)+p$

	E Index	s 0	1	2
Τ	Index 0 1 2 3 4 5 6 7 8	-1.719825327366e+01 2.142580064300e-01 5.168472844325e-02 -1.048694623894e-02 -1.391648927155e-03 1.062236858414e-03 -1.941489579494e-04 1.443503540040e-05 -3.830825345601e-07	1.884984890020e-01 -9.872388055616e-02 6.212920647036e-03 6.029698215976e-03 -9.288450680283e-04 -1.207901919277e-04 3.746697774137e-05 -3.003621079325e-06 8.083955156001e-08	6.897051389182e-02 -3.940258746400e-03 -9.888896994201e-03 1.504715422531e-03 5.238686379254e-04 -1.467630362018e-04 1.105904477472e-05 -1.018783959628e-07 -1.150674668496e-08
	E Index	к 3	4	5
Т	Index			
	0	-1.572342769599e-02	-3.026782383076e-03	2.133841357975e-03
	1	7.386092651403e-03	-2.707096061380e-04	-3.315460371996e-04
	2	-1.514031260298e-04	7.422527656251e-04	-9.788494576192e-05
	3	-1.084990452398e-03	-2.534332965992e-05	6.638160972083e-05
	4	1.397189710440e-04	-6.198909026340e-05	4.565982508704e-07
	5	2.978558026688e-05	1.074474230594e-05	-2.854550682552e-06
	6	-7.191352563366e-06	-2.116398505416e-07	3.026311807218e-07
	7	5.019583257618e-07	-5.860162734729e-08	-4.086656000107e-09
	8	-1.160924102260e-08	3.001361914394e-09	-3.647228557972e-10
	E Index	к б	7	8
Т	Index			
	0	-3.794323219371e-04	2.766697866894e-05	-7.245291602834e-07
	1	6.222275341197e-05	-4.353916183620e-06	1.095768172868e-07
	2	-1.538008374846e-06	8.506156759757e-07	-3.579248331944e-08
	3	-1.070825967335e-05	6.727768972585e-07	-1.517922643230e-08

-			
4	1.624804729003e-06	-1.835711031271e-07	6.039716625198e-09
5	1.266431527284e-07	1.074561840233e-08	-7.130630889442e-10
6	-2.451278913609e-08	-4.162807697535e-10	6.485611244670e-11
7	4.087633684476e-11	1.064004947231e-10	-5.907545942925e-12
8	5.848501246633e-11	-6.316916199588e-12	2.360870657000e-13

Error 5.81e-04 (B)

Reaction 3.1.11b $p+H(n=3) \rightarrow H(n=3)+p$

	E Index	0	1	2
Т	Index			
	0	-1.564176694793e+01	1.700998335355e-01	4.947885926277e-02
	1	2.232010663420e-01	-1.049739713449e-01	-2.908751470450e-03
	2	5.316235880113e-02	7.036341129098e-03	-1.117747362624e-02
	3	-4.935673795010e-03	6.200377256109e-03	1.303552526033e-03
	4	-1.741592426003e-03	-1.023534361944e-03	6.993209254704e-04
	5	4.843336390075e-04	-1.026575078128e-04	-1.690721678970e-04
	6	-4.393060568249e-05	3.646643689823e-05	1.129769317091e-05
	7	1.066531598161e-06	-3.043044894680e-06	2.706113202831e-09
	8	2.083548419270e-08	8.441512078238e-08	-1.618789305180e-08
	E Index	3	4	5

Т	Index		
	0	3.480696525110e-03 -2.016588092927e-03 -2.3045445292	246e-04
	1	7.235971573222e-03 -4.237602215706e-04 -2.525856005	478e-04
	2	-2.219063125013e-04 8.910349218491e-04 -1.240905152	629e-04
	3	-1.007225809037e-03 -5.690437985817e-06 5.076337989	874e-05
	4	1.326302857329e-04 -8.434009637807e-05 6.519707374	655e-06
	5	2.567668892391e-05 1.430883419261e-05 -3.208617580	385e-06
	6	-6.607411884531e-06 -3.382705306787e-07 2.749197577	537e-07
	7	4.871162221333e-07 -6.897801542295e-08 -1.416282255	917e-09
	8	-1.204005789548e-08 3.636288208820e-09 -4.076090686	778e-10

	E Index	6	7	8
Т	Index			
	0	1.218034746095e-04	-1.302517417161e-05	4.404350923087e-07
	1	4.862602710052e-05	-3.343139362692e-06	8.182936615708e-08
	2	-2.780251764272e-07	8.939610410070e-07	-3.949474200870e-08
	3 .	-7.792361018067e-06	4.473546907095e-07	-8.802476545107e-09
	4	9.878685208347e-07	-1.545621666271e-07	5.588732113261e-09
	5	9.561811139849e-08	1.702219787538e-08	-9.641507489238e-10
	6	-1.646787390856e-08	-1.115049016888e-09	8.683886799640e-11
	7	4.716863630756e-11	8.023274024363e-11	-4.773160877761e-12
	8	3.777088131426e-11	-3.347579230007e-12	1.292746807996e-13

Error 1.54e-04 (A)
Reaction 3.2.1a $p + H_2(j = 0) \rightarrow p + H_2(j'), (j' \ge 2)$

m	E Indez	к 0	1	2
Т	E Index 0 1 2 3 4 5 6 7 8	-1.931976581025e+01 1.780878236605e-01 -2.541254437243e-02 -4.673484115780e-02 -1.146770335720e-03 2.889570096820e-03 -5.181754952484e-04 3.889651963743e-05 -1.107229000254e-06	-1.131727838595e-02 -1.304342119382e-01 2.555760073023e-02 7.858332235684e-03 -1.657368695811e-03 -5.065872411962e-05 1.639669433305e-05 3.837821202667e-07 -7.670491474577e-08	2 5.564692006285e-02 -2.977647895678e-02 -1.343274859600e-02 3.183062244762e-03 7.282634108198e-04 -1.009959155222e-04 -2.569913821108e-05 4.649279483411e-06 -1.956375986525e-07
	E Index	x 3	4	5
Т	Index			
	0	4.612780090544e-02	-2.004969108653e-02	-5.405622666261e-03
	1	2.598050022977e-02	1.347793245045e-03	-2.528774951362e-03
	2	-2.445543192015e-03	2.818570059181e-03	-4.999237741132e-05
	3	-3.596822533950e-03	2.532346636968e-04	4.009000053692e-04
	4	2.613056855048e-04	-2.483817325793e-04	1.398464524064e-07
	5	1.042472672998e-04	2.267800856786e-06	-1.589742168453e-05
	6	-8.619281945578e-06	7.897307131770e-06	8.582336209267e-07
	7	-7.536640398566e-07	-9.405159896274e-07	1.327216559054e-07
	8	6.639899136555e-08	3.236749066622e-08	-9.607318326503e-09
	E Index	к б	7	8
Т	Index			
	0	2.191546075602e-03	-2.320194246052e-04	8.008357976190e-06
	1	4.600974334650e-04	-3.107626515638e-05	6.945270043940e-07
	2	-1.748459008343e-04	2.776052578344e-05	-1.206654268341e-06
	3	-9.738076845118e-05	7.572697075882e-06	-1.827758690708e-07
	4	1.815503467330e-05	-2.855321802747e-06	1.239043759009e-07
	5	1.897116878857e-06	9.701076200284e-08	-1.311379859022e-08
	6	-4.399860357799e-07	2.641401745588e-08	9.621252004735e-11

1.171108373785e-08 -1.727778312454e-09 2.797736054220e-11

5.928009302898e-10 -5.140400246008e-13 -1.647139266864e-13

Error 2.98e-03 (D)

7

8

Reaction 3.2.1b $p + H_2(j = 1) \rightarrow p + H_2(j'), (j' \ge 3)$

]	E Index	0	1	2
Т	Index			
	0	-1.973243992807e+01	1.247414117614e-01	9.226482332314e-02
	1	1.829696809063e-01	-1.297428942606e-01	-4.048210910881e-02
	2	-3.965576412456e-02	3.618197482242e-02	-9.421328372950e-03
	3	-4.313466950038e-02	-2.291104293914e-03	6.559525504445e-03
	4	9.636266519704e-04	-2.918601086415e-03	-4.932567471708e-04
	5	2.253096845378e-03	1.405510037846e-03	-2.369615891213e-04
	6	-4.356551994020e-04	-2.600932648209e-04	5.724350136902e-05
	7	3.282766964094e-05	2.127068115091e-05	-4.867932845087e-06
	8	-9.076785125326e-07	-6.411159887874e-07	1.475347595640e-07

	E Index	x 3	4	5
Т	Index			
	0	-3.714490319222e-02	-1.356114029701e-02	4.100083713039e-03
	1	2.971894544949e-02	1.876669259108e-03	-3.322968917828e-03
	2	-1.981651027277e-03	1.569164989146e-03	-3.053099313902e-04
	3	-1.090766391534e-03	-4.420842120460e-04	3.568181091302e-04
	4	5.013178555056e-04	-3.266081392759e-05	-3.038322725843e-05
	5	-2.533635465343e-04	4.489607178747e-05	-1.262675526559e-06
	6	5.665115351398e-05	-1.000727087071e-05	-4.278214878688e-07
	7	-5.233684321566e-06	9.078582661039e-07	1.038286804798e-07
	8	1.702995300347e-07	-2.952394683317e-08	-4.770640084428e-09

	E Index	6	7	8
Т	Index			
	0	-3.666387513519e-04	1.083946601986e-05	1.351070637014e-08
	1	6.903747113211e-04	-5.754069299179e-05	1.739402046218e-06
	2	1.988204507361e-05	3.731257202030e-07	-6.182586349800e-08
	3	-8.469119247598e-05	8.182865454249e-06	-2.786434350401e-07
	4	8.613590729944e-06	-8.986091403746e-07	3.310895101467e-08
	5	6.220415471942e-07	-1.315998111932e-07	6.286616924397e-09
	6	2.197126754622e-08	1.839451977445e-08	-1.214916175628e-09
	7	-2.062547364677e-08	1.216554321342e-10	5.337970791360e-11
	8	1.119243083769e-09	-5.101049613696e-11	-1.189621855444e-13

Error 2.05e-03 (C)

Reaction 3.2.2 $p + H_2(v = 0) \rightarrow p + H_2(v > 0)$

	E Index	0	1	2
Т	Index			
	0	-2.329087453007e+01	5.834682857859e-01	3.016206818784e-01
	1	2.119794074231e+00	-4.707130034299e-01	-1.627052975735e-01
	2	4.378420793629e-02	7.098659965089e-02	-1.538726713612e-03
	3	-1.212485645824e-01	1.716068200911e-02	1.234418739201e-02
	4	-6.784743989202e-05	-3.554071145865e-03	-1.963491271592e-03
	5	6.091207437528e-03	-5.334937961855e-04	2.680505429999e-06
	6	-1.035395322074e-03	1.771858360014e-04	2.137128521413e-05
	7	6.956622116761e-05	-1.519815181883e-05	-1.689036732606e-06
	8	-1.714843775518e-06	4.355820063409e-07	4.019682578322e-08
	E Index	3	4	5
Т	Index			
	0	2.566603966328e-02	-2.256516571421e-02	-5.628180168021e-04

0	E. 000000000000000000000000000000000000	E.EO OO E OO F IEEEO OE	0.0201001000210 01
1	2.772025396684e-02	1.100571275815e-02	-3.271820121481e-03
2	-8.406926164519e-03	-1.645206696492e-03	1.346715958215e-03
3	-3.779824694550e-03	9.007565031801e-04	-2.318342461147e-04
4	1.849557056204e-03	-4.387553829325e-04	4.379338463619e-05
5	-3.000343967886e-04	8.809999443469e-05	-8.221671799210e-06
6	2.287377536516e-05	-8.300877832833e-06	8.352812135871e-07
7	-7.931460846045e-07	3.626282328864e-07	-3.748271128306e-08
8	8.837549978855e-09	-5.713862092713e-09	5.406617870326e-10

	E Index	6	7	8
Т	Index			
	0	7.740619846564e-04	-8.045484752448e-05	2.526516293312e-06
	1	3.282645173821e-04	-1.405235013910e-05	2.050808638586e-07
	2	-2.333687223953e-04	1.660986465802e-05	-4.315116954882e-07
	3	3.388077149363e-05	-2.302170766555e-06	5.814386667558e-08
	4	-1.679616585635e-06	-5.915996895685e-09	1.292933101414e-09
	5	2.043346638977e-07	3.266439560921e-09	3.038024520814e-11
	6	-3.882583129136e-08	2.553655884029e-09	-1.293452258893e-10
	7	2.558173370326e-09	-2.723495529714e-10	1.327159233871e-11
	8	-4.963660570583e-11	7.622204418800e-12	-3.884869166334e-13

Error 3.04e-03 (D)

Error is improved to 8.94e-04 (B) if only values of $<\!\!\mathrm{sv}\!\!>$ for T > 1 eV are considered.

Reaction 3.2.3 $p + H_2 \rightarrow H(1s) + H_2^+$

	Е	Index	0	1	2
Т	In	ndex			
	С)	-2.393090018673e+01	6.248759475696e-01	4.860672617319e-02
	1	L	1.497880823202e+00	-1.321184618254e+00	1.610180305377e-01
	2	2	-1.108848312589e+00	1.026939763848e+00	-2.764437632008e-01
	3	3	2.723796545755e-01	-3.349189897157e-01	1.525831234833e-01
	4	1	2.721877464232e-02	4.328258310611e-02	-4.172607648071e-02
	5	5	-1.779177173774e-02	4.465034873018e-04	6.494173133750e-03
	6	5	2.547195398346e-03	-6.602886969983e-04	-5.936946344163e-04
	7	7	-1.581068390892e-04	6.000753124589e-05	2.989789198510e-05
	8	3	3.720016363224e-06	-1.724843689004e-06	-6.403267693113e-07

	E Ind	dex	3	4	5
Т	Inde	Х			
	0	-1	.200688114292e-01	8.087736504737e-03	9.460417081363e-03
	1	1	.165310493854e-01	-3.963918450387e-02	4.451468403951e-03
	2	-3	3.948109106588e-02	3.853676685634e-02	-9.097709483121e-03
	3	- 9	.592981926094e-03	-1.131614493158e-02	3.519316476081e-03
	4	1	.001163900824e-02	3.016020168360e-04	-4.649867654705e-04
	5	-2	2.726517864643e-03	3.947434451322e-04	-3.560364682888e-06
	6	3	3.516907384191e-04	-7.253981468239e-05	6.007588925145e-06
	7	-2	2.210901325776e-05	5.074761954649e-06	-4.890225279817e-07
	8	L L	.443461456508e-07	-1.285040546716e-07	1.225908917355e-08

	E Inde	X	6			7				8	
Т	Index										
	0	-2.12	865108932	28e-03	1.685	18188	6244e-	04 -4	4.66530	92267	30e-06
	1	-1.30	47387193	48e-04	-8.714	69739	6102e-	06 4	4.79657	42695	51e-07
	2	1.04	206621923	39e-03	-5.955	68671	9189e-	05	1.35874	95162	36e-06
	3	-4.46	39143803	71e-04	2.672	11076	7494e-	05 -	6.21801	22397	98e-07
	4	7.35	64306583	99e-05	-4.797	05520	6851e-	06	1.15919	53386	18e-07
	5	-4.58	52115347	49e-06	4.292	97833	1848e-	07 -1	1.20970	35566	19e-08
	6	-1.86	68429967	66e-08	-2.383	24046	9589e-	08	9.35371	33002	06e-10
	7	1.06	70907088	36e-08	1.188	95974	1308e-	09 -	5.74178	92817	48e-11
	8	-1.96	73930942	86e-10	-3.854	01440	7618e-	11 :	1.74854	44627	60e-12

Error 7.17e-03 (D)

Error is improved to 2.24e-03 (C) if only values of <sv> for T > 1 eV are considered.

Reaction 3.2.4a $p + D_2 \rightarrow D^+ + HD$, (orH + D)

	E Indez	x 0	1	2
Т	Index			
	0	-2.111896543160e+01	-1.025538356060e-01	-1.465668919808e-01
	1	-6.219092009914e-01	6.936787446352e-02	9.499279319950e-02
	2	-1.215025308696e-01	8.780031887817e-03	-4.821837782776e-03
	3	6.815442586718e-02	-1.525104088494e-02	-7.956267907252e-03
	4	2.752449038333e-03	1.225019378208e-03	1.085462645581e-03
	5	-5.750611656794e-03	1.232968333824e-03	3.447823950790e-04
	6	1.125377790650e-03	-3.422288971501e-04	-1.018650054891e-04
	7	-8.919363340228e-05	3.365851906238e-05	9.449139307317e-06
	8	2.601744783012e-06	-1.162845386047e-06	-3.033572820292e-07
	E Inde:	x 3	4	5
Т	Index			
	0	-1.856546171568e-02	1.365853496631e-02	-3.826961311141e-04
	1	-1.160097875790e-03	-9.106571030308e-03	1.473315037711e-03
	2	4.849238242696e-03	7.525239416510e-04	-7.495029297215e-04
	3	1.124986687656e-03	5.331715821535e-04	-1.190706225054e-04
	4	-6.853757310073e-04	-1.075209684417e-04	9.573379729918e-05
	5	-5.896278139458e-05	3.476245629170e-06	-5.875969746146e-06
	6	4.848804836962e-05	-7.966497740323e-08	-2.512498875224e-06
	7	-6.135496085718e-06	9.456855386541e-08	3.985794665381e-07
	8	2.408475811630e-07	-6.748305167707e-09	-1.666573853398e-08
	E Inde:	х б	7	8
Т	Index			
	0	-3.727957061966e-04	4.748991519766e-05	-1.698399806385e-06
	1	-1.495473343687e-05	-9.835840608225e-06	4.860991365689e-07
	2	1.403289748223e-04	-1.067949058111e-05	2.955867761367e-07
	3	5.146965646887e-06	3.731108583161e-07	-2.546014093405e-08
	4	-1.739495667153e-05	1.302457212236e-06	-3.566296705821e-08
	5	1.552565062442e-06	-1.430402446135e-07	4.485383482007e-09
	6	4.667259306147e-07	-3.425538256234e-08	9.189075599465e-10
	7	-8.312637284424e-08	6.615368641527e-09	-1.889019472636e-10
	8	3.654557715832e-09	-2.995367307547e-10	8.734664246336e-12

Error 7.28e-03 (D)

Error is improved to 6.67e-04 (B) if only values of <sv> for T > 1 eV are considered.

Reaction 3.2.4b $p + D_2 \rightarrow D + HD^+$

т	E Index	0	1	2
1	0 1 2 3 4 5 6 7 8	-2.529005922309e+01 1.881570344354e+00 -8.814004836556e-01 1.691850902103e-01 -6.652054410222e-02 2.240305503202e-02 -3.819487238341e-03 3.069356789436e-04 -9.328627869191e-06	3.371688551898e-01 -5.113434583372e-01 2.968842541690e-01 -8.619057072559e-02 1.093768968050e-02 2.436569548502e-04 -2.196174841406e-04 2.140188150215e-05 -6.680477536797e-07	4.693918630510e-02 -5.273216405018e-02 3.441039128935e-02 -5.980460778885e-02 5.059893495850e-02 -1.818236207409e-02 3.110816934408e-03 -2.512796010299e-04 7.694384931049e-06
Ŧ	E Index	3	4	5
1	0 1 2 3 4 5 6 7 8	1.384303400933e-02 -5.260928525467e-02 1.331208476230e-02 2.992464843607e-02 -2.273638325874e-02 6.836786141131e-03 -1.028059797546e-03 7.612976218275e-05 -2.199089655518e-06	2.197297492088e-02 -1.183131187811e-02 -6.086729631519e-03 6.494689656712e-03 -4.060667412372e-03 1.468739824255e-03 -2.651119233481e-04 2.242650259038e-05 -7.103958561240e-07	-5.238094233772e-03 1.230475793211e-02 -3.440498761785e-03 -5.095348269685e-03 4.212401093393e-03 -1.329242365115e-03 2.067742478703e-04 -1.567120609980e-05 4.597541185577e-07
Т	E Index Index 0	6 -2.589041456721e-03	7 5.971878512503e-04	8 -2.960695486568e-05

0	-2.589041456721e-03	5.971878512503e-04	-2.960695486568e-05
1	2.243312170048e-04	-5.598084624364e-04	4.754533831647e-05
2	8.268141028700e-04	3.941921240841e-05	-1.101845343079e-05
3	9.066019513957e-04	-6.629895278703e-05	2.061740481891e-06
4	-9.043842324620e-04	7.471396669600e-05	-1.946743502969e-06
5	2.869803101647e-04	-2.489904593762e-05	7.165571176206e-07
6	-4.325324514439e-05	3.772514035078e-06	-1.135486249420e-07
7	3.158371725991e-06	-2.722540885633e-07	8.321982058577e-09
8	-8.960027960892e-08	7.591855363103e-09	-2.323959696375e-10

Error 1.18e-04 (A)

 $<\!\rm sv\!>\,<$ 1.0e-11 for E > 100 eV for the entire T range considered here. The fit gives unphysical values for E > 100 eV in this range and should not be used there.

Reaction 3.2.5 $p + H_2 \rightarrow p + H_2^+(v) + e, (v \le 9)$

	E Index	0	1	2
Т	Index			
	0	-5.367225610927e+01	8.561616047237e+00	1.816558609991e+00
	1	1.788157706832e+01	-6.286008716933e+00	-1.245074165012e+00
	2	-4.732013902744e+00	1.828154334899e+00	2.297272982398e-01
	3	5.202644682964e-01	-2.797342414213e-01	3.359419100500e-02
	4	3.521809500536e-02	3.001478994199e-02	-2.022030104793e-02
	5	-1.648514003195e-02	-3.511706068001e-03	3.466696529491e-03
	6	1.922206340707e-03	3.867557051749e-04	-2.971236668059e-04
	7	-1.035405866079e-04	-2.470578459133e-05	1.298468816782e-05
	8	2.203112678635e-06	6.255426859518e-07	-2.312060025019e-07

	E Inde	ex 3	4	5
Т	Index			
	0	-1.522333614377e+0	0 3.759529679375e-01	-4.786079082066e-02
	1	1.069094789286e+0	0 -2.542196973682e-01	3.177817178124e-02
	2	-2.574312651499e-0	1 6.235010781304e-02	-7.498165815343e-03
	3	1.396148560079e-0	2 -5.455674772716e-03	7.627828208046e-04
	4	4.167002536339e-0	3 -2.961138095159e-04	-1.989496685088e-05
	5	-7.713464611496e-0	4 9.296859682627e-05	-4.390690629457e-06
	6	4.630325714231e-0	5 -6.209296988115e-06	7.802446823898e-07
	7	-5.951650262538e-0	7 1.040160519423e-07	-6.013540281517e-08
	8	-2.277567397969e-0	8 2.205724295105e-09	1.764776882153e-09

	E Index	6	7	8
Т	Index			
	0	3.386576601010e-03	-1.260406274176e-04	1.909653870707e-06
	1 .	-2.284002706788e-03	9.015781280225e-05	-1.528190392357e-06
	2	4.874507232153e-04	-1.603249117471e-05	2.009004806425e-07
	3 .	-4.735379021213e-05	9.681751756528e-07	9.137775800355e-09
	4	5.017190961057e-06	-3.312351285579e-07	7.657715805259e-09
	5	-5.449234862617e-07	8.306829849916e-08	-3.008901804950e-09
	6	-9.036886465169e-09	-6.038768586675e-09	3.127724512237e-10
	7	5.701208151560e-09	-2.749357161379e-12	-1.065774817217e-11
	8	-2.564871978479e-10	9.360384058829e-12	2.125011883790e-14

Error 7.60e-05 (A)

Reaction 3.2.6 $p + H_2^+(v) \to p + H(1s) + H^+$

	E Indez	к О	1	2
Т	Index			
	0	-3.503949588630e+01	3.596223868947e-03	5.850451146780e-01
	1	3.056567004229e+00	3.101537521281e-01	-3.802213472822e-01
	2	6.995656851497e-01	-1.714310765924e-01	4.075164360191e-02
	3	-2.282773440449e-01	2.456336476294e-02	2.462515616912e-02
	4	2.032409655024e-02	4.693764706073e-03	-8.013907630788e-03
	5	7.333965699110e-04	-2.072064243724e-03	9.248040165878e-04
	6	-3.031298255102e-04	2.853271682462e-04	-4.190818382811e-05
	7	2.353662179363e-05	-1.783778591788e-05	1.188782788257e-07
	8	-6.209682283669e-07	4.280148575920e-07	2.898023610900e-08
	E Index	x 3	4	5
Т	Index			
	0	9.474524219612e-02	-3.938575923140e-02	4.666084706751e-03
	1	-4.164890965970e-02	3.732884150575e-02	-5.553031214904e-03
	2	6.345887908944e-04	-7.388540130210e-03	2.215252505302e-03
	3	-1.163184524936e-03	-8.552780029379e-04	-6.842088086239e-05
	4	9.714618199968e-04	3.399582328819e-04	-7.945188972850e-05
	5	-1.686569365114e-04	-1.260646704530e-05	9.272036136361e-06
	6	9.494328352046e-06	-3.548328747232e-06	3.006199198249e-07
	7	3.338996422125e-08	3.705771699362e-07	-8.431446572047e-08
	8	-1.257918518905e-08	-1.036436256550e-08	3.078907880655e-09
	E Index	к б	7	8
Т	Index			
	0	-3.236705187942e-04	1.538536999072e-05	-3.695652391342e-07
	1	2.646628484405e-04	3.287941538949e-06	-4.204509688663e-07
	2	-2.704279067013e-04	1.508871496609e-05	-3.179547222229e-07
	3	4.711638356898e-05	-4.822026376406e-06	1.518903664812e-07
	4	4.045609876795e-06	1.545451740861e-07	-1.283734364199e-08
	5	-1.248629759318e-06	6.544957875539e-08	-1.110642504800e-09
	6	3.221166999732e-08	-5.258665703836e-09	1.800452602126e-10

5.927769241279e-09 -5.999414332265e-11 -4.977523706425e-12

-2.953243500461e-10 1.037093087158e-11 -6.464182493927e-14

Error 4.86e-04 (B)

7 8

Reaction 3.3.1 $p + He \rightarrow H + He^+$

_	E Indez	s 0	1	2
Τ	Index 0 1 2 3 4 5 6 7 8	-3.353816664129e+01 1.781370892516e+00 6.707672251154e-01 -7.477930071091e-02 -8.381713330773e-02 2.694989933554e-02 -3.290961646690e-03 1.824292103062e-04 -3.841146748130e-06	-4.586784908436e-01 6.891694453609e-01 -3.169866636164e-01 3.350898800561e-02 1.622059625803e-02 -5.889292565221e-03 8.008575628447e-04 -5.051648761026e-05 1.228049521583e-06	1.594898247008e-01 -1.611575823430e-01 7.765165360131e-02 -3.392131794663e-02 1.247636271907e-02 -2.789567626468e-03 3.401335910688e-04 -2.091692923886e-05 5.084397192524e-07
	E Index	к 3	4	5
Т	Index			
	0	1.993834571954e-01	-2.908726266195e-02	-4.587782047584e-03
	1	-1.491282657121e-01	4.812768747296e-02	-3.997981241748e-03
	2	2.652950675220e-02	-2.159277544971e-02	5.139425409123e-03
	3	8.474034802338e-03	2.748759961113e-03	-1.420567682255e-03
	4	-5.507438871028e-03	5.154609993383e-04	1.065291472218e-04
	5	1.293406768681e-03	-2.021983674764e-04	1.031174122595e-05
	6	-1.563868173318e-04	2.528045360094e-05	-1.979594316338e-06
	7	9.545486229202e-06	-1.444453762830e-06	9.506598262937e-08
	8	-2.317334470853e-07	3.187947009859e-08	-1.162138178659e-09
	E Index	к б	7	8
Т	Index			
	0	1.233562953962e-03	-8.959520538477e-05	2.153885795280e-06
	1	-1.453386884233e-04	3.438904204074e-05	-1.235017420599e-06
	2	-5.776151273370e-04	3.150136684703e-05	-6.720649580897e-07
	3	2.214493222620e-04	-1.503183655470e-05	3.810469912151e-07
	4	-2.770978822291e-05	2.235082592688e-06	-6.269566270205e-08

5	8.328481121158e-07	-1.256070804240e-07	4.314925565866e-09
6	5.230582879539e-08	2.635177963503e-09	-1.574479246009e-10
7	-8.519235005422e-10	-2.264396092848e-10	9.108750391681e-12
8	-1.347103798052e-10	1.468879806508e-11	-4.188673847162e-13

Error 1.58e-03 (C)

Reaction 3.3.2 $p + He \rightarrow p + He^+ + e$

E Index	0	1	2
T Index			
0	-3.513975817234e+01	-5.242917555404e-01	-3.826194904402e-01
1	-5.385780070980e-01	7.943799641890e-02	1.983252146365e-01
2	9.035205217957e-01	1.231698104678e-01	-4.512064453109e-02
3	6.154592887522e-02	-4.082389668808e-02	8.492939132060e-03
4	-8.683888520960e-02	1.363524072485e-03	-6.877816557895e-04
5	1.850283102315e-02	1.065556461944e-03	-1.981157465961e-04
6	-1.829730723913e-03	-1.792886431140e-04	5.180204798722e-05
7	8.903233974874e-05	1.133222476812e-05	-4.281190983076e-06
8	-1.723417501407e-06	-2.598637070808e-07	1.212392744890e-07
E Index	3	4	5
T Index			
0	1.749071804038e-01	3.379968769905e-02	-1.684873318946e-02
1	-2.966737668036e-02	-2.195230807923e-02	7.987671929803e-03
2	-2.632395045040e-02	9.106381567773e-03	-1.220083366385e-03
3	4.950008931722e-03	-2.125790233999e-03	2.856685316297e-04
4	1.539732094359e-03	1.989843795364e-05	-8.201311837293e-05
5	-5.591852085968e-04	8.588977130038e-05	6.771413834410e-06
6	6.660694317589e-05	-1.557623357777e-05	6.328328243704e-07
7	-3.537756092409e-06	1.101685345092e-06	-1.130645655532e-07
8	7.093957802151e-08	-2.828418079985e-08	4.145168773820e-09
E Index	6	7	8
T Index			
0	2.235958862320e-03	-1.282599958804e-04	2.760095475019e-06
1	-1.078408322383e-03	6.664182706070e-05	-1.576989885173e-06
2	1.013506718990e-04	-5.755496123590e-06	1.585191024717e-07
3	-1.436171240398e-05	5.512329277872e-08	1.055695620784e-08
4	1.095726116510e-05	-4.861620705084e-07	5.080813644487e-09
5	-1.907336915250e-06	1.057876163056e-07	-1.372842995387e-09
6	7.169146469455e-08	-4.866671700650e-09	1.446148171715e-11
7	5.780678333429e-09	-2.912824978296e-10	1.171657019875e-11
8	-3.562927197437e-10	2.049378727457e-11	-5.867221352941e-13

Error 1.18e-04

Reaction 3.3.6a $p + He(1s^{1}2s^{1}1S) \rightarrow H(2s) + He^{+}(1s)$

	Е	Index	0	1	2
Т	In	ıdex			
		0	-2.545206891667e+01	4.087721421944e-01	1.586491378549e-01
		1	2.913542861083e+00	-4.603441740870e-01	-1.538179897348e-01
		2	-2.751712354111e-01	1.679980585979e-01	4.131633234926e-02
		3	-2.633545354224e-02	-1.567302034710e-02	-4.520967162781e-04
		4	8.622940210562e-03	-3.336538128570e-03	-8.260874599039e-04
		5	-2.300706825690e-04	8.171653956449e-04	-4.965497872141e-05
		6	-1.125479569857e-04	-5.470534020950e-05	3.466402080937e-05
		7	1.223862287149e-05	4.510736761276e-07	-3.432193506153e-06
		8	-3.807538916669e-07	4.917383484449e-08	1.058745036988e-07
	Е	Index	3	4	5

T Index			
0	5.058971318815e-02	-3.791312599700e-03	-3.833049897763e-03
1	5.222489871516e-03	1.003438746972e-02	-1.168850382452e-03
2	-1.641664176824e-02	-4.107214837202e-03	1.967371773324e-03
3	3.430116367838e-03	2.838382928506e-04	-4.209650788467e-04
4	-9.020143604576e-05	1.347016172889e-04	-4.958012853527e-06
5	1.188821428901e-05	-3.313627492240e-05	8.279160796936e-06
6	-1.041943673755e-05	3.202234108937e-06	-5.675677716610e-07

E Index	6	7	8

T Index

7

8

0	7.950734542136e-04	-5.885681325041e-05	1.541378919766e-06
1	-5.579601385349e-05	1.353899796842e-05	-5.122850004231e-07
2	-2.673125550197e-04	1.566853623054e-05	-3.415999363201e-07
3	7.898192930901e-05	-5.854327119904e-06	1.562313674827e-07
4	-4.094959727394e-06	5.353989855247e-07	-1.913396611346e-08
5	-6.413236333283e-07	4.848646930188e-09	8.121470593220e-10
6	3.608129963110e-08	5.274666256825e-10	-8.954629500955e-11
7	4.563092914087e-09	-4.419337156204e-10	1.449959132985e-11
8	-2.914831320408e-10	2.266195254549e-11	-6.387372749942e-13

1.271716123512e-06 -1.476246727512e-07 -1.066910658350e-08

-4.477991722400e-08 2.709447373704e-09 1.358296626830e-09

Error 2.14e-04 (A)

Reaction 3.3.6b $p + He(1s^{1}2s^{1}3S) \rightarrow H(2s) + He^{+}(1s)$

	E Index	0	1	2
Т	Index			
	0	-3.122938685456e+01	4.028257956860e-01	2.334348862506e-01
	1	4.307517366770e+00	-1.334773437980e-01	-2.727882564258e-01
	2	-2.361736602090e-02	-1.432708434183e-01	1.201423191752e-01
	3	-2.081939800843e-01	9.945616177435e-02	-2.709414076376e-02
	4	4.838048334741e-02	-2.358233412220e-02	4.734052652172e-03
	5	-4.823009462310e-03	2.401135023266e-03	-8.658412840062e-04
	6	1.881322513534e-04	-6.847646462892e-05	1.174757836154e-04
	7	1.638221308510e-06	-4.485862371494e-06	-8.367996886287e-06
	8	-2.228643990360e-07	2.485885176817e-07	2.302713313337e-07
	E Index	x 3	4	5
Т	Index			
	0	9.957171612712e-02	-1.023449426184e-02	-4.496822279877e-03
	1	-6.164153370524e-02	3.370797060231e-02	-3.319571865630e-03
	2	1.135420376951e-02	-1.984294955107e-02	4.774462913892e-03
	3	6.080332812779e-04	3.775623225478e-03	-1.322011971814e-03
	4	-1.366781281246e-03	1.119535101746e-04	8.050305381600e-05
	5	4.843193058320e-04	-1.376705233410e-04	1.437228606346e-05
	6	-7.634853296888e-05	1.971646855797e-05	-2.212285070187e-06
	7	5.557461570216e-06	-1.186541505079e-06	9.199979549866e-08
	8	-1.522032174656e-07	2.678514729721e-08	-6.757808737035e-10
	E Index	s 6	7	8
Т	Index			
	0	9.241247688814e-04	-6.358490712348e-05	1.525433983093e-06
	1	-8.936775061168e-05	2.722213770738e-05	-1.020668178963e-06
	2	-5.033398600438e-04	2.498282187124e-05	-4.741136942425e-07
	3	1.886421813109e-04	-1.237062202523e-05	3.083020170351e-07
	4	-2.071452083937e-05	1.798870106702e-06	-5.365052965492e-08
	5	8.302103147893e-08	-9.892824420452e-08	4.289062541986e-09
	6	7.058025912797e-08	4.738735970150e-09	-2.878639826635e-10
	7	1.761485514114e-09	-6.097061454789e-10	2.321326366521e-11
	8	-2.771866976517e-10	2.928170189987e-11	-8.892938915985e-13

Error 3.14e-04 (B)

Reaction 3.3.7
a $p+He(1s^12p^11P)\rightarrow H(2p)+He^+(1s)$

E Index	к О	1	2
0 1 2 3 4 5 6 7 8	-2.096277724233e+01 1.838253461492e+00 -1.504683700198e-01 -1.988914332352e-02 5.224868789594e-03 7.903708169506e-05 -1.088955465421e-04 1.035977420345e-05 -3.067244916001e-07	2.908363629618e-01 -3.440722063330e-01 1.391168674341e-01 -1.827777489629e-02 -1.503338958950e-03 6.281421973346e-04 -5.979073448137e-05 2.110596750983e-06 -1.576601346659e-08	1.344210657325e-01 -1.075733974740e-01 1.407833937250e-02 6.303582937881e-03 -1.588632341093e-03 -5.706206467996e-06 3.124053598819e-05 -3.069558569915e-06 9.145348279705e-08
E Index	x 3	4	5
Index 0 1 2 3 4 5 6 7 8	2.643049515080e-02 1.130230128759e-02 -1.376123125770e-02 2.150624640205e-03 2.568647734327e-04 -7.591611145466e-05 3.384790316520e-06 2.181939775695e-07 -1.459318779306e-08	-5.367852119278e-03 6.583514261893e-03 -8.644040120194e-04 -4.951984366580e-04 1.217005674709e-04 -1.357219951533e-06 -1.821787693981e-06 1.762529764553e-07 -5.010568584481e-09	-1.337347909674e-03 -1.227749129234e-03 1.013028508387e-03 -1.010346550533e-04 -2.937286287021e-05 4.933729396290e-06 5.718370339432e-08 -4.223388769976e-08 1.790351359196e-09
E Index	к б	7	8
Index 0 1 2 3 4 5 6 7	3.643627994364e-04 4.333172602701e-05 -1.589309518095e-04 3.299776657730e-05 1.370261783588e-06 -7.078827921616e-07 1.974622062662e-08 4.174185414825e-09	-2.927921977642e-05 3.531045210401e-06 1.005180995389e-05 -2.892265994707e-06 9.004843536308e-08 3.342727890413e-08 -1.472504522071e-09 -2.207503317650e-10	8.016074291976e-07 -2.066151687336e-07 -2.313721814532e-07 8.406596588342e-08 -6.389625540292e-09 -3.633168197949e-10 1.736212449338e-11 5.469661760878e-12
	E Index 0 1 2 3 4 5 6 7 8 E Index 0 1 2 3 4 5 6 7 8 E Index 0 1 2 3 4 5 6 7 8 E Index 0 1 2 3 4 5 6 7 8 E Index 0 1 2 3 4 5 6 7 8 E Index 0 1 2 3 4 5 6 7 8 8 E Index 0 1 2 8 8 E Index 0 1 2 8 8 E Index 0 1 8 8 E Index 0 1 8 8 E Index 0 1 8 8 E Index 0 1 8 8 E Index 0 1 8 8 E Index 0 1 8 8 E Index 0 8 8 E Index 0 1 8 8 E Index 0 1 8 8 E Index 0 1 8 8 E Index 0 1 8 8 E Index 0 8 8 E Index 0 1 8 8 E Index 0 1 8 8 E Index 0 1 8 8 E Index 0 1 8 8 E Index 0 1 8 8 E Index 0 1 8 8 E Index 0 1 8 8 E Index 0 8 8 E Index 0 7 8 8 E Index 0 1 8 8 E Index 0 1 8 8 E Index 0 1 8 8 8 E Index 0 1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	E Index 0 Index 0 -2.096277724233e+01 1 1.838253461492e+00 2 -1.504683700198e-01 3 -1.988914332352e-02 4 5.224868789594e-03 5 7.903708169506e-05 6 -1.088955465421e-04 7 1.035977420345e-05 8 -3.067244916001e-07 E Index 3 Index 0 2.643049515080e-02 1 1.130230128759e-02 2 -1.376123125770e-02 3 2.150624640205e-03 4 2.568647734327e-04 5 -7.591611145466e-05 6 3.384790316520e-06 7 2.181939775695e-07 8 -1.459318779306e-08 E Index 6 Index 0 3.643627994364e-04 1 4.333172602701e-05 2 -1.589309518095e-04 3 3.299776657730e-05 4 1.370261783588e-06 5 -7.078827921616e-07 6 1.974622062662e-08 7 4.174185414825e-09 8 -2.233522764425e-10	E Index 0 1 Index -2.096277724233e+01 2.908363629618e-01 1 1.838253461492e+00 -3.440722063330e-01 2 -1.504683700198e-01 1.391168674341e-01 3 -1.988914332352e-02 -1.827777489629e-02 4 5.224868789594e-03 -1.503338958950e-03 5 7.903708169506e-05 6.281421973346e-04 6 -1.088955465421e-04 -5.979073448137e-05 7 1.035977420345e-05 2.110596750983e-06 8 -3.067244916001e-07 -1.576601346659e-08 E Index 3 4 0 2.643049515080e-02 -5.367852119278e-03 1 1.130230128759e-02 6.583514261893e-03 2 -1.376123125770e-02 -8.644040120194e-04 3 2.150624640205e-03 -4.951984366580e-04 4 2.568647734327e-04 1.217005674709e-04 5 -7.591611145466e-05 -1.357219951533e-06 6 3.384790316520e-06 -1.821787693981e-06 7 2.181939775695e-07 1.762529764553e-07 8 -1.4593187730e-05 3.5310452

Error 1.32e-04 (A)

Reaction 3.3.7b $p + He(1s^{1}2p^{1}3P) \rightarrow H(2p) + He^{+}(1s)$

т	E Index	0	1	2
T	0	-1 990230529818-+01	2 522093890961-01	1 239244757420~_01
	1	1 5007419685140+00	-2 951590494714 -01	-9 $430103505170e-02$
	2	-1 124864006941e-01	1 201976126897e-01	7 788712358907e-03
	3	-1 795417514240 e -02	-1 603483373300 -02	7 712444722040e-03
	4	5.194941686189e-03	-1.383721748856e-03	-1.777603361970e-03
	5	-2.042833130770e-04	6.021103147616e-04	2.064037010474e-05
	6	-5.295363277471e-05	-6.246797487185e-05	2.744322340445e-05
	7	6.198420111343e-06	2.646123676389e-06	-2.758240361873e-06
	8	-1.960046743830e-07	-3.649994467826e-08	8.182448832297e-08
	E Index	3	4	5
Т	Index			
	0	1.742021976180e-02	-5.521806381035e-03	-4.054669219838e-04
	1	1.218926273762e-02	5.820172532684e-03	-1.295775597112e-03
	2	-1.191866922435e-02	-1.362329499044e-04	7.107218103516e-04
	3	1.549234171092e-03	-6.809505756955e-04	9.404549508879e-07
	4	3.665320868067e-04	1.165229196925e-04	-3.679801125361e-05
	5	-1.010994386303e-04	7.956025749673e-06	3.831718379904e-06
	6	7.717708517072e-06	-3.365265395665e-06	2.479212041233e-07
	7	-1.385756782677e-07	2.808607980980e-07	-5.087249153750e-08
	8	-3.853798064799e-09	-7.625575723278e-09	1.871480566627e-09
	E Index	6	7	8
Т	Index			
	0	1.843910580845e-04	-1.594987619980e-05	4.473710134751e-07
	1	7.954619252281e-05	7.572338624031e-08	-1.024950580103e-07
	2	-1.181843011735e-04	7.615476962452e-06	-1.763379176652e-07
	3	1.702222446329e-05	-1.814838357759e-06	5.703526185010e-08
	4	3.068724996897e-06	-5.005474959780e-08	-2.339128601417e-09
	5	-7.153412104701e-07	4.200855361511e-08	-7.453854004436e-10
	6	1./45//544//21e-08	-2.5069/85538//e-09	6./48855851556e-11
	./	3.524103509748e-09	-9.220739545880e-11	5.381508915908e-13
	8	-1.806607060530e-10	7.993276670629e-12	-1.381625354747e-13

Error 1.18e-04 (A)

Reaction 4.2.1 $H_2^+(v) + H(1s) \rightarrow H_2^+(2p\sigma_u) + H(1s) \rightarrow H^+ + H + H(1s), (v = 0...9)$

	E Inde>	x 0	1	2
Т	Index			
	0	-3.332967494942e+02	1.433058540744e+02	-2.947284166509e+01
	1	2.408101998902e+02	-1.362501559544e+02	2.801041076177e+01
	2	-8.996254988743e+01	5.285412858800e+01	-1.040643658208e+01
	3	2.113931204200e+01	-1.101441118819e+01	1.881216179150e+00
	4	-3.311192105349e+00	1.359065776894e+00	-1.560567106434e-01
	5	3.429437857518e-01	-1.029838658966e-01	1.219202707337e-03
	6	-2.241037042190e-02	4.809469933342e-03	7.390343876677e-04
	7	8.329672118744e-04	-1.335338145990e-04	-4.892703647590e-05
	8	-1.338140072499e-05	1.818158167900e-06	9.766334115013e-07
	E Index	3	4	5
Т	Index		-	C
-	0	4.969309555880e+00	-8.148122128593e-01	9.323059658335e-02
	1	-2.474427836778e+00	1.543035928035e-01	-3.251763597742e-02
	2	5.085589872685e-01	6.361992438909e-02	-2.591606323191e-03
	3	-5.077119677970e-02	-1.852297452693e-02	1.600942164119e-03
	4	-2.033265136901e-03	9.718962378108e-04	8.040301331558e-06
	5	1.601047711063e-03	6.336414922385e-05	-3.788387994691e-05
	6	-2.320531548991e-04	2.588021875832e-06	3.001128191660e-06
	7	1.473207837914e-05	-1.282873408948e-06	9.991541256156e-09
	8	-3.535181371877e-07	5.620757041266e-08	-5.034820677719e-09
	E Index	· 6	7	8
Т	Index			Ç
-	0	-5.854170815799e-03	1.656707831222e-04	-1.178234924866e-06
	1	5.085816021807e-03	-3.411499000615e-04	8.295196911491e-06
	2	-1.089685945002e-03	1.132751576739e-04	-3.266248682724e-06
	3	3.805592017920e-05	-8.847884634595e-06	2.721236736970e-07
	4	7.171822512541e-07	-7.530004219739e-07	3.651109616529e-08
	5	1.786513937009e-06	9.799503679830e-08	-6.480643645772e-09
	6	-2.271952317871e-07	1.029652468585e-09	2.338178917351e-10
	7	4.685569702988e-09	-2.668266102694e-10	4.756847923643e-12
	8	2.048241675655e-10	1.327375467275e-12	-2.566621089266e-13

Error 1.64e-02 (D)

Reaction 4.3.1 $H_2^+ + H_2 \rightarrow H_2 + H_2^+$

	Е	Index	0	1	2
Т	Ir	ndex			
	С)	-2.013143517466e+01	1.875197914224e-01	6.865479604288e-02
	1	-	2.643458086299e-01	-1.177247941077e-01	-6.758032286178e-03
	2	2	7.295645990688e-02	6.053418575149e-03	-1.068656224307e-02
	3	3	-1.022454343675e-02	7.350954380641e-03	6.814213275702e-04
	4	ł	-4.801198168030e-03	-1.111612877392e-03	8.373319888351e-04
	5	5	1.141613586234e-03	-1.371389288760e-04	-1.733761953296e-04
	6	5	-3.388853048483e-05	4.426148343648e-05	9.992317920676e-06
	7	7	-6.418225985394e-06	-3.652063962019e-06	1.351312819077e-07
	8	3	3.555592819527e-07	1.012701361110e-07	-1.993091213299e-08

	Ε	Index	3	4	5
Т	In	ndex			
	0)	6.246595384100e-03	-5.017891372102e-03	-3.907644829287e-04
	1	-	8.585003721992e-03	-3.261863407467e-04	-3.322528542186e-04
	2	2	-9.371235639464e-04	9.735708783528e-04	-9.933049259228e-05
	3	3	-8.156435157073e-04	2.903991825737e-05	3.223596225946e-05
	4	ł	1.392977576749e-04	-9.316910697276e-05	8.814981236658e-06
	5	5	1.602610140599e-05	1.464235749797e-05	-2.944711701791e-06
	6	5	-5.333970870280e-06	-2.999105886511e-07	2.275612517364e-07
	7	7	4.285396408056e-07	-7.184302986068e-08	-3.265552364687e-10
	8	3	-1.131561847140e-08	3.678869095972e-09	-3.639982258214e-10

	E Index	6	7	8
Т	Index			
	0	2.786239030986e-04	-2.942576591004e-05	9.352275354690e-07
	1	6.015471216449e-05	-4.039435357369e-06	9.730479674748e-08
	2	-6.786246802840e-06	1.438327767305e-06	-5.530742535057e-08
	3	-5.199055182831e-06	2.852443990256e-07	-4.825480212106e-09
	4	6.675626166047e-07	-1.325441927019e-07	5.012529587757e-09
	5	6.365231650682e-08	1.872976659964e-08	-1.014883015867e-09
	6	-1.173422836715e-08	-1.364602870139e-09	9.566404348683e-11
	7	1.585228996542e-10	6.431866226702e-11	-4.507074278992e-12
	8	2.056662091085e-11	-1.804254277469e-12	9.042973335167e-14

Error 2.58e-04 (A)

Reaction 4.3.2 $H_2^+ + H_2 \rightarrow H_2^+ + H_2^+ + e$

	E Index	0	1	2
Т	Index			
	0	-3.361709356815e+01	2.069962590009e+00	-9.010533538327e-01
	1	2.233317520475e+00	-2.726590828625e+00	1.643915864856e+00
	2	-7.287181470383e-01	1.661423051779e+00	-1.025272729232e+00
	3	4.891752418641e-01	-5.973230637071e-01	3.079590537141e-01
	4	-1.587248070170e-01	1.357406226261e-01	-4.995160576771e-02
	5	2.786295111792e-02	-1.954886177187e-02	4.482229513351e-03
	6	-2.710661372128e-03	1.714035434070e-03	-2.108888570649e-04
	7	1.370951998574e-04	-8.287462331299e-05	4.245802696647e-06
	8	-2.813882491422e-06	1.685813575983e-06	-1.243788238044e-08

	E Index	3	4	5
Т	Index			
	0	4.757423977733e-01	-1.173499542871e-01	1.574858380323e-02
	1	-5.767723646300e-01	1.225177255213e-01	-1.583053141876e-02
	2	3.012750644438e-01	-5.027357052159e-02	5.155737495648e-03
	3	-7.997349646419e-02	1.082475428239e-02	-7.031584157104e-04
	4	1.041402498039e-02	-1.202077056853e-03	4.396765142500e-05
	5	-4.121930331601e-04	2.634686881556e-05	-1.954016523336e-06
	6	-4.475697526351e-05	9.018648895762e-06	4.809988527180e-08
	7	5.227237760667e-06	-9.414336727644e-07	1.246197373405e-08
	8	-1.530261560799e-07	2.877226549741e-08	-8.668284019609e-10

E Index	6	7	8

T Index	
---------	--

(С	-1.166206787765e-03	4.383027530849e-05	-6.348470910454e-07
	1	1.209069864044e-03	-4.994507398820e-05	8.566470175705e-07
4	2	-3.336823259195e-04	1.297196226977e-05	-2.351485202412e-07
	3	1.145932327551e-05	8.141233815222e-07	-2.868358002582e-08
4	4	5.587705467605e-06	-6.600350475588e-07	2.019835260065e-08
!	5	-3.033359082874e-07	6.422702166049e-08	-2.757788924867e-09
	6	-6.552590854175e-08	1.043541445947e-09	1.156250997817e-10
	7	6.735598908536e-09	-3.714404901163e-10	1.840510894514e-12
1	8	-1.644678010990e-10	1.198441513399e-11	-1.614965817473e-13

Error 1.62e-04

Reaction 4.3.3 $H_2^+ + H_2 \to H_3^+ + H$

	Е	Index	0	1	2
Т	Ir	ndex			
		0	-2.094582001426e+01	-2.903671854391e-01	-1.484602213957e-01
		1	-3.908059227757e-01	5.612290953081e-02	7.311639731340e-02
		2	-1.406586222305e-01	3.034165415227e-02	-1.768280719269e-02
		3	-2.329090939587e-02	-3.655835575292e-03	-8.362574927676e-04
		4	4.478632359998e-03	-2.378407903866e-03	1.315628515286e-03
		5	1.028607802560e-03	4.205001381642e-04	-1.125270518181e-04
		6	-3.155447765047e-04	1.597095151191e-05	-2.355907533211e-05
		7	2.828211032630e-05	-6.662911839399e-06	3.842898711627e-06
		8	-8.646163087099e-07	3.261593568923e-07	-1.473565567371e-07

	Е	Index	3	4	5
Т	Ir	ndex			
		0	-7.788282133984e-02	-2.716693083523e-02	2.888660862916e-03
		1	5.829061271518e-02	7.552808963242e-03	-9.437914641041e-03
		2	-5.709689089835e-03	7.796493173156e-03	2.150949138545e-03
		3	-4.779241336163e-03	-1.812406227884e-03	7.881163019295e-04
		4	8.267929702836e-04	-4.230180219524e-04	-2.567042908792e-04
		5	1.289639680255e-04	1.253485982824e-04	8.799819972454e-06
		6	-3.554580445806e-05	-6.132110996274e-06	2.803562696685e-06
		7	2.286178560056e-06	-4.109569999864e-07	-2.529649414563e-07
		8	-3.749876424917e-08	2.926978739503e-08	5.144928119898e-09

	E Index	6	7	8
Т	Index			
	0	1.962991371294e-03	-2.537688817604e-04	3.167927580722e-06
	1	-9.682436127328e-04	6.252187020332e-04	-4.847265436175e-05
	2	-5.832002101739e-04	-9.096057686629e-05	1.497380403845e-05
	3	1.857587010565e-04	-5.555787804993e-05	2.979712834131e-06
	4	2.408905813848e-05	1.512607065092e-05	-1.688827943562e-06
	5	-1.011644205055e-05	-1.202093866229e-06	2.611308007476e-07
	6	8.619910002153e-07	1.741997695030e-08	-1.925603640419e-08

-2.042542214746e-08 1.432103401478e-09 7.102441362723e-10 8 -9.824207587793e-11 -3.870509135647e-11 -1.074647099491e-11

Error 1.90e-04 (A)

7

<sv> < 1.0e-11 for E > 50 eV for the entire T range considered here. The fit gives unphysical values for $\rm E$ > 50 eV in this range and should not be used there.

Reaction 4.4.1 $H_2^+ + He \to H_2^+ + He^+ + e$

	E Index	к 0	1	2
Т	Index			
	0	-4.309726141841e+01	6.475006995833e+00	-1.883249802835e-01
	1	1.281172385125e+01	-7.243378485529e+00	5.043373334075e-01
	2	-5.890999853236e+00	3.579212080875e+00	-4.030617651034e-01
	3	1.885032038426e+00	-1.033881853032e+00	1.536625297945e-01
	4	-3.859849765629e-01	1.929288495908e-01	-3.246664649774e-02
	5	5.040064801144e-02	-2.379010323165e-02	4.018297415320e-03
	6	-4.013079090991e-03	1.869730413126e-03	-2.907360932536e-04
	7	1.755528395798e-04	-8.421826651094e-05	1.143340331457e-05
	8	-3.214596451062e-06	1.641069021089e-06	-1.897006152308e-07
	E Indez	x 3	4	5
Т	E Index	x 3	4	5
Т	E Index Index 0	x 3 -6.707987015268e-01	4 2.639446649402e-01	5 -4.723560827520e-02
Т	E Index Index 0 1	x 3 -6.707987015268e-01 5.831511375074e-01	4 2.639446649402e-01 -2.063394187655e-01	5 -4.723560827520e-02 3.239770290912e-02
Т	E Index Index 0 1 2	x 3 -6.707987015268e-01 5.831511375074e-01 -1.771129376316e-01	4 2.639446649402e-01 -2.063394187655e-01 6.192783929198e-02	5 -4.723560827520e-02 3.239770290912e-02 -8.167418547801e-03
Т	E Index Index 0 1 2 3	x 3 -6.707987015268e-01 5.831511375074e-01 -1.771129376316e-01 1.742222425989e-02	4 2.639446649402e-01 -2.063394187655e-01 6.192783929198e-02 -8.070784446837e-03	5 -4.723560827520e-02 3.239770290912e-02 -8.167418547801e-03 9.406258713749e-04
Т	E Index Index 0 1 2 3 4	x 3 -6.707987015268e-01 5.831511375074e-01 -1.771129376316e-01 1.742222425989e-02 1.606419041683e-03	4 2.639446649402e-01 -2.063394187655e-01 6.192783929198e-02 -8.070784446837e-03 1.581892175211e-04	5 -4.723560827520e-02 3.239770290912e-02 -8.167418547801e-03 9.406258713749e-04 -3.508868395189e-05
Τ	E Index Index 0 1 2 3 4 5	x 3 -6.707987015268e-01 5.831511375074e-01 -1.771129376316e-01 1.742222425989e-02 1.606419041683e-03 -4.700427633330e-04	4 2.639446649402e-01 -2.063394187655e-01 6.192783929198e-02 -8.070784446837e-03 1.581892175211e-04 7.455005712397e-05	5 -4.723560827520e-02 3.239770290912e-02 -8.167418547801e-03 9.406258713749e-04 -3.508868395189e-05 -5.328157796217e-06
Τ	E Index 0 1 2 3 4 5 6	x 3 -6.707987015268e-01 5.831511375074e-01 -1.771129376316e-01 1.742222425989e-02 1.606419041683e-03 -4.700427633330e-04 3.265369551305e-05	4 2.639446649402e-01 -2.063394187655e-01 6.192783929198e-02 -8.070784446837e-03 1.581892175211e-04 7.455005712397e-05 -8.04921111537e-06	5 -4.723560827520e-02 3.239770290912e-02 -8.167418547801e-03 9.406258713749e-04 -3.508868395189e-05 -5.328157796217e-06 1.040817302013e-06
Τ	E Index 0 1 2 3 4 5 6 7	x 3 -6.707987015268e-01 5.831511375074e-01 -1.771129376316e-01 1.742222425989e-02 1.606419041683e-03 -4.700427633330e-04 3.265369551305e-05 -4.917056270388e-07	4 2.639446649402e-01 -2.063394187655e-01 6.192783929198e-02 -8.070784446837e-03 1.581892175211e-04 7.455005712397e-05 -8.04921111537e-06 2.951503045367e-07	5 -4.723560827520e-02 3.239770290912e-02 -8.167418547801e-03 9.406258713749e-04 -3.508868395189e-05 -5.328157796217e-06 1.040817302013e-06 -7.703466212797e-08

	E Inde:	x 6	7	8
Т	Index			
	0	4.533392612738e-03	-2.256809803213e-04	4.569435145102e-06
	1	-2.763842540794e-03	1.247895466478e-04	-2.344043545995e-06
	2	5.254335475410e-04	-1.537799120839e-05	1.331837837243e-07
	3	-3.856233447220e-05	-4.156140436365e-07	5.034959925043e-08
	4	3.791183556963e-06	-2.366231626960e-07	5.992973459021e-09
	5	-5.795596041141e-07	9.708186393302e-08	-3.488558225848e-09
	6	4.399518745143e-10	-7.685681194865e-09	3.468947174405e-10
	7	5.520600090967e-09	1.762439907887e-11	-9.396171756462e-12
	8	-2.654154152549e-10	1.103963564691e-11	-8.957193708196e-14

Error 8.31e-05 (A)

Reaction 5.2.1 $He^+ + H_2 \to He^+ + H^+ + e$

	Ε	Index	0	1	2
Т	Ir	ndex			
	C)	-3.713019551543e+01	4.513880809792e+00	4.465734536727e-01
	1	-	7.312992983242e+00	-4.230698925401e+00	3.363491931239e-01
	2	2	-1.404602569517e+00	1.574352939860e+00	-4.712948306828e-01
	3	3	8.465714459741e-02	-2.805696953923e-01	1.811965461049e-01
	4	ł	3.001601051201e-02	1.978938422099e-02	-3.599941390452e-02
	Ľ,	5	-9.026893259159e-03	9.283132403167e-04	4.476205535455e-03
	6	5	1.077346431372e-03	-2.592422590385e-04	-3.727829206896e-04
	7	7	-6.008751203326e-05	1.667265275798e-05	1.918105806793e-05
	8	3	1.276481720290e-06	-3.728072837540e-07	-4.453576012678e-07

	E Inde:	х	3	4	5
Т	Index				
	0	-2.4393	394070482e-01	4.439220456707e-03	7.345794340485e-03
	1	2.216	628364304e-01	-5.119093601500e-02	1.943198225007e-03
	2	-8.3742	208591879e-03	2.953035366897e-02	-6.222917082325e-03
	3	-3.5008	869288503e-02	-2.890323734594e-03	2.024599123408e-03
	4	1.278	467857143e-02	-1.232540236931e-03	-1.666275826514e-04
	5	-2.115	580254273e-03	3.444824743426e-04	-1.323145031233e-05
	6	1.909	506623157e-04	-3.388660283649e-05	2.315290984180e-06
	7	-9.201	901683360e-06	1.408112739218e-06	-6.069498647130e-08
	8	1.8652	212152535e-07	-1.872002189577e-08	-1.479591373403e-09

	E Index	6	7	8
Т	Index			
	0	-1.199883122444e-03	7.929882485919e-05	-1.987990204346e-06
	1	4.465865599601e-04	-5.004811416214e-05	1.512094392826e-06
	2	5.950227580914e-04	-2.787837758738e-05	5.190549973795e-07
	3	-2.984004616508e-04	1.902451334721e-05	-4.579503385483e-07
	4	4.481020441245e-05	-3.425924289459e-06	9.026683813135e-08
	5	-2.146946788021e-06	2.383193769092e-07	-6.906305571460e-09
	6	6.088037548996e-09	-7.326969450051e-09	2.239693051242e-10
	7	-4.353244789583e-09	4.457527394302e-10	-9.398012612903e-12
	8	3.962791753244e-10	-2.513406814921e-11	5.068098237861e-13

Error 8.03e-04 (B)

Reaction 5.2.2 $He^+ + H_2 \rightarrow He + H^+$

	Е	Index	с О	1	2
Т	In	ndex			
	С)	-3.617851314340e+0	1 8.245563741195e-01	1.415890461293e-01
	1	-	6.564887398262e-0	1 -3.337749950700e-01	-1.008073891739e-03
	2	2	9.531332794256e-0	2 -1.931877094955e-02	-2.177569825223e-02
	З	3	-1.790261298028e-0	2 2.362156898359e-02	2.481269859100e-03
	4	ł	7.873069533268e-0	3 2.305021543232e-05	1.062397303161e-03
	5	5	1.625577954098e-0	3 -1.341341170672e-03	-2.453799729668e-04
	6	5	-6.243925896235e-0	4 2.389932224800e-04	1.310149299938e-05
	7	1	5.723897329155e-0	5 -1.662664310436e-05	4.255519558344e-07
	8	3	-1.690364064992e-0	6 4.200646087287e-07	-3.882714153340e-08
	Ε	Index	к 3	4	5
Т	In	ndex			
	С)	-5.245109545409e-0	2 2.574263879790e-03	5.081113179086e-03

0	5.2151055151050 02	2.5/12050/5/500 05	5.0011151/500000 05
1	2.353864809890e-02	-8.611685556552e-04	-1.235953005371e-03
2	6.296784545643e-03	8.056466799286e-04	-4.422528088809e-04
3	-3.194145659097e-03	5.097167452777e-05	1.492942136767e-04
4	-2.226509858382e-04	-7.132717180757e-05	1.590997815012e-05
5	2.171893645658e-04	-1.504822330128e-06	-7.627038293158e-06
6	-3.205058255713e-05	3.153131057610e-06	5.374886487540e-07
7	1.892187997659e-06	-3.671662723350e-07	1.240410469109e-08
8	-3.981815711162e-08	1.257613148417e-08	-1.559147916406e-09

	E Index	6	7	8
Т	Index			
	0	-1.105146703191e-03	8.466844977067e-05	-2.264180150260e-06
	1	2.385360257195e-04	-1.708395525986e-05	4.375864733045e-07
	2	5.451070303994e-05	-2.660983244927e-06	4.244385976642e-08
	3	-2.350969502990e-05	1.328072187288e-06	-2.480965060631e-08
	4	-5.247303578452e-08	-1.381151133836e-07	6.646376709202e-09
	5	7.408427546841e-07	-8.825036538220e-10	-1.353868832823e-09
	6	-6.764350122786e-08	-8.407299219054e-10	1.978309478483e-10
	7	-5.125341539638e-10	2.770888875227e-10	-1.654942575020e-11
	8	1.599391141086e-10	-1.434870919386e-11	5.493012109985e-13

Error 6.06e-04 (B)

Reaction 5.2.3 $He^+ + H_2 \rightarrow He + H^+ + H$

	Е	Index	0			1		2
Т	Ir	ndex						
	С)	-3.56934545768	0e+01 5	.467675	953787e+00	-1.5254528	374272e+00
	1	-	6.60225786044	7e+00 -5	.860473	216356e+00	2.5677923	367148e+00
	2	2	-1.80203072761	8e+00 2	.776708	580765e+00	-1.4564351	L31755e+00
	3	3	5.98068285742	8e-01 -7	.669462	419521e-01	3.8777695	522782e-01
	4	Į	-1.51503376309	1e-01 1	.355123	344697e-01	-5.3280792	L68644e-02
	5	5	2.27392382903	4e-02 -1	.552431	054752e-02	3.6801225	521552e-03
	6	5	-1.95087608521	9e-03 1	.107193	551999e-03	8 -9.8619649	956657e-05
	7	7	8.87964177347	7e-05 -4	.427419	374545e-05	-8.6434441	L05803e-07
	8	3	-1.66255008128	3e-06 7	.525447	749722e-07	5.761680	732896e-08
	Ε	Index	3			4	I	5

Т	Index	
	0	7.645781657996e-01 -2.285145605072e-01 3.561471492616e-02
	1	-7.921692885504e-01 1.791134818786e-01 -2.709395158440e-02
	2	3.727025613660e-01 -5.373124189344e-02 4.827265290690e-03
	3	-9.180531536723e-02 9.188213414014e-03 8.930961476819e-05
	4	1.152256687649e-02 -1.182322907825e-03 -1.868126294929e-05
	5	-5.961207420320e-04 1.152911876232e-04 -1.321659022007e-05
	6	-7.612968632797e-06 -6.066035684733e-06 1.527361008857e-06
	7	1.816255353042e-06 4.628107113547e-08 -1.127225337804e-08
	8	-4.462116763253e-08 5.201413577832e-09 -2.441066078656e-09

	E Index	6	7	8
Т	Index			
	0	-3.040755662326e-03	1.357901348722e-04	-2.481641682718e-06
	1	2.495321136581e-03	-1.249516606345e-04	2.598469347617e-06
	2	-3.006881501965e-04	1.324810154101e-05	-3.023835422188e-07
	3	-9.701225760383e-05	7.510874054331e-06	-1.880555391455e-07
	4	1.703238064971e-05	-1.506318180829e-06	4.324855274434e-08
	5	1.049002267297e-07	7.987013573220e-08	-3.751370813720e-09
	6	-4.649027875076e-08	-8.266614643058e-09	4.561224301361e-10
	7	-9.674327862739e-09	1.432037876831e-09	-5.371138414560e-11
	8	6.786765390955e-10	-6.724210849363e-11	2.191944328954e-12

Error 3.75e-04 (B)

Reaction 5.3.1 $He^+ + He \rightarrow He + He^+$

	E Inde	x 0	1	2
Т	Index			
	0	-1.992795874184e+01	1.866121633782e-01	5.632774905403e-02
	1	2.342319832717e-01	-1.085479286023e-01	-5.796164637185e-03
	2	5.150488618567e-02	5.502643799842e-03	-1.070448355458e-02
	3	-4.457831664145e-03	6.751016280248e-03	1.348104812381e-03
	4	-1.543592188979e-03	-9.368501420643e-04	6.678034019800e-04
	5	3.127935819690e-04	-1.564547327374e-04	-1.638591652038e-04
	6	-1.478649318411e-05	4.454044051200e-05	1.091423551219e-05
	7	-4.796924334410e-07	-3.559977035839e-06	1.429006251276e-08
	8	3.623344342191e-08	9.673665606073e-08	-1.626046817162e-08
	E Inde	x 3	4	5
Т	Index			
	0	-1.523524839309e-03	-2.153750537851e-03	3.308881419986e-04
	1	7.964340512260e-03	-2.259674261582e-04	-3.444207072047e-04
	2	-2.811049856343e-04	8.802921038196e-04	-1.198248793959e-04

0	-1.009960297392e-	-03 -2.397230757181e-05	5.675989835329e-05
4	1.271484361215e-	-04 -7.802314691135e-05	5.096915155186e-06
Ľ,	2.743635453507e-	-05 1.364264736037e-05	-3.146182664420e-06
6	-6.757942983709e-	-06 -3.524476702306e-07	2.858958575343e-07
7	4.890540879010e-	-07 -6.293604516614e-08	-2.702231414235e-09
8	-1.188613673713e-	-08 3.383446775161e-09	-3.684509743141e-10

Index	6	7	8
Index			
0	-1.293912998397e-05	-4.067520041201e-07	2.451185017055e-08
1	6.164032099379e-05	-4.156975252360e-06	1.009896955766e-07
2	-7.766013174537e-07	9.213287306897e-07	-4.014244306169e-08
3	-8.581799112319e-06	4.932159877322e-07	-9.746139175914e-09
4	1.122093772403e-06	-1.600545758983e-07	5.662679103625e-09
5	9.721160837100e-08	1.677569938034e-08	-9.661966135256e-10
6	-1.739320039203e-08	-1.179041806243e-09	9.352212060009e-11
7	5.123073994873e-11	9.702183602739e-11	-5.755013542991e-12
8	3.976640871840e-11	-4.096335085504e-12	1.667878217006e-13
	E Index Index 0 1 2 3 4 5 6 7 8	E Index 6 Index 0 -1.293912998397e-05 1 6.164032099379e-05 2 -7.766013174537e-07 3 -8.581799112319e-06 4 1.122093772403e-06 5 9.721160837100e-08 6 -1.739320039203e-08 7 5.123073994873e-11 8 3.976640871840e-11	S Index67Index-1.293912998397e-05-4.067520041201e-0716.164032099379e-05-4.156975252360e-062-7.766013174537e-079.213287306897e-073-8.581799112319e-064.932159877322e-0741.122093772403e-06-1.600545758983e-0759.721160837100e-081.677569938034e-086-1.739320039203e-08-1.179041806243e-0975.123073994873e-119.702183602739e-1183.976640871840e-11-4.096335085504e-12

Error 2.36e-05 (A)

Reaction 5.3.2 $He^+ + He \rightarrow He^+ + He^+ + e$

0 1	-6.749257304678e+01		
2 3 4 5 6 7 8	4.329467261355e+01 -2.016026525056e+01 5.878320131150e+00 -1.137799010228e+00 1.450552810169e-01 -1.155793628115e-02 5.167930765975e-04 -9.839244996808e-06	3.080627051012e+01 -4.031602483159e+01 2.231984392732e+01 -6.882901423348e+00 1.302313958330e+00 -1.555507288279e-01 1.147650951410e-02 -4.781324647004e-04 8.600494351291e-06	-1.145813141153e+01 1.707905481142e+01 -1.017738982563e+01 3.201825080229e+00 -5.884044412402e-01 6.537275456166e-02 -4.329368714852e-03 1.576230053609e-04 -2.434988045802e-06
E Indez	x 3	4	5
Index 0 1 2 3 4 5 6 7 8	3.388015690088e+00 -4.478579850964e+00 2.509824455963e+00 -7.552669555755e-01 1.311191744239e-01 -1.323051154888e-02 7.369414642692e-04 -1.928032791874e-05 1.339321812560e-07	-7.536552992052e-01 8.066021028840e-01 -3.656980663805e-01 9.255840851869e-02 -1.402143172466e-02 1.229786796421e-03 -5.269558335123e-05 3.603057782872e-07 3.028039050683e-08	1.094516886818e-01 -9.979059856890e-02 3.191586604783e-02 -4.641142473768e-03 3.427843990627e-04 -2.028911469770e-05 1.766303852396e-06 -1.010518517671e-07 1.838236320858e-09
E Indez	x 6	7	8
Index 0 1 2 3 4 5 6 7	-9.463880450938e-03 7.955955791002e-03 -1.586656930186e-03 -1.294999476918e-04 6.774806939936e-05 -4.743973580278e-06 -3.419422565839e-07 5.170772455352e-08	4.398620168160e-04 -3.617178669983e-04 3.830211108983e-05 2.388282840962e-05 -6.211048957431e-06 3.064327230164e-07 4.593362543917e-08 -5.600340502767e-09	-8.450244877636e-06 7.048366766523e-06 -2.609071874454e-07 -7.277202967312e-07 1.613570924718e-07 -4.853224348333e-09 -1.743858127735e-09 1.859063429189e-10
E	2 3 4 5 6 7 8 E Index 0 1 2 3 4 5 6 7 8 E Index 0 1 2 3 4 5 6 7 8 E Index 0 1 2 3 4 5 6 7 8 E Index 7 8 E Index 7 8 E Index 7 8 E Index 7 8 E Index 7 8 E Index 7 8 E Index 7 8 5 8 5 6 7 8 8 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	<pre>2 -2.016026325056e+01 3 5.878320131150e+00 4 -1.137799010228e+00 5 1.450552810169e-01 6 -1.155793628115e-02 7 5.167930765975e-04 8 -9.839244996808e-06 2 Index 3 Index 3 Index 0 3.388015690088e+00 1 -4.478579850964e+00 2 2.509824455963e+00 3 -7.552669555755e-01 4 1.311191744239e-01 5 -1.323051154888e-02 6 7.369414642692e-04 7 -1.928032791874e-05 8 1.339321812560e-07 2 Index 6 Index 6 Index 0 0 -9.463880450938e-03 1 7.955955791002e-03 2 -1.586656930186e-03 3 -1.294999476918e-04 4 6.774806939936e-05 5 -4.743973580278e-06 6 -3.419422565839e-07 7 5.170772455352e-08 8 -1.602801532247e-09</pre>	2 -2.016026323036e+01 2.231984392732e+01 3 5.878320131150e+00 -6.882901423348e+00 4 -1.137799010228e+00 1.302313958330e+00 5 1.450552810169e-01 -1.555507288279e-01 6 -1.155793628115e-02 1.147650951410e-02 7 5.167930765975e-04 -4.781324647004e-04 8 -9.839244996808e-06 8.600494351291e-06 E Index 3 4 Index 3 4 0 3.388015690088e+00 -7.536552992052e-01 1 -4.478579850964e+00 8.066021028840e-01 2 2.509824455963e+00 -3.656980663805e-01 3 -7.552669555755e-01 9.255840851869e-02 4 1.311191744239e-01 -1.402143172466e-02 5 -1.323051154888e-02 1.229786796421e-03 6 7.369414642692e-04 -5.269558335123e-05 7 -1.928032791874e-05 3.603057782872e-07 8 1.339321812560e-07 3.028039050683e-04 2 -1.586656930186e-03 3.830211108983e-05 3 -1.294999476918e-04 2.388282840962

Error 1.35e-03 (C)

Reaction 6.1.1 $He^{++} + H(1s) \rightarrow He^{++} + H(2p)$

т	E Index	с О	1	2
T	0	-3.128291192763e+01	-3.861939808947e-01	-2.544645152942e+00
	1	-6.826991894490e-01	-8.408347453138e-01	2.629943082927e-01
	2	-1.441334316248e+00	1.422092876991e-01	2.002181867767e-01
	3	3.169981863524e-01	1.363426173469e-01	-3.622433372588e-02
	4	1.440567980361e-01	-5.023547473715e-02	-2.472425668256e-03
	5	-5.309434904043e-02	6.625411757408e-03	1.347168808606e-03
	6	6.713712881021e-03	-3.657613813881e-04	-1.801819884810e-04
	7	-3.836344721605e-04	4.833466842639e-06	1.173107765224e-05
	8	8.388799849538e-06	1.548286845930e-07	-3.101524382401e-07
	E Index	3	4	5
Т	Index			
	0	4.669451368190e-01	2.917550661840e-01	-1.053780859061e-01
	1	9.881934763967e-02	-5.354197329704e-02	9.617629874772e-03
	2	-2.373167102469e-02	-1.943544641502e-02	6.728262805201e-03
	3	-2.125279295018e-02	8.196892532228e-03	-1.126751334420e-03
	4	5.090021728980e-03	-1.140089320112e-03	6.794493424970e-05
	5	-8.841712146365e-05	1.628036645708e-05	-8.948432185115e-06
	6	-6.309125180824e-05	1.390057420949e-05	5.519228022295e-07
	7	5.917408932712e-06	-1.490516597840e-06	5.820616731175e-08
	8	-1.596933841423e-07	4.769562622033e-08	-4.561904992676e-09
	E Index	х б	7	8
Τ	Index			
	0	1.364529328613e-02	-8.022046090155e-04	1.802849723372e-05
	1	-8.611117374892e-04	3.908664672328e-05	-7.212446215523e-07
	2	-9.041409091166e-04	5.666864142514e-05	-1.373057978697e-06
	3	7.645412457648e-05	-2.667684868645e-06	4.124172622729e-08
	4	7.368858127714e-06	-1.106305479253e-06	3.817455135007e-08
	5	5.678884593513e-07	4.642154492296e-08	-3.598042180209e-09
	6	-1.911269421448e-07	6.044313534001e-09	1.456318833459e-10
	7	3.639779928913e-09	6.910541467229e-11	-2.002452819345e-11
	8	3.328417422480e-10	-2.908652620490e-11	1.180447220494e-12
	Error	9.47e-04 (B)		

A more extensive analytic formula for all $n \ge 2$ is given in the text.

Reaction 6.1.3 $He^{++} + H(1s) \rightarrow He^{++} + H^+ + e$

	Е	Index	0	1	2
Т	Ir	ndex			
		0	-3.213525339461e+01	4.048855987534e-01	-1.459217274977e+00
		1	8.616833916021e-01	-6.950245301215e-01	-5.645946950077e-01
		2	-1.516319957636e+00	-3.812512076134e-01	1.893299195739e-01
		3	1.006874043269e-01	2.037666264960e-01	2.977523227454e-02
		4	1.821009470616e-01	-1.888567920879e-03	-1.257914490683e-02
		5	-5.204900520164e-02	-1.011975370629e-02	1.459518537491e-03
		6	6.024060604719e-03	1.811281409653e-03	-1.071747691134e-04
		7	-3.279965879464e-04	-1.255314364414e-04	6.740808642651e-06
		8	6.955537637694e-06	3.158339223563e-06	-2.201431842876e-07

	Е	Index	3	4	5
Т	Ir	ndex			
		0	1.832446087964e-01	1.820448886287e-01	-5.894612068336e-02
		1	1.997861354267e-01	2.296013792400e-02	-1.598128574471e-02
		2	2.287526434742e-02	-2.230595108739e-02	5.497523259018e-03
		3	-3.596233294198e-02	4.420728440672e-03	3.823858799635e-04
		4	3.554216072576e-03	-5.852198392288e-04	-1.045811648109e-05
		5	8.588876790382e-04	2.884916307632e-06	-3.389979591571e-05
		6	-1.914502607375e-04	1.361700778479e-05	3.642721103256e-06
		7	1.338794701145e-05	-1.635502392200e-06	-3.684855814169e-08
		8	-3.236734300402e-07	5.702927636593e-08	-4.938860692978e-09

E Index	6	7	8
T Index			

()	7.308767351095e-03	-4.181939938771e-04	9.207950478799e-06
-	1	2.380832450865e-03	-1.504225027785e-04	3.547002873170e-06
4	2	-6.993554812224e-04	4.516232482147e-05	-1.154715783315e-06
	3	-1.099529103897e-04	7.543892418062e-06	-1.708252421708e-07
2	1	1.672568631267e-05	-1.836430836869e-06	6.080236805727e-08
ļ	5	2.793668955085e-06	3.838407710178e-08	-6.689521714938e-09
(5	-3.804617509593e-07	-2.464497412799e-09	8.281161472560e-10
-	7	5.704885906583e-10	1.543017124482e-09	-8.445486242553e-11
8	3	7.699246994125e-10	-8.580250216262e-11	3.189523199623e-12

Error 1.32e-03

Reaction 6.1.6 $He^{++} + H \to He^{+}(n = 2) + H^{+}$

	Е	Index	0	1	2
Т	Ir	ndex			
	C)	-2.684068918587e+01	1.077159851869e+00	1.611434095003e-01
	1	L	5.117541237230e-01	-3.292088112707e-01	4.193651221864e-02
	2	2	1.598500363509e-01	-3.812957840397e-02	-2.103399170458e-02
	Э	3	1.228188346785e-02	1.765620781249e-02	-4.556545487291e-03
	4	1	-4.554467900719e-03	9.457132816015e-04	1.645608151050e-03
	5	5	-2.778583050511e-04	-7.305848198936e-04	4.612991944463e-05
	6	5	1.538644839183e-04	8.140980182115e-05	-4.793549304493e-05
	7	7	-1.499611384855e-05	-3.278119258256e-06	4.727047352918e-06
	8	3	4.697369923421e-07	3.332532647980e-08	-1.433575769997e-07

	E Inde	х	3			4			5	
Т	Index									
	0	-1.94	167195105	5e-02	-3.3645	876039	920e-03	1.13757	262528	38e-03
	1	1.36	593151864	7e-02	-3.0605	042838	324e-03	-2.18396	5206254	15e-04
	2	5.58	556565300	3e-03	7.3258	8791134	115e-04	-3.24787	716893	30e-04
	3	-1.96	380616907	6e-03	5.3445	610401	L29e-04	1.95574	762299	98e-05
	4	-2.07	047854564	0e-04	-1.3841	427333	303e-04	3.28166	5434131	L6e-05
	5	9.37	608034188	0e-05	-4.1049	398305	509e-06	-4.82333	8547471	L9e-06
	6	-6.58	066518872	4e-06	3.6950	025310	501e-06	-2.17032	2594432	22e-07
	7	-8.82	845143863	8e-08	-3.4953	83517	796e-07	6.58969	546908	37e-08
	8	1.45	254245775	1e-08	1.0219	408443	352e-08	-2.74622	2166202	26e-09

	E Index	6	7	8
Т	Index			
	0	-1.030059621084e-04	1.662587903156e-06	9.868838320179e-08
	1	1.038012581189e-04	-9.397899971402e-06	2.755750977475e-07
	2	3.172192984549e-05	-9.448677346635e-07	-3.817181255094e-09
	3	-1.514747820761e-05	1.426520725713e-06	-4.189371841853e-08
	4	-1.906464376446e-06	-4.474317916254e-08	4.942196257155e-09
	5	7.911914689813e-07	-4.216279314031e-08	6.314000693621e-10
	6	-3.184743031465e-08	3.644605422841e-09	-9.468908601909e-11
	7	-4.423644969643e-09	9.850791365204e-11	1.012931336353e-13
	8	2.722901729050e-10	-1.217986052601e-11	2.087076950595e-13

Error 3.45e-04 (B)

Reaction 6.2.1 $He^{++} + H_2 \rightarrow He^{++} + H_2^+(v) + e$

	E Index	0	1	2
Т	Index			
	0	-3.740458528875e+01	4.819839382288e+00	-1.368722314416e+00
	1	3.697794623317e+00	-4.260575420078e+00	2.274586443382e+00
	2	-1.952883135699e-01	1.519624000877e+00	-1.186623344815e+00
	3	4.006262224030e-02	-2.914307027385e-01	2.640808145769e-01
	4	-4.786632316714e-02	3.732741697654e-02	-2.125640108014e-02
	5	1.435334952996e-02	-4.126872601223e-03	-1.316704448334e-03
	6	-1.857371914077e-03	3.915654055393e-04	3.686192037472e-04
	7	1.126777142893e-04	-2.328456641412e-05	-2.488855854519e-05
	8	-2.637987783791e-06	5.796033701332e-07	5.770496917262e-07

	Е	Index	3	4	5
Т	In	dex			
	0		5.415964848279e-01	-1.558092591583e-01	2.673033645460e-02
	1		-7.477112914979e-01	1.630231019898e-01	-2.322732220110e-02
	2		3.996652574630e-01	-7.388600606929e-02	8.214102149542e-03
	3		-9.703573952883e-02	1.783463570481e-02	-1.705433511392e-03
	4		8.833454031367e-03	-2.009464031032e-03	2.249935053360e-04
	5		5.248086049074e-04	-8.919967388651e-06	-1.246262891020e-05
	6		-1.737291298205e-04	2.577341999196e-05	-9.482137841850e-07
	7		1.300558673415e-05	-2.344702491575e-06	1.629428614542e-07
	8		-3.314156416545e-07	6.741539632029e-08	-5.955349313768e-09

	E Index	6	7	8
Т	Index			
	0	-2.578884501918e-03	1.294681717674e-04	-2.635783475569e-06
	1	2.040440748140e-03	-9.909710584927e-05	2.022083060567e-06
	2	-5.623626152450e-04	2.244646297525e-05	-4.065894891850e-07
	3	7.664104809530e-05	-8.191992528308e-07	-2.753294486929e-08
	4	-9.861657413217e-06	-9.995859937832e-08	1.424254131071e-08
	5	1.395191641953e-06	-3.685926734937e-08	-5.729382287379e-10
	6	-9.379121901004e-08	7.777171419994e-09	-1.213248180319e-10
	7	-2.275396327537e-10	-4.097026715756e-10	1.086349587424e-11
	8	1.692734428835e-10	4.442825612279e-12	-2.196742224277e-13

Error 1.95e-04 (A)

Reaction 6.3.1 $He^{++} + He \rightarrow He + He^{++}$

m	E Index	s 0	1	2
Ţ	1 0 1 2 3 4 5 6 7 8	-2.087067966395e+01 2.094653607929e-01 4.515569927112e-02 -2.156818929353e-03 -1.034417290024e-03 6.711410038952e-05 1.634228365980e-05 -2.018162243333e-06 5.700761275390e-08	1.770710917672e-01 -1.035630036136e-01 7.753021609986e-03 5.844613611271e-03 -9.988691720266e-04 -9.039725081170e-05 3.360212044374e-05 -2.811596499823e-06 7.785762968811e-08	5.286663352724e-02 -1.587484833047e-03 -1.172352137681e-02 1.584520908151e-03 6.430330809960e-04 -1.686928979307e-04 1.244878523706e-05 -1.289872750639e-07 -1.168383579394e-08
	E Index	к 3	4	5
Т	Index			
	0	-4.108533645663e-03	-1.682325393036e-03	6.311322867200e-04
	1	6.980778548791e-03	-4.701965411677e-04	-2.345754812673e-04
	2	7.248911771056e-05	8.809460604163e-04	-1.426429587991e-04
	3	-1.074296069145e-03	-1.654629083347e-05	5.761893046505e-05
	4	1.311854988163e-04	-7.851442095351e-05	5.422244523002e-06
	5	2.782958218572e-05	1.353549005040e-05	-3.148005712744e-06
	6	-6.878943315863e-06	-3.391029687238e-07	2.812067777116e-07
	7	5.026743092262e-07	-6.291522264312e-08	-2.775917122056e-09
	8	-1.243441979051e-08	3.348779288410e-09	-3.430378749002e-10
	E Index	к б	7	8
Т	Index			
	0	-1.034343472222e-04	8.284373934314e-06	-2.585107151364e-07
	1	4.656851963845e-05	-3.237799181386e-06	7.973037168095e-08
	2	3.719681370598e-06	5.772787018529e-07	-3.063528285547e-08
	3	-8.884055251880e-06	5.210682232168e-07	-1.062878498510e-08
	4	1.051027365170e-06	-1.540544793432e-07	5.483293214541e-09
	5	1.019425830844e-07	1.607622514801e-08	-9.352273349479e-10
	6	-1.692119208451e-08	-1.156062045162e-09	9.051243592979e-11

8.794108865463e-11 8.904209111206e-11 -5.320379447337e-12

3.429943174964e-11 -3.505937279725e-12 1.434656878037e-13

Error 1.09e-04 (A)

7

8

Reaction 6.3.2 $He^{++} + He \rightarrow He^{++} + He^{+} + e$

	E Index	0	1	2
Т	Index			
	0	-3.357512088469e+01	2.481002270207e-01	-2.844754225626e-01
	1	2.132558452382e-01	-2.898782569957e-02	-8.859152207456e-02
	2	-7.629285367047e-01	-1.246031034296e-02	4.339076002927e-02
	3	5.899289086465e-02	3.450829479956e-03	1.171516743657e-02
	4	9.617944830667e-02	8.115543683934e-04	-8.351029524143e-03
	5	-2.754369102041e-02	-5.252894338980e-04	1.845370884466e-03
	6	3.193662877844e-03	9.140552891498e-05	-2.084303350442e-04
	7	-1.743435861477e-04	-6.732493173329e-06	1.209578227317e-05
	8	3.702563187159e-06	1.817766164959e-07	-2.844186742354e-07

	E Index	3	4	5
Т	Index			
	0	-5.040226778288e-02	3.354002274183e-02	-1.866620628241e-03
	1	1.729393805563e-02	4.254520286926e-03	-1.601440080094e-03
	2	-3.393002840651e-03	1.091192986540e-03	-4.407674396150e-04
	3	-1.741588094600e-03	-1.275836278696e-03	3.728086620067e-04
	4	1.074669748613e-03	1.010631022949e-04	-4.311397774907e-05
	5	-2.123309981019e-04	2.130784765152e-05	-3.112264677191e-06
	6	1.979855424701e-05	-3.124685666404e-06	7.997641396203e-07
	7	-8.939845877979e-07	9.995018170226e-08	-4.204213158284e-08
	8	1.584012353330e-08	7.506298931854e-10	5.227401148548e-10

E Index	6	7	

Т	Index
---	-------

0	-4.168527021261e-04	5.230828266632e-05	-1.675138710355e-06
1	1.850932900121e-04	-9.312584153371e-06	1.726529087665e-07
2	5.983672818341e-05	-3.329152402921e-06	6.553879080128e-08
3	-3.777955894029e-05	1.581526045462e-06	-2.076968820260e-08
4	5.700910741004e-06	-3.693703626455e-07	9.504432686918e-09
5	-1.055200072961e-07	4.925799326252e-08	-2.289228094874e-09
6	-4.220795463450e-08	-3.412218769390e-09	2.463341794395e-10
7	3.190991837665e-09	1.145196210456e-10	-1.210616102483e-11
8	-5.846914988817e-11	-1.673892090785e-12	2.258466544149e-13

8

Error 8.04e-05

Reaction 7.2.1 $p + H^- \rightarrow p + H + e$

	E Inde:	x 0	1	2
Т	Index			
	0	-5.820131282154e+01	-4.418295075826e-01	1.273789037973e+00
	1	7.921427713311e+00	4.771816683717e-01	-3.122978202046e-02
	2	2.729868361636e+00	-1.003942758610e+00	-1.263868632256e-01
	3	-1.702566612373e+00	5.785696129573e-01	-4.732954195668e-03
	4	3.973780588321e-01	-1.478528997647e-01	1.158502169314e-02
	5	-4.870825299595e-02	1.969477666027e-02	-2.123634522072e-03
	6	3.236718833237e-03	-1.407103305708e-03	1.493109405401e-04
	7	-1.084755026674e-04	4.998674210260e-05	-3.376656915211e-06
	8	1.396208954849e-06	-6.620153170835e-07	-2.627392847530e-08
	E Indez	x 3	4	5
Т	E Inde: Index	x 3	4	5
Т	E Indez Index 0	x 3 1.527207940425e+00	4 -7.536424630223e-01	5 1.439466388013e-01
Т	E Inde: Index 0 1	x 3 1.527207940425e+00 -7.888775801865e-01	4 -7.536424630223e-01 3.288138016027e-01	5 1.439466388013e-01 -5.784931758231e-02
Т	E Inde: Index 0 1 2	x 3 1.527207940425e+00 -7.888775801865e-01 1.435920376766e-01	4 -7.536424630223e-01 3.288138016027e-01 -3.733709098912e-02	5 1.439466388013e-01 -5.784931758231e-02 5.120254991289e-03
Т	E Indez Index 0 1 2 3	x 3 1.527207940425e+00 -7.888775801865e-01 1.435920376766e-01 -1.244717631219e-02	4 -7.536424630223e-01 3.288138016027e-01 -3.733709098912e-02 -8.125405039157e-04	5 1.439466388013e-01 -5.784931758231e-02 5.120254991289e-03 5.304019788343e-04
Т	E Inde: Index 0 1 2 3 4	x 3 1.527207940425e+00 -7.888775801865e-01 1.435920376766e-01 -1.244717631219e-02 1.217335613258e-03	4 -7.536424630223e-01 3.288138016027e-01 -3.733709098912e-02 -8.125405039157e-04 1.744838040179e-05	5 1.439466388013e-01 -5.784931758231e-02 5.120254991289e-03 5.304019788343e-04 -6.302890522722e-05
Τ	E Inde: Index 0 1 2 3 4 5	x 3 1.527207940425e+00 -7.888775801865e-01 1.435920376766e-01 -1.244717631219e-02 1.217335613258e-03 -1.652073669891e-04	4 -7.536424630223e-01 3.288138016027e-01 -3.733709098912e-02 -8.125405039157e-04 1.744838040179e-05 7.132512952865e-05	5 1.439466388013e-01 -5.784931758231e-02 5.120254991289e-03 5.304019788343e-04 -6.302890522722e-05 -7.166374800128e-06
Τ	E Index 0 1 2 3 4 5 6	x 3 1.527207940425e+00 -7.888775801865e-01 1.435920376766e-01 -1.244717631219e-02 1.217335613258e-03 -1.652073669891e-04 9.210684173413e-06	4 -7.536424630223e-01 3.288138016027e-01 -3.733709098912e-02 -8.125405039157e-04 1.744838040179e-05 7.132512952865e-05 -6.258784083367e-06	5 1.439466388013e-01 -5.784931758231e-02 5.120254991289e-03 5.304019788343e-04 -6.302890522722e-05 -7.166374800128e-06 9.976414798586e-07
Т	E Inde: Index 0 1 2 3 4 5 6 7	x 3 1.527207940425e+00 -7.888775801865e-01 1.435920376766e-01 -1.244717631219e-02 1.217335613258e-03 -1.652073669891e-04 9.210684173413e-06 1.518653946410e-07	4 -7.536424630223e-01 3.288138016027e-01 -3.733709098912e-02 -8.125405039157e-04 1.744838040179e-05 7.132512952865e-05 -6.258784083367e-06 -5.285593274691e-09	5 1.439466388013e-01 -5.784931758231e-02 5.120254991289e-03 5.304019788343e-04 -6.302890522722e-05 -7.166374800128e-06 9.976414798586e-07 -1.618019219414e-08

	E Index	6	7	8
Т	Index			
	0	-1.390229840299e-02	6.747109860492e-04	-1.308869018310e-05
	1	5.240004832333e-03	-2.411772118083e-04	4.478567757510e-06
	2	-4.068737543562e-04	1.774870848760e-05	-3.291488867455e-07
	3	-5.311181815494e-05	1.788414701774e-06	-8.455601658664e-09
	4	8.167685239892e-06	-4.004411200193e-07	6.703922705847e-09
	5	-2.654278454630e-08	4.575052609148e-08	-1.985275499541e-09
	6	-3.804512852913e-08	-3.484409058380e-09	2.245422239581e-10
	7	1.247165282825e-09	1.121719496535e-10	-9.065883281241e-12
	8	1.821912346903e-11	-3.038200599319e-13	7.144344819156e-14

Error 5.01e-04 (B)

Reaction 7.2.2 $p+H^- \rightarrow H(n=2)+H(1s)$

I	E Index	0	1	2
ΤÏ	Index			
	0	-2.009840732855e+01	2.945311019841e-01	6.747596918807e-02
	1	5.206452202262e-01	-1.774365164859e-01	-1.065938217336e-02
	2	1.523257622741e-01	9.772247255291e-03	-1.671909485907e-02
	3	2.453955732425e-02	1.021908459294e-02	2.438519414977e-03
	4	-6.480928896115e-03	-1.242525298942e-03	1.015757625636e-03
	5	-1.975172853627e-03	-2.672450143654e-04	-2.328706013052e-04
	6	5.435998708470e-04	6.631970392344e-05	9.462039923651e-06
	7	-4.472026617583e-05	-4.970789806324e-06	8.120583670855e-07
	8	1.251083879369e-06	1.282034444684e-07	-5.184939728768e-08

	Е	Index	3	4	5
Т	Ir	ndex			
	С)	5.281180712235e-02	1.853075990865e-03	-5.214983547816e-03
	1	-	8.534567745269e-03	-2.015642900438e-04	-1.875060648516e-04
	2	2	-2.499942893968e-03	1.198848516168e-03	5.837864405510e-05
	3	3	-2.108370566003e-03	-8.621652320901e-05	1.290879800077e-04
	4	ł	2.995184004525e-04	-1.140789673124e-04	-3.180399692215e-06
	5	5	7.043847826279e-05	2.122349981883e-05	-5.763532119771e-06
	6	5	-1.718398943085e-05	-4.277037568906e-07	6.826848999792e-07
	7	7	1.233759362312e-06	-1.215395288499e-07	-1.469076279075e-08
	8	3	-2.971450478059e-08	6.283704324845e-09	-5.567626168906e-10

	E Index	6	7	8
Т	Index			
	0	9.106146930077e-04	-6.179659482888e-05	1.518671797497e-06
	1	2.166774591691e-05	-7.154959806623e-07	3.341578770132e-10
	2	-4.532942700372e-05	4.566989804119e-06	-1.425164722921e-07
	3	-1.884472793311e-05	1.063634324920e-06	-2.098030063540e-08
	4	3.691852062324e-06	-3.822422186488e-07	1.207671501711e-08
	5	2.097347343793e-07	2.744685327018e-08	-1.629591430987e-09
	6	-4.961730812520e-08	-1.574040495320e-09	1.647011369051e-10
	7	3.375069155440e-10	2.528285218582e-10	-1.407865804427e-11
	8	1.064408722092e-10	-1.331534803275e-11	5.209521592110e-13

Error 9.91e-04 (B)

Reaction 7.2.3 $p+H^- \rightarrow H(n=3)+H(1s)$

	E Indez	к О	1	2
Т	Index			
	0	-1.708169812006e+01	-1.310597645979e-01	-2.016054239030e-02
	1	-1.098675942533e-01	8.969312492472e-02	-1.001934703492e-02
	2	-2.424453483379e-02	-7.668315551548e-03	1.118173178217e-02
	3	8.542779858410e-03	-5.728980402850e-03	-1.374395114022e-03
	4	7.546932951352e-04	1.282616012621e-03	-5.242666757105e-04
	5	-4.460619874465e-04	-6.407045514906e-06	1.627184981581e-04
	6	5.689498536274e-05	-2.131881433227e-05	-1.769191253093e-05
	7	-3.155262052836e-06	2.122673795556e-06	8.581432797541e-07
	8	6.668405706096e-08	-6.364778304060e-08	-1.541736278733e-08
	E Indez	к 3	4	5
Т	Index			
	0	8.964903471778e-03	6.442616660302e-04	-4.660365148908e-04
	1	-5.890144705724e-03	1.384217913807e-03	1.779238684618e-05
	2	-1.257344700418e-03	-6.729866629037e-04	2.054778233488e-04
	3	1.029305874211e-03	-5.123704753586e-05	-4.411992401625e-05
	4	-1.091263631596e-04	5.650953446193e-05	-4.197841783909e-06
	5	-2.000801209847e-05	-7.808493438675e-06	1.772154859168e-06
	6	5.122279431664e-06	1.659419345620e-07	-1.384458129532e-07
	7	-3.925060139873e-07	3.050794133610e-08	1.377776084081e-09
	8	1.041255114173e-08	-1.512980436877e-09	1.332411705243e-10
	E Indez	к 6	7	8
Т	Index			
	0		2 700602700642 06	0 (0010000000 00

С	6.370816676015e-05	-3.782683702643e-06	8.609188888839e-08
1	-3.013382774299e-05	2.954660809114e-06	-8.931384100116e-08
2	-2.315115305809e-05	1.190025285551e-06	-2.326585429997e-08
(*)	9.037770228405e-06	-6.768442086761e-07	1.812120616012e-08
4	-5.411932096608e-07	8.415741816738e-08	-2.978331246224e-09
5	-9.596489328029e-08	-2.035464169710e-09	2.147130564694e-10
6	1.037345875045e-08	1.399052051710e-11	-1.531475772097e-11
7	-1.232733782717e-11	-2.816042650663e-11	1.402510343416e-12
8	-1.732775970924e-11	1.621564942355e-12	-5.400526340307e-14

Error 1.23e-05 (A)

Reaction 7.3.1 $H^- + H(1s) \rightarrow H(1s) + H^-(1s)$

E	1 Index	0	1	2
ΤI	Index			
	0	-2.446549884269e+01	2.282921659881e-01	6.932259053475e-02
	1	2.634131317967e-01	-1.250144616925e-01	-6.564104931024e-03
	2	5.739515657001e-02	1.401243736042e-02	-1.370769740386e-02
	3	-3.083480423288e-03	5.762622642079e-03	1.641868158109e-03
	4	-2.155324535935e-03	-1.741051127171e-03	8.917026172582e-04
	5	7.685873715096e-05	1.906770746936e-04	-1.497853929999e-04
	6	8.087530514888e-05	-1.359658266200e-05	-9.370283912465e-06
	7	-1.201616211995e-05	9.404454583406e-07	2.798537842077e-06
	8	4.838440948297e-07	-3.591774662931e-08	-1.280487901835e-07

	Е	Index	3	4	5
Т	In	dex			
	0		-1.460337641019e-02	-1.148284334186e-03	1.888298450789e-03
	1		1.034238130425e-02	-1.160529409915e-04	-6.554701103747e-04
	2		-1.631710543681e-03	1.504466063314e-03	-1.492959802239e-04
	3		-1.158102233053e-03	-1.500016779601e-04	1.333539925260e-04
	4		3.323370760750e-04	-1.435851350450e-04	8.827631680416e-08
	5		-3.852538752998e-05	3.638688148903e-05	-5.971816791477e-06
	6		5.240710288295e-06	-2.673369866914e-06	5.756054051438e-07
	7		-6.106253322733e-07	3.599735795836e-09	9.761611536846e-09
	8		2.617375100182e-08	4.349591668816e-09	-1.894102703596e-09

	E Index	6	7	8
Т	Index			
	0	-5.048413591687e-04	5.442003557424e-05	-2.119938012240e-06
	1	1.312358086468e-04	-1.025406435973e-05	2.930874591340e-07
	2	-1.535700264182e-05	3.028402252514e-06	-1.223371130502e-07
	3	-2.335914959456e-05	1.720243174222e-06	-4.737046201928e-08
	4	4.695207254022e-06	-5.743305788389e-07	2.072162215301e-08
	5	1.312086122421e-07	3.381300299186e-08	-1.846446053198e-09
	6	-4.928206213204e-08	1.359692653300e-09	7.095887472625e-12
	7	-9.446355577370e-10	1.324857300193e-11	1.212840280599e-12
	8	2.250181340057e-10	-1.085735441577e-11	1.640670966131e-13

Error 2.16e-03 (C)

Reaction 7.3.2
a $H^- + H \rightarrow H^-_2(\Sigma_g) \rightarrow H + H + e$

	Е	Index	0	1	2
Т	Ir	ndex			
	С)	-2.060381621916e+01	5.309100960058e-01	1.392829074695e-01
	1	-	7.588123099350e-01	-3.576940273729e-01	-1.987510302857e-02
	2	2	6.731769657604e-02	4.484233894719e-02	-2.733782810986e-02
	(*)	3	-2.921355392156e-02	1.482283181415e-02	5.906948645836e-03
	4	ł	-8.146699299025e-04	-3.643845685721e-03	9.773942210504e-04
	5	5	1.155948959822e-03	-2.087103325148e-05	-3.907609724337e-04
	6	5	-1.581407518895e-04	6.895932849865e-05	4.008820591876e-05
	7	7	8.836837813921e-06	-6.605304596227e-06	-1.507273917480e-06
	8	3	-1.822275438433e-07	1.936335851996e-07	1.172227886690e-08
	C)	1.0222/31304336 0/	1.9303333319908 07	1.1/222/0000000

	E Index	κ 3	4	5
Т	Index			
	0	-2.102641710803e-02	-6.781349963009e-03	2.016215809719e-03
	1	2.668242766164e-02	-3.261461848245e-04	-1.366958646410e-03
	2	-1.554648294430e-03	2.123755455543e-03	-2.773916489042e-04
	3	-2.598822894319e-03	-1.875799348857e-04	1.758361880894e-04
	4	4.600843838170e-04	-1.448878357902e-04	-1.060700155439e-06
	5	2.315526538554e-05	3.237966723085e-05	-5.841079752828e-06
	6	-1.092581698940e-05	-2.012024682441e-06	6.606514619140e-07
	7	8.757818250078e-07	-1.331205306048e-08	-1.679915115556e-08
	8	-2.240888951133e-08	3.415505655444e-09	-3.436228509229e-10

	E Index	6	7	8
Т	Index			
	0	-2.021191702941e-04	8.841314274130e-06	-1.379541011203e-07
	1	2.452687401131e-04	-1.698794209121e-05	4.269734144618e-07
	2	9.627819846149e-07	1.668014583065e-06	-7.372505366253e-08
	3	-2.636740402205e-05	1.616979349290e-06	-3.621463869178e-08
	4	3.717760767389e-06	-3.932211297595e-07	1.249308982925e-08
	5	1.129239553545e-07	3.349164498023e-08	-1.726363311444e-09
	6	-3.323645378786e-08	-2.310130864690e-09	1.678089205296e-10
	7	7.727272538571e-11	2.259701266295e-10	-1.191390422294e-11
	8	8.001148282982e-11	-9.879026759786e-12	3.844676704391e-13

Error 7.20e-05 (A

Reaction 7.3.2b $H^- + H \rightarrow H_2^-(\Sigma_g) \rightarrow H_2 + e$

	Е	Index	0	1	2
Т	In	dex			
	0		-2.010720050130e+01	9.270256057913e-02	4.064624494679e-02
	1		1.269636887793e-01	-4.008719210304e-02	-1.212200218053e-02
	2		3.912641450862e-02	-4.922699464361e-03	-2.358617965735e-03
	3		2.444823703314e-03	3.862828408110e-03	6.245030315710e-05
	4		-1.375395363511e-03	9.136383818175e-05	3.424787531975e-04
	5		7.705307936032e-06	-2.452524870403e-04	-4.618148515540e-05
	6		2.808922151936e-05	4.232400689568e-05	-2.685853929702e-06
	7		-2.890778521667e-06	-2.902579165065e-06	7.058422006406e-07
	8		8.872270416775e-08	7.252699730279e-08	-2.925937563766e-08
	Е	Index	3	4	5

			-
Т	Index		
	0	4.009352818185e-03 -1.538314339134e-03	6.474680671630e-06
	1	4.382832251342e-03 5.808750658711e-04	4 -3.518386094650e-04
	2	-9.020736846330e-04 3.801661661405e-04	l.342533092878e-05
	3	-3.877053574415e-04 -3.173212632597e-05	5 2.768229470146e-05
	4	3.970724372076e-05 -4.033536057563e-05	2.837106654166e-06
	5	2.083693473819e-05 7.210478132956e-06	5 -2.015504293252e-06
	6	-4.253675760089e-06 -4.555400231697e-08	1.858779383984e-07
	7	2.828822067547e-07 -5.462822668312e-08	-6.645063119276e-10
	8	-6.263750441883e-09 2.637137895225e-09	-3.152813312676e-10

	E Index	6	7	8
Т	Index			
	0	2.652929923557e-05	-2.559456729654e-06	7.459443536792e-08
	1	4.949650860383e-05	-2.957539611478e-06	6.557962278545e-08
	2	-1.447007766306e-05	1.557308263715e-06	-5.100926653114e-08
	3	-3.314905595837e-06	1.239094303050e-07	-3.472887336273e-10
	4	6.818837404440e-07	-9.934681425484e-08	3.579429434382e-09
	5	6.344059934988e-08	1.253846512396e-08	-7.317167395513e-10
	6	-1.179832220191e-08	-9.932172729863e-10	7.663678877930e-11
	7	-5.638246638305e-11	8.392102689376e-11	-4.907260382466e-12
	8	3.426087000167e-11	-3.525203792329e-12	1.448748836700e-13

Error 2.06e-05 (A)
4 H.8 : Fits for $\langle \sigma \cdot v \cdot E_p \rangle (T_b) [cm^3/s \cdot eV]$

 E_p is a relevant energy related to the process, e.g. it may be the kinetic energy of the impacting electron or ion in eV, or the radiation energy loss per reaction, etc. In the present section (newly added to this database by DR) the energy weighted rate is a function of temperature [eV] of the impacting electron or ion.

The general expression for this type of incident particle energy weighted rate, vs. temperature of the first particle A involved in the collision process and in which the second particle B is at rest, reads:

 $\langle \sigma v_A E_A \rangle (T_A) = k T_A \cdot \langle \sigma v_A \rangle \cdot \left(3/2 + \frac{d \ln \langle \sigma v_A \rangle}{d \ln (k T_A)} \right)$

Reaction 2.1.8 $e + H^+ \rightarrow H(1s) + hv$

general formula for rate: see original text. Here: fit to rate for recomb into 1s ground state. Then: take only the first 2 coeffs and derive the corresponding electron energy rate. Do not use: This is a poor approximation at higher Te, as it only captures the low Te behaviour (b1 approx -0.5, h1 approx 0.5).

h0	-2.96197012800e+01	h1	0.470220050000e+00	h2	0.000000000000e+00
h3	00000000000000e+00	h4	0.000000000000e+00	h5	0.000000000000e+00
h6	0.00000000000e+00	h7	0.000000000000e+00	h8	0.000000000000e+00

Reaction 2.2.14 $e + H_2^+(v) \to H(1s) + H^*(n)(v = 0 - 9, n \ge 2)$

The energy weighting in this rate coefficient is done with the kinetic energy of impacting electron. The fit should result in

 $\langle \sigma v_e E_{elec} \rangle (T_e) \approx 0.89 \ kT_e \ \langle \sigma v_e \rangle,$

i.e. low energy electrons are preferred in this reaction, rather than the average electrons with $3/2 kT_e$

h0	-1.682072926000e+01	h1	3.964351525300e-01	h2	-2.501012514300e-11
h3	1.066503238000e-11	h4	2.724261514100e-12	h5	-2.120710160500e-12
h6	4.248055273200e-13	h7	-3.653955751100e-14	h8	1.187177640600e-15

References

- [1] R.K. Janev, B. Langer et al., Springer Series on Atoms+Plasmas, Vol 4, 1987
- [2] D. Reiter, P. Bogen, U. Samm, Journal Nuclear Materials, Vol 196-198, 1992, 1059-1064