The data file H2VIBR: Additional Molecular Data for EIRENE: vibrationally resolved $H_2(X)$ ground state

D.Reiter FZJ, Forschungszentrum Jülich GmbH 52425 Jülich Germany

Version: October 25, 2017

Available via E-mail from d.reiter@fz-juelich.de, or as part of the EIRENE code git-repository hosted at FZ Jülich

Contents

Ι	Intro	duction	VI
	I.1	Record:	VI
	I.2	To be done:	ΊI
	I.3	End of preface	ΊI
1	H.1 :	Fits for $\sigma(E)$	1
	1.1	Reaction 2.012 $p + H_2(v = 0) \to H(1s) + H_2^+$	1
	1.2	Reaction 2.112 $p + H_2(v = 1) \rightarrow H(1s) + H_2^+$	1
	1.3	Reaction 2.212 $p + H_2(v = 2) \rightarrow H(1s) + H_2^+$	1
	1.4	Reaction 2.3l2 $p + H_2(v = 3) \rightarrow H(1s) + H_2^+$	1
	1.5	Reaction 2.412 $p + H_2(v = 4) \rightarrow H(1s) + H_2^+$	2
	1.6	Reaction 2.512 $p + H_2(v = 5) \rightarrow H(1s) + H_2^+$	2
	1.7	Reaction 2.612 $p + H_2(v = 6) \rightarrow H(1s) + H_2^+$	2
	1.8	Reaction 2.712 $p + H_2(v = 7) \rightarrow H(1s) + H_2^+$	2
	1.9	Reaction 2.8l2 $p + H_2(v = 8) \rightarrow H(1s) + H_2^+$	3
	1.10	Reaction 2.912 $p + H_2(v = 9) \rightarrow H(1s) + H_2^+$	3
	1.11	Reaction 2.10l2 $p + H_2(v = 10) \rightarrow H(1s) + H_2^+ \dots \dots \dots \dots \dots$	3
	1.12	Reaction 2.1112 $p + H_2(v = 11) \rightarrow H(1s) + H_2^+ \dots \dots \dots \dots \dots$	3
	1.13	Reaction 2.12l2 $p + H_2(v = 12) \rightarrow H(1s) + H_2^+ \dots \dots \dots \dots \dots \dots$	3
	1.14	Reaction 2.13l2 $p + H_2(v = 13) \rightarrow H(1s) + H_2^+ \dots \dots \dots \dots \dots \dots$	4
	1.15	Reaction 2.14l2 $p + H_2(v = 14) \rightarrow H(1s) + H_2^+ \dots \dots \dots \dots \dots$	4
2	H.2 :	Fits for $< \sigma v > (T)$	5
	2.1	Reaction 2.0v1 $e + H_2(v = 0) \rightarrow e + H_2(v = 1)$	5
	2.2	Reaction 2.1v2 $e + H_2(v = 1) \to e + H_2(v = 2)$	6
	2.3	Reaction 2.1v0 $e + H_2(v = 1) \rightarrow e + H_2(v = 0)$	6
	2.4	Reaction 2.2v3 $e + H_2(v = 2) \rightarrow e + H_2(v = 3)$	7
	2.5	Reaction 2.2v1 $e + H_2(v = 2) \to e + H_2(v = 1)$	7
	2.6	Reaction 2.3v4 $e + H_2(v = 3) \rightarrow e + H_2(v = 4)$	8
	2.7	Reaction 2.3v2 $e + H_2(v=3) \rightarrow e + H_2(v=2)$	8
	2.8	Reaction 2.4v5 $e + H_2(v = 4) \rightarrow e + H_2(v = 5)$	9
	2.9	Reaction 2.4v3 $e + H_2(v = 4) \rightarrow e + H_2(v = 3)$	9
	2.10	Reaction 2.5v6 $e + H_2(v = 5) \rightarrow e + H_2(v = 6)$	10
	2.11	Reaction 2.5v4 $e + H_2(v = 5) \rightarrow e + H_2(v = 4)$	10
	2.12	Reaction 2.6v7 $e + H_2(v = 6) \rightarrow e + H_2(v = 7)$	11
	2.13	Reaction 2.6v5 $e + H_2(v = 6) \rightarrow e + H_2(v = 5)$	11
	2.14	Reaction 2.7v8 $e + H_2(v = 7) \rightarrow e + H_2(v = 8)$	12
	2.15	Reaction 2.7v6 $e + H_2(v = 7) \rightarrow e + H_2(v = 6)$	12
	2.16	Reaction 2.8v9 $e + H_2(v = 8) \rightarrow e + H_2(v = 9)$	13
	2.17	Reaction 2.8v/ $e + H_2(v = 8) \rightarrow e + H_2(v = 7)$	13
	2.18	Reaction 2.9v10 $e + H_2(v = 9) \rightarrow e + H_2(v = 10)$	14
	2.19	Reaction 2.9v8 $e + H_2(v = 9) \rightarrow e + H_2(v = 8)$	14
	2.20	Reaction 2.10v11 $e + H_2(v = 10) \rightarrow e + H_2(v = 11)$	15
	2.21	Reaction 2.10v9 $e + H_2(v = 10) \rightarrow e + H_2(v = 9)$	15
	2.22	Reaction 2.11v12 $e + H_2(v = 11) \rightarrow e + H_2(v = 12) \dots \dots \dots \dots \dots$	10

2.23 16 2.24 17 2.25 17 2.26 18 2.27 18 2.28 19 2.29 losses from *v*-Population 20 Reaction 2.011 $e + H_2(v = 0) \rightarrow e + H_2(b_{triplet}) \rightarrow e + H + H$ (Greenl.) . . 2.30 21 2.31 Reaction 2.011T $e + H_2(v = 0) \rightarrow e + H_2(b_{triplet}) \rightarrow e + H + H$ (Ten.) . . . 21 21 2.32 Reaction 2.012th $p + H_2(v = 0) \rightarrow H + H_2^+$ (ion conversion) 21 2.33 Reaction 2.012 $p + H_2(v = 0) \rightarrow H + H_2^+$ (ion conversion) 2.34 22 2.35 22 2.36 Reaction 2.111 $e + H_2(v = 1) \rightarrow e + H_2(b_{triplet}) \rightarrow e + H + H$ (Greenl.) . . 23 2.37 Reaction 2.111T $e + H_2(v = 1) \rightarrow e + H_2(b_{triplet}) \rightarrow e + H + H$ (Ten.) . . . 23 Reaction 2.112th $p + H_2(v = 1) \rightarrow H + H_2^+$ (ion conversion) 2.38 23 2.39 Reaction 2.112 $p + H_2(v = 1) \rightarrow H + H_2^+$ (ion conversion) 23 2.40 23 2.41 24 Reaction 2.211 $e + H_2(v = 2) \rightarrow e + H_2(b_{triplet}) \rightarrow e + H + H$ (Greenl.) . . 2.42 25 2.43 Reaction 2.211T $e + H_2(v = 2) \rightarrow e + H_2(b_{triplet}) \rightarrow e + H + H$ (Ten.) . . . 25 2.44 Reaction 2.212th $p + H_2(v = 2) \rightarrow H + H_2^+$ (ion conversion) 25 Reaction 2.212 $p + H_2(v = 2) \rightarrow H + H_2^+$ (ion conversion) 2.45 25 2.46 26 2.47 26 Reaction 2.311 $e + H_2(v = 3) \rightarrow e + H_2(b_{triplet}) \rightarrow e + H + H$ (Greenl.) . . 2.48 27 2.49 Reaction 2.311T $e + H_2(v = 3) \rightarrow e + H_2(b_{triplet}) \rightarrow e + H + H$ (Ten.) . . . 27 2.50 Reaction 2.312th $p + H_2(v = 3) \rightarrow H + H_2^+$ (ion conversion) 27 2.51 Reaction 2.312 $p + H_2(v = 3) \rightarrow H + H_2^+$ (ion conversion) 27 2.52 28 Reaction 2.314 $e + H_2(v = 3) \rightarrow e + H_2^+ + e$ 2.53 28 2.54 Reaction 2.411 $e + H_2(v = 4) \rightarrow e + H_2(b_{triplet}) \rightarrow e + H + H$ (Greenl.) . . 29 2.55 29 Reaction 2.411T $e + H_2(v = 4) \rightarrow e + H_2(b_{triplet}) \rightarrow e + H + H$ (Ten.) . . . 2.56 Reaction 2.412th $p + H_2(v = 4) \rightarrow H + H_2^+$ (ion conversion) 29 Reaction 2.412 $p + H_2(v = 4) \rightarrow H + H_2^+$ (ion conversion) 2.57 29 2.58 30 2.59 30 Reaction 2.511 $e + H_2(v = 5) \rightarrow e + H_2(b_{triplet}) \rightarrow e + H + H$ (Greenl.) . . 2.60 31 2.61 Reaction 2.511T $e + H_2(v = 5) \rightarrow e + H_2(b_{triplet}) \rightarrow e + H + H$ (Ten.) . . . 31 2.62 Reaction 2.512th $p + H_2(v = 5) \rightarrow H + H_2^+$ (ion conversion) 31 Reaction 2.512 $p + H_2(v = 5) \rightarrow H + H_2^+$ (ion conversion) 31 2.63 2.64 32 2.65 32 Reaction 2.611 $e + H_2(v = 6) \rightarrow e + H_2(b_{triplet}) \rightarrow e + H + H$ (Greenl.) . . 2.66 33 Reaction 2.611T $e + H_2(v = 6) \rightarrow e + H_2(b_{triplet}) \rightarrow e + H + H$ (Ten.) . . . 33 2.67 Reaction 2.612th $p + H_2(v = 6) \rightarrow H + H_2^+$ (ion conversion) 2.68 33 Reaction 2.612 $p + H_2(v = 6) \rightarrow H + H_2^+$ (ion conversion) 2.69 33

2.70 34 2.71 Reaction 2.614 $e + H_2(v = 6) \rightarrow e + H_2^+ + e$ 34 2.72 Reaction 2.711 $e + H_2(v = 7) \rightarrow e + H_2(b_{triplet}) \rightarrow e + H + H$ (Greenl.) . . 35 2.73 Reaction 2.711T $e + H_2(v = 7) \rightarrow e + H_2(b_{triplet}) \rightarrow e + H + H$ (Ten.) . . . 35 Reaction 2.712th $p + H_2(v = 7) \rightarrow H + H_2^+$ (ion conversion) 2.74 35 2.75 Reaction 2.712 $p + H_2(v = 7) \rightarrow H + H_2^+$ (ion conversion) 35 2.76 36 2.77 36 2.78 Reaction 2.811 $e + H_2(v = 8) \rightarrow e + H_2(b_{triplet}) \rightarrow e + H + H$ (Greenl.) . . 37 2.79 37 Reaction 2.811T $e + H_2(v = 8) \rightarrow e + H_2(b_{triplet}) \rightarrow e + H + H$ (Ten.) . . . Reaction 2.812th $p + H_2(v = 8) \rightarrow H + H_2^+$ (ion conversion) 37 2.80 Reaction 2.812 $p + H_2(v = 8) \rightarrow H + H_2^+$ (ion conversion) 37 2.81 2.82 38 2.83 38 Reaction 2.911 $e + H_2(v = 9) \rightarrow e + H_2(b_{triplet}) \rightarrow e + H + H$ (Greenl.) . . 39 2.84 2.85 Reaction 2.911T $e + H_2(v = 9) \rightarrow e + H_2(b_{triplet}) \rightarrow e + H + H$ (Ten.) . . . 39 2.86 Reaction 2.912th $p + H_2(v = 9) \rightarrow H + H_2^+$ (ion conversion) 39 Reaction 2.912 $p + H_2(v = 9) \rightarrow H + H_2^+$ (ion conversion) 39 2.87 2.88 40 Reaction 2.914 $e + H_2(v = 9) \rightarrow e + H_2^+ + e$ 2.89 40 2.90 Reaction 2.1011 $e + H_2(v = 10) \rightarrow e + e + H_2(b_{triplet}) \rightarrow e + H + H$ (Greenl.) 41 2.91 Reaction 2.1011T $e + H_2(v = 10) \rightarrow e + e + H_2(b_{triplet}) \rightarrow e + H + H$ (Ten.) 41 2.92 Reaction 2.1012th $p + H_2(v = 10) \rightarrow H + H_2^+$ (ion conversion) 41 Reaction 2.1012 $p + H_2(v = 10) \rightarrow H + H_2^+$ (ion conversion) 2.93 41 2.94 42 2.95 42 Reaction 2.1111 $e + H_2(v = 11) \rightarrow e + H_2(b_{triplet}) \rightarrow e + H + H$ (Greenl.). 2.96 43 2.97 Reaction 2.1111T $e + H_2(v = 11) \rightarrow e + H_2(b_{triplet}) \rightarrow e + H + H$ (Ten.) . . 43 2.98 Reaction 2.1112th $p + H_2(v = 11) \rightarrow H + H_2^+$ (ion conversion) 43 2.99 Reaction 2.1112 $p + H_2(v = 11) \rightarrow H + H_2^+$ (ion conversion) 43 44 44 2.102 Reaction 2.12ll $e + H_2(v = 12) \rightarrow e + H_2(b_{triplet}) \rightarrow e + H + H$ (Greenl.). 45 2.103 Reaction 2.1211T $e + H_2(v = 12) \rightarrow e + H_2(b_{triplet}) \rightarrow e + H + H$ (Ten.) . . 45 2.104 Reaction 2.1212th $p + H_2(v = 12) \rightarrow H + H_2^+$ (ion conversion) 45 2.105 Reaction 2.1212 $p + H_2(v = 12) \rightarrow H + H_2^+$ (ion conversion) 45 46 46 2.108 Reaction 2.1311 $e + H_2(v = 13) \rightarrow e + H_2(b_{triplet}) \rightarrow e + H + H$ (Greenl.) 47 2.109 Reaction 2.1311T $e + H_2(v = 13) \rightarrow e + H_2(b_{triplet}) \rightarrow e + H + H$ (Ten.) . . 47 2.110 Reaction 2.1312th $p + H_2(v = 13) \rightarrow H + H_2^+$ (ion conversion) 47 2.111 Reaction 2.1312 $p + H_2(v = 13) \rightarrow H + H_2^+$ (ion conversion) 47 2.112 Reaction 2.1313 $e + H_2(v = 13) \rightarrow H_2^- \rightarrow H + H^- \dots \dots \dots \dots \dots$ 48 48 2.114 Reaction 2.14ll $e + H_2(v = 14) \rightarrow e + H_2(b_{triplet}) \rightarrow e + H + H$ (Greenl.) 49 2.115 Reaction 2.14l1T $e + H_2(v = 14) \rightarrow e + H_2(b_{triplet}) \rightarrow e + H + H$ (Ten.) . . 49 2.116 Reaction 2.14l2th $p + H_2(v = 14) \rightarrow H + H_2^+$ (ion conversion) 49

5	Appe	ndix	70
	4.8	Reaction 2.1.8c $H^+ + e \rightarrow H(n = 2), Ly_{\alpha}$ -removed	68
	4.7	Reaction 2.1.8b $H^+ + e \rightarrow H(n = 1), Ly_{\alpha}$ -removed	66
	4.6	Reaction 2.1.8a $H^+ + e \rightarrow H, Ly_{\alpha}$ -removed	64
	4.5	Reaction 2.1.5e $H(n = 2) + e \rightarrow H^+ + 2e, Ly_{\alpha}$ -removed	62
	4.4	Reaction 2.1.5d $H(n = 2) + e \rightarrow H(n = 1) + e, Ly_{\alpha}$ -removed	60
	4.3	Reaction 2.1.5c $H(n = 1) + e \rightarrow H(n = 2) + e, Ly_{\alpha}$ -removed	58
	4.2	Reaction 2.1.5b $H(n = 1) + e \rightarrow H^+ + 2e, Ly_{\alpha}$ -removed	56
	4.1	Reaction 2.1.5a $H + e \rightarrow H^+ + 2e, Ly_{\alpha}$ -removed	54
4	H.4 :	Fits for $<\sigma v>(n_e,T)$	54
	3.1	Reaction 2.012 $p + H_2(v = 0) \rightarrow H(1s) + H_2^+$	53
3	H.3 :	Fits for $< \sigma v > (E_b, T)$	53
	2.120	Reaction 2.1.8rs $p + e \rightarrow H(n = 1) + h\nu$, direct rad.rec	51
	2.119	Reaction 2.14l4 $e + H_2(v = 14) \rightarrow e + H_2^+ + e$	50
	2.118	Reaction 2.14l3 $e + H_2(v = 14) \rightarrow H_2^- \rightarrow H + H^-$	49
	2.117	Reaction 2.14l2 $p + H_2(v = 14) \rightarrow H + H_2^+$ (ion conversion)	49

I Introduction

This file contains some rate coefficients (cross sections) supplementing the AMJUEL data. This area is the playground for ongoing FZ Juelich internal (EIRENE group) work, in parallel and supplementing the HYDKIN online database.

None of the material here has been prepared for external (3rd party) use. No documentation is planned either. All reaction rates in this file are for internal applications and testing of EIRENE code development needs at FZ Juelich.

Detlev Reiter

I.1 Record:

- update nov.00
 Nov.00: Tennyson Data for H2(v) → b_{triplet} additional to
 Janev-Greenland Data
 Note: Tennyson Raten from v=8 on are identical (with this for v=7)
- update 12.1/02 Hyd. atom: rates for radiation transfer, Form. I rates H.4, 2.1.5b, 2.1.5c, 2.1.5d, 2.1.5e rates H.4, 2.1.8b, 2.1.8c
- update 18.2/02 Hyd. atom: rates for radiation transfer, Form. II rates H.4, 2.1.5a rates H.4, 2.1.8a
- update 12.6/02 Hyd. atom: rates for radiation transfer, direct rad rec (phot.source) rates H.2, 2.1.8rs
- update 6.7/02 Hyd. atom: rates for radiation transfer, spont. decay 2→1 rates H.4, 2.1.5f
- update 5.5/03 rates H.4, 2.1.5f removed, now in data file spectral,tex
- update 15.8/03 rates H.2, 2.1.8rs new, also plot: hydrrs.eps
- update 12.15/15 rates H.2, 2.0l4 ... 2.14l4 added, H₂(v) →H₂⁺, vibr. resolved, Janev-Reiter, JUEL report
 [3].

• update 11.10/16

cross sections H.1 and rate coeff. H.2, added, for 2.012 ... 2.1412, $p + H_2(v) \rightarrow H + H_2^+$, vibr. resolved, These rate coefficients are for stationary H2. The previous ones, now called H.2 2.012th,...2.1412th, have been for equilibrated temperatures T-H2 = T-p. The new cross section data for v=0 coincide with the HYDHEL data vor v=0, and scaling to v=1,...14 is obtained by re-scaling by a single factor g(v), i.e. adding increments to fit coeff. a0, or b0) according to the Greenland scaling in H2FUJI-Colrad routine.

I.2 To be done:

- update 12.15/15 for 14 loss rates: still missing: fit error max err and rel.err: fits to be redone ??
- update 11.10/16 loss rate 12 loss rates are proton impact rates. So far we have H.1 and H.2 Still to be done: H.3, (Beam-Maxw. rates), scaled to higher v)
- move H.2 e+ .. rates and H.2 p+ .. rates to separate subsections, for HYDKIN
- move 2.1.8rs to AMJUEL database
- add: e + H2(v) to $H + H^*$ (diss. ex), for v gt 0.

Below the following line do not use H.1,....H.12 in text, because EIRENE searches for theses section headers from here on.

I.3 End of preface

This next string is searched by EIRENE in subroutine SLREAC to initialize search for a particular set of fit coefficients. From here on, a character string **'H.n'**, n an integer, must only appear in the section title, but not in the text. Likewise: identifiers p0, a0, b0,,h0, k0 are used in SLREAC and must not appear in the text elsewhere, from here on.

1 H.1 : Fits for $\sigma(E)$

E is the "laboratory energy" (in eV) for the charged collision partner. In case of proton impact collisions this happens to coincide with the collision energy in eV/amu units.

1.1 Reaction 2.012 $p + H_2(v = 0) \rightarrow H(1s) + H_2^+$

same cross section as 3.2.3 in HYDHEL.

```
a0 -8.965985910240e+01 a1 1.057326823133e+02 a2 -8.364373343149e+01
a3 3.396650519934e+01 a4 -7.931279499027e+00 a5 1.110667708159e+00
a6 -9.213077375317e-02 a7 4.170940125995e-03 a8 -7.937779949951e-05
Emin 2.72e+00 s(Emin) 1.00e-19 smax 1.03e-15 Error 2.46e-01
Eth 1.83
Mcross 1.0E+00
```

1.2 Reaction 2.112 $p + H_2(v = 1) \rightarrow H(1s) + H_2^+$

scaled from cross section from 3.2.3 in HYDHEL, Greenland resonance scaling

```
a0 -8.900261350000e+01 a1 1.057326823133e+02 a2 -8.364373343149e+01
a3 3.396650519934e+01 a4 -7.931279499027e+00 a5 1.110667708159e+00
a6 -9.213077375317e-02 a7 4.170940125995e-03 a8 -7.937779949951e-05
Emin 2.72e+00 s(Emin) 1.00e-19 smax 1.03e-15 Error 2.46e-01
Eth 1.83
Mcross 1.0E+00
```

1.3 Reaction 2.212 $p + H_2(v = 2) \rightarrow H(1s) + H_2^+$

scaled from cross section from 3.2.3 in HYDHEL, Greenland resonance scaling

```
a0 -8.809585123000e+01 a1 1.057326823133e+02 a2 -8.364373343149e+01
a3 3.396650519934e+01 a4 -7.931279499027e+00 a5 1.110667708159e+00
a6 -9.213077375317e-02 a7 4.170940125995e-03 a8 -7.937779949951e-05
Emin 2.72e+00 s(Emin) 1.00e-19 smax 1.03e-15 Error 2.46e-01
Eth 1.83
Mcross 1.0E+00
```

1.4 Reaction 2.3l2 $p + H_2(v = 3) \rightarrow H(1s) + H_2^+$

scaled from cross section from 3.2.3 in HYDHEL, Greenland resonance scaling

```
a0 -8.660200911000e+01 a1 1.057326823133e+02 a2 -8.364373343149e+01
a3 3.396650519934e+01 a4 -7.931279499027e+00 a5 1.110667708159e+00
a6 -9.213077375317e-02 a7 4.170940125995e-03 a8 -7.937779949951e-05
Emin 2.72e+00 s(Emin) 1.00e-19 smax 1.03e-15 Error 2.46e-01
Eth 1.83
Mcross 1.0E+00
```

1.5 Reaction 2.4l2 $p + H_2(v = 4) \rightarrow H(1s) + H_2^+$

scaled from cross section as 3.2.3 in HYDHEL, Greenland resonance scaling

```
a0 -8.468190770000e+01 a1 1.057326823133e+02 a2 -8.364373343149e+01
a3 3.396650519934e+01 a4 -7.931279499027e+00 a5 1.110667708159e+00
a6 -9.213077375317e-02 a7 4.170940125995e-03 a8 -7.937779949951e-05
Emin 2.72e+00 s(Emin) 1.00e-19 smax 1.03e-15 Error 2.46e-01
Eth 1.83
Mcross 1.0E+00
```

1.6 Reaction 2.5l2 $p + H_2(v = 5) \rightarrow H(1s) + H_2^+$

scaled from cross section from 3.2.3 in HYDHEL, Greenland resonance scaling. Same cross section for all v-levels above resonance

```
a0 -8.472331263000e+01 a1 1.057326823133e+02 a2 -8.364373343149e+01
a3 3.396650519934e+01 a4 -7.931279499027e+00 a5 1.110667708159e+00
a6 -9.213077375317e-02 a7 4.170940125995e-03 a8 -7.937779949951e-05
Emin 2.72e+00 s(Emin) 1.00e-19 smax 1.03e-15 Error 2.46e-01
Eth 1.83
Mcross 1.0E+00
```

1.7 Reaction 2.612 $p + H_2(v = 6) \rightarrow H(1s) + H_2^+$

scaled from cross section as 3.2.3 in HYDHEL, Greenland resonance scaling Same cross section for all v-levels above resonance

```
a0 -8.472331263000e+01 a1 1.057326823133e+02 a2 -8.364373343149e+01
a3 3.396650519934e+01 a4 -7.931279499027e+00 a5 1.110667708159e+00
a6 -9.213077375317e-02 a7 4.170940125995e-03 a8 -7.937779949951e-05
Emin 2.72e+00 s(Emin) 1.00e-19 smax 1.03e-15 Error 2.46e-01
Eth 1.83
Mcross 1.0E+00
```

1.8 Reaction 2.712 $p + H_2(v = 7) \rightarrow H(1s) + H_2^+$

scaled from cross section as 3.2.3 in HYDHEL, Greenland resonance scaling

```
a0 -8.472331263000e+01 a1 1.057326823133e+02 a2 -8.364373343149e+01
a3 3.396650519934e+01 a4 -7.931279499027e+00 a5 1.110667708159e+00
a6 -9.213077375317e-02 a7 4.170940125995e-03 a8 -7.937779949951e-05
Emin 2.72e+00 s(Emin) 1.00e-19 smax 1.03e-15 Error 2.46e-01
Eth 1.83
Mcross 1.0E+00
```

1.9 Reaction 2.8l2 $p + H_2(v = 8) \rightarrow H(1s) + H_2^+$

scaled from cross section as 3.2.3 in HYDHEL, Greenland resonance scaling

```
a0 -8.472331263000e+01 a1 1.057326823133e+02 a2 -8.364373343149e+01
a3 3.396650519934e+01 a4 -7.931279499027e+00 a5 1.110667708159e+00
a6 -9.213077375317e-02 a7 4.170940125995e-03 a8 -7.937779949951e-05
Emin 2.72e+00 s(Emin) 1.00e-19 smax 1.03e-15 Error 2.46e-01
Eth 1.83
Mcross 1.0E+00
```

1.10 Reaction 2.912 $p + H_2(v = 9) \rightarrow H(1s) + H_2^+$

scaled from cross section as 3.2.3 in HYDHEL, Greenland resonance scaling

```
a0 -8.472331263000e+01 a1 1.057326823133e+02 a2 -8.364373343149e+01
a3 3.396650519934e+01 a4 -7.931279499027e+00 a5 1.110667708159e+00
a6 -9.213077375317e-02 a7 4.170940125995e-03 a8 -7.937779949951e-05
Emin 2.72e+00 s(Emin) 1.00e-19 smax 1.03e-15 Error 2.46e-01
Eth 1.83
Mcross 1.0E+00
```

1.11 Reaction 2.1012 $p + H_2(v = 10) \rightarrow H(1s) + H_2^+$

scaled from cross section as 3.2.3 in HYDHEL, Greenland resonance scaling

```
a0 -8.472331263000e+01 a1 1.057326823133e+02 a2 -8.364373343149e+01
a3 3.396650519934e+01 a4 -7.931279499027e+00 a5 1.110667708159e+00
a6 -9.213077375317e-02 a7 4.170940125995e-03 a8 -7.937779949951e-05
Emin 2.72e+00 s(Emin) 1.00e-19 smax 1.03e-15 Error 2.46e-01
Eth 1.83
Mcross 1.0E+00
```

1.12 Reaction 2.1112 $p + H_2(v = 11) \rightarrow H(1s) + H_2^+$

scaled from cross section as 3.2.3 in HYDHEL, Greenland resonance scaling

```
a0 -8.472331263000e+01 a1 1.057326823133e+02 a2 -8.364373343149e+01
a3 3.396650519934e+01 a4 -7.931279499027e+00 a5 1.110667708159e+00
a6 -9.213077375317e-02 a7 4.170940125995e-03 a8 -7.937779949951e-05
Emin 2.72e+00 s(Emin) 1.00e-19 smax 1.03e-15 Error 2.46e-01
Eth 1.83
Mcross 1.0E+00
```

1.13 Reaction 2.12l2 $p + H_2(v = 12) \rightarrow H(1s) + H_2^+$

scaled from cross section as 3.2.3 in HYDHEL, Greenland resonance scaling

```
a0 -8.472331263000e+01 a1 1.057326823133e+02 a2 -8.364373343149e+01
a3 3.396650519934e+01 a4 -7.931279499027e+00 a5 1.110667708159e+00
a6 -9.213077375317e-02 a7 4.170940125995e-03 a8 -7.937779949951e-05
Emin 2.72e+00 s(Emin) 1.00e-19 smax 1.03e-15 Error 2.46e-01
Eth 1.83
Mcross 1.0E+00
```

1.14 Reaction 2.13l2 $p + H_2(v = 13) \rightarrow H(1s) + H_2^+$

scaled from cross section as 3.2.3 in HYDHEL, Greenland resonance scaling

```
a0 -8.472331263000e+01 a1 1.057326823133e+02 a2 -8.364373343149e+01
a3 3.396650519934e+01 a4 -7.931279499027e+00 a5 1.110667708159e+00
a6 -9.213077375317e-02 a7 4.170940125995e-03 a8 -7.937779949951e-05
Emin 2.72e+00 s(Emin) 1.00e-19 smax 1.03e-15 Error 2.46e-01
Eth 1.83
Mcross 1.0E+00
```

1.15 Reaction 2.14l2 $p + H_2(v = 14) \rightarrow H(1s) + H_2^+$

scaled from cross section as 3.2.3 in HYDHEL, Greenland resonance scaling

```
a0 -8.472331263000e+01 a1 1.057326823133e+02 a2 -8.364373343149e+01
a3 3.396650519934e+01 a4 -7.931279499027e+00 a5 1.110667708159e+00
a6 -9.213077375317e-02 a7 4.170940125995e-03 a8 -7.937779949951e-05
Emin 2.72e+00 s(Emin) 1.00e-19 smax 1.03e-15 Error 2.46e-01
Eth 1.83
Mcross 1.0E+00
```

2 H.2 : Fits for $< \sigma v > (T)$

Maxwellian averaged rate coefficients $\langle \sigma v \rangle$ in this section are given as fct. of temperatur T(eV). If both collision partners (masses M_1, M_2) have a different temperature T_1 and T_2 , respectively, then the rate coefficient has to be evaluated with $T_{eff} = \frac{M}{M_1}T_1 + \frac{M}{M_2}T_2$, were M is the mass used for definition of the rate coefficient. For electron impact collision this was the electron mass: M_e , but since usually $M_2 \gg M_e$ we have $T_{eff} \simeq T_1(=T_e)$

For proton impact collisions M is the proton mass, with the H_2 molecule at rest (here: 0.1 eV). next: some rates: $e + H2(v=a) \rightarrow e + H2(v=b)$. notation: 2.avb here: rates for v=0

2.1 Reaction 2.0v1 $e + H_2(v = 0) \rightarrow e + H_2(v = 1)$

some rates: $e + H2(v=a) \rightarrow e + H2(v=b)$. notation: 2.avb here: rates for v=1 $v=1 \rightarrow v=2$ $\Delta_{E_{elec}} = -0.485491$

2.2 Reaction 2.1v2 $e + H_2(v = 1) \rightarrow e + H_2(v = 2)$

```
b0 -1.977633757458D+01 b1 9.564088337422D-01 b2 -6.931762378599D-01
b3 1.673972558159D-01 b4 -3.230467170153D-02 b5 5.844010289469D-03
b6 -8.590099669139D-04 b7 7.465075798325D-05 b8 -2.670220415207D-06
Eth 0.485491
Max. rel. Error: .0007 %
Mean rel. Error: .0002 %
```

 $v=1 \rightarrow v=0$ $\Delta_{E_{elec}} = +0.515579$

2.3 Reaction 2.1v0 $e + H_2(v = 1) \rightarrow e + H_2(v = 0)$

```
b0 -1.968309407999D+01 b1 4.413866852302D-01 b2 -4.375491623531D-01
b3 8.481210871456D-02 b4 -1.352486343878D-02 b5 2.843664347044D-03
b6 -5.402568823255D-04 b7 5.462852926913D-05 b8 -2.112388028934D-06
Eth 0.0
Max. rel. Error: .0024 %
Mean rel. Error: .0010 %
```

some rates: e + H2(v=a) \rightarrow e + H2(v=b). notation: 2.avb here: rates for v=2 v= 2 \rightarrow v= 3 $\Delta_{E_{elec}} = -0.455403$

2.4 Reaction 2.2v3 $e + H_2(v = 2) \rightarrow e + H_2(v = 3)$

```
b0 -1.937087250675D+01 b1 9.563986318344D-01 b2 -6.931517460305D-01
b3 1.673706968047D-01 b4 -3.228932650184D-02 b5 5.839031940057D-03
b6 -8.581057840732D-04 b7 7.456526636728D-05 b8 -2.666952590194D-06
Eth 0.455403
Max. rel. Error: .0006 %
Mean rel. Error: .0002 %
```

2.5 Reaction 2.2v1 $e + H_2(v = 2) \rightarrow e + H_2(v = 1)$

```
b0 -1.929086643028D+01 b1 4.714322317378D-01 b2 -4.524405833755D-01
b3 8.960512951965D-02 b4 -1.460778938439D-02 b5 3.015244916848D-03
b6 -5.583268044148D-04 b7 5.575453615114D-05 b8 -2.143550900856D-06
Eth 0.0
Max. rel. Error: .0022 %
Mean rel. Error: .0010 %
```

some rates: e + H2(v=a) \rightarrow e + H2(v=b). notation: 2.avb here: rates for v=3 v= 3 \rightarrow v= 4 $\Delta_{E_{elec}} = -0.425316$

2.6 Reaction 2.3v4 $e + H_2(v = 3) \rightarrow e + H_2(v = 4)$

```
b0 -1.898225633279D+01 b1 9.563960986163D-01 b2 -6.931501046560D-01
b3 1.673721101906D-01 b4 -3.229155089769D-02 b5 5.840130285792D-03
b6 -8.583629331346D-04 b7 7.459419549557D-05 b8 -2.668208705788D-06
Eth 0.425316
Max. rel. Error: .0007 %
Mean rel. Error: .0002 %
```

2.7 Reaction 2.3v2 $e + H_2(v = 3) \rightarrow e + H_2(v = 2)$

```
b0 -1.891548879155D+01 b1 5.014966876811D-01 b2 -4.673877357801D-01
b3 9.445845395339D-02 b4 -1.572267323555D-02 b5 3.196101745851D-03
b6 -5.779051068742D-04 b7 5.700956841462D-05 b8 -2.179234175360D-06
Eth 0.0
Max. rel. Error: .0021 %
Mean rel. Error: .0009 %
```

some rates: e + H2(v=a) \rightarrow e + H2(v=b). notation: 2.avb here: rates for v=4 v= 4 \rightarrow v= 5 $\Delta_{E_{elec}} = -0.395228$

2.8 Reaction 2.4v5 $e + H_2(v = 4) \rightarrow e + H_2(v = 5)$

```
b0 -1.861048995150D+01 b1 9.564054425438D-01 b2 -6.931632937811D-01
b3 1.673757235520D-01 b4 -3.228920035293D-02 b5 5.838397599024D-03
b6 -8.579289407995D-04 b7 7.454528969308D-05 b8 -2.6666120439849D-06
Eth 0.395228
Max. rel. Error: .0005 %
Mean rel. Error: .0002 %
```

2.9 Reaction 2.4v3 $e + H_2(v = 4) \rightarrow e + H_2(v = 3)$

```
\begin{array}{l} \mathbf{v}{=}\;4\rightarrow\mathbf{v}{=}\;3\\ \Delta_{E_{elec}}=+0.425316\\ \\ \text{b0}\;-1.855696064744\text{D}{+}01\;\;\text{b1}\;\;5.315597336002\text{D}{-}01\;\;\text{b2}\;-4.823196215528\text{D}{-}01\\ \\ \text{b3}\;\;9.928898010496\text{D}{-}02\;\;\text{b4}\;-1.682316262202\text{D}{-}02\;\;\text{b5}\;\;3.372255429641\text{D}{-}03\\ \\ \text{b6}\;-5.966471527998\text{D}{-}04\;\;\text{b7}\;\;5.818774150055\text{D}{-}05\;\;\text{b8}\;-2.212058870401\text{D}{-}06\\ \\ \text{Eth}\;\;0.0\\ \\ \\ \text{Max. rel. Error:}\;\;.0020\;\%\\ \\ \\ \text{Mean rel. Error:}\;\;.0009\;\% \end{array}
```

some rates: $e + H2(v=a) \rightarrow e + H2(v=b)$. notation: 2.avb here: rates for v=5

2.10 Reaction 2.5v6 $e + H_2(v = 5) \rightarrow e + H_2(v = 6)$

```
\begin{array}{l} \mathbf{v}{=}\;5\rightarrow\mathbf{v}{=}\;6\\ \Delta_{E_{elec}}=-0.365140\\ \\ \text{b0}\;-1.825557379755D{+}01\;\;\text{b1}\;\;9.563952515169D{-}01\;\;\text{b2}\;-6.931405419593D{-}01\\ \\ \text{b3}\;\;1.673575550930D{-}01\;\;\text{b4}\;-3.228237504688D{-}02\;\;\text{b5}\;\;5.837153522372D{-}03\\ \\ \text{b6}\;-8.578377390045D{-}04\;\;\text{b7}\;\;7.454622530191D{-}05\;\;\text{b8}\;-2.666430825622D{-}06\\ \\ \text{Eth}\;\;0.365140\\ \\ \text{Max. rel. Error:}\;\;.0008\;\%\\ \\ \text{Mean rel. Error:}\;\;.0002\;\% \end{array}
```

2.11 Reaction 2.5v4 $e + H_2(v = 5) \rightarrow e + H_2(v = 4)$

 $v=5 \rightarrow v=4$ $\Delta_{E_{elec}} = 0.395228$

```
b0 -1.821527873038D+01 b1 5.616025125936D-01 b2 -4.972197892546D-01
b3 1.040933960955D-01 b4 -1.791074005428D-02 b5 3.544561563434D-03
b6 -6.147252831443D-04 b7 5.930529762302D-05 b8 -2.242624609668D-06
Eth 0.0
Max. rel. Error: .0017 %
Mean rel. Error: .0008 %
```

some rates: e + H2(v=a) \rightarrow e + H2(v=b). notation: 2.avb here: rates for v=6 v= 6 \rightarrow v= 7 $\Delta_{E_{elec}} = -0.335052$

2.12 Reaction 2.6v7 $e + H_2(v = 6) \rightarrow e + H_2(v = 7)$

```
b0 -1.791750176477D+01 b1 9.563765394068D-01 b2 -6.931114557277D-01
b3 1.673368982774D-01 b4 -3.227446851469D-02 b5 5.835380423171D-03
b6 -8.576013379817D-04 b7 7.452872287319D-05 b8 -2.665874601514D-06
Eth 0.335052
Max. rel. Error: .0005 %
Mean rel. Error: .0002 %
```

 $v=6 \rightarrow v=5$ $\Delta_{E_{elec}} = 0.365140$

2.13 Reaction 2.6v5 $e + H_2(v = 6) \rightarrow e + H_2(v = 5)$

```
b0 -1.789045229732D+01 b1 5.916679551165D-01 b2 -5.121311260976D-01
b3 1.088929406027D-01 b4 -1.899317907912D-02 b5 3.715356909481D-03
b6 -6.326073845628D-04 b7 6.041245844855D-05 b8 -2.273084411033D-06
Eth 0.0
Max. rel. Error: .0017 %
Mean rel. Error: .0008 %
```

some rates: e + H2(v=a) \rightarrow e + H2(v=b). notation: 2.avb here: rates for v=7 v= 7 \rightarrow v= 8 $\Delta_{E_{elec}} = -0.304965$

2.14 Reaction 2.7v8 $e + H_2(v = 7) \rightarrow e + H_2(v = 8)$

```
b0 -1.759628608401D+01 b1 9.563983633040D-01 b2 -6.931605371434D-01
b3 1.673841318657D-01 b4 -3.229793458739D-02 b5 5.841905872641D-03
b6 -8.586273568756D-04 b7 7.461395545659D-05 b8 -2.668781967500D-06
Eth 0.304965
Max. rel. Error: .0007 %
Mean rel. Error: .0002 %
```

 $\begin{array}{l} \mathbf{v=7} \rightarrow \mathbf{v=6} \\ \Delta_{E_{elec}} = 0.335052 \end{array}$

2.15 Reaction 2.7v6 $e + H_2(v = 7) \rightarrow e + H_2(v = 6)$

```
b0 -1.758246610521D+01 b1 6.217013182816D-01 b2 -5.270198573168D-01
b3 1.136959682626D-01 b4 -2.008484626390D-02 b5 3.890088095849D-03
b6 -6.512593562470D-04 b7 6.159274114022D-05 b8 -2.306271203184D-06
Eth 0.0
Max. rel. Error: .0016 %
Mean rel. Error: .0007 %
```

some rates: e + H2(v=a) \rightarrow e + H2(v=b). notation: 2.avb here: rates for v=8 v= 8 \rightarrow v= 9 $\Delta_{E_{elec}} = -0.274877$

2.16 Reaction 2.8v9 $e + H_2(v = 8) \rightarrow e + H_2(v = 9)$

```
b0 -1.729191776727D+01 b1 9.563989054428D-01 b2 -6.931519633782D-01
b3 1.673705751835D-01 b4 -3.228922221813D-02 b5 5.839034598316D-03
b6 -8.581172796755D-04 b7 7.456750118724D-05 b8 -2.667079597271D-06
Eth 0.274877
Max. rel. Error: .0006 %
Mean rel. Error: .0002 %
```

2.17 Reaction 2.8v7 $e + H_2(v = 8) \rightarrow e + H_2(v = 7)$

```
b0 -1.729133660481D+01 b1 6.517705262809D-01 b2 -5.419663946532D-01
b3 1.185434245879D-01 b4 -2.119497413881D-02 b5 4.069161805933D-03
b6 -6.704842512069D-04 b7 6.281213480116D-05 b8 -2.340519067726D-06
Eth 0.0
Max. rel. Error: .0014 %
Mean rel. Error: .0006 %
```

some rates: e + H2(v=a) \rightarrow e + H2(v=b). notation: 2.avb here: rates for v=9 v= 9 \rightarrow v= 10 $\Delta_{E_{elec}} = -0.244789$

2.18 Reaction 2.9v10 $e + H_2(v = 9) \rightarrow e + H_2(v = 10)$

```
b0 -1.700439591879D+01 b1 9.563966363060D-01 b2 -6.931545806421D-01
b3 1.673772422216D-01 b4 -3.229410770597D-02 b5 5.840774704551D-03
b6 -8.584454021545D-04 b7 7.459890305585D-05 b8 -2.668279554488D-06
Eth 0.244789
Max. rel. Error: .0004 %
Mean rel. Error: .0002 %
```

 $\begin{array}{l} \mathbf{v=9} \rightarrow \mathbf{v=8} \\ \Delta_{E_{elec}} = 0.274877 \end{array}$

2.19 Reaction 2.9v8 $e + H_2(v = 9) \rightarrow e + H_2(v = 8)$

```
b0 -1.701705270991D+01 b1 6.818229076298D-01 b2 -5.568766608948D-01
b3 1.233520134745D-01 b4 -2.228308672033D-02 b5 4.241333829446D-03
b6 -6.885065289214D-04 b7 6.392253596930D-05 b8 -2.370763006793D-06
Eth 0.0
Max. rel. Error: .0013 %
Mean rel. Error: .0006 %
```

some rates: e + H2(v=a) \rightarrow e + H2(v=b). notation: 2.avb here: rates for v=10 v= 10 \rightarrow v= 11 $\Delta_{E_{elec}} = -0.214702$

2.20 Reaction 2.10v11 $e + H_2(v = 10) \rightarrow e + H_2(v = 11)$

```
b0 -1.673372508418D+01 b1 9.563998411687D-01 b2 -6.931596706102D-01
b3 1.673810041199D-01 b4 -3.229557291606D-02 b5 5.841081184989D-03
b6 -8.584786020792D-04 b7 7.460053737379D-05 b8 -2.668303594568D-06
Eth 0.214702
Max. rel. Error: .0006 %
Mean rel. Error: .0002 %
```

2.21 Reaction 2.10v9 $e + H_2(v = 10) \rightarrow e + H_2(v = 9)$

```
b0 -1.675961815373D+01 b1 7.118728751530D-01 b2 -5.717787651021D-01
b3 1.281546365117D-01 b4 -2.337029834941D-02 b5 4.413997789718D-03
b6 -7.067371443254D-04 b7 6.506166104935D-05 b8 -2.402379846582D-06
Eth 0.0
Max. rel. Error: .0013 %
Mean rel. Error: .0005 %
```

some rates: $e + H2(v=a) \rightarrow e + H2(v=b)$. notation: 2.avb here: rates for v=11 $v=11 \rightarrow v=12$ $\Delta_{E_{elec}} = -0.184614$

2.22 Reaction 2.11v12 $e + H_2(v = 11) \rightarrow e + H_2(v = 12)$

```
b0 -1.647990244033D+01 b1 9.563942800918D-01 b2 -6.931463277701D-01
b3 1.673666305699D-01 b4 -3.228729006747D-02 b5 5.838404584005D-03
b6 -8.579952062156D-04 b7 7.455506941211D-05 b8 -2.666570149968D-06
Eth 0.184614
Max. rel. Error: .0005 %
Mean rel. Error: .0002 %
```

2.23 Reaction 2.11v10 $e + H_2(v = 11) \rightarrow e + H_2(v = 10)$

```
b0 -1.651903291691D+01 b1 7.419356436913D-01 b2 -5.867236119235D-01
b3 1.330066833462D-01 b4 -2.448489265837D-02 b5 4.594825648293D-03
b6 -7.263126191158D-04 b7 6.631624303442D-05 b8 -2.438034077292D-06
Eth 0.0
Max. rel. Error: .0011 %
Mean rel. Error: .0005 %
```

some rates: $e + H2(v=a) \rightarrow e + H2(v=b)$. notation: 2.avb here: rates for v=12 $v=12 \rightarrow v=13$ $\Delta_{E_{elec}} = -0.154526$

2.24 Reaction 2.12v13 $e + H_2(v = 12) \rightarrow e + H_2(v = 13)$

```
b0 -1.624292843520D+01 b1 9.563916527161D-01 b2 -6.931504230185D-01
b3 1.673790359310D-01 b4 -3.229737072252D-02 b5 5.842257704388D-03
b6 -8.587623572024D-04 b7 7.463197605980D-05 b8 -2.669637421005D-06
Eth 0.154526
Max. rel. Error: .0005 %
Mean rel. Error: .0002 %
```

2.25 Reaction 2.12v11 $e + H_2(v = 12) \rightarrow e + H_2(v = 11)$

```
b0 -1.629529739854D+01 b1 7.719833979882D-01 b2 -6.016188325834D-01
b3 1.378008352063D-01 b4 -2.556674781785D-02 b5 4.765655849285D-03
b6 -7.442009918713D-04 b7 6.742272668084D-05 b8 -2.468409663873D-06
Eth 0.0
Max. rel. Error: .0010 %
Mean rel. Error: .0004 %
```

some rates: $e + H2(v=a) \rightarrow e + H2(v=b)$. notation: 2.avb here: rates for v=13 $v=13 \rightarrow v=14$ $\Delta_{E_{elec}} = -0.124438$

2.26 Reaction 2.13v14 $e + H_2(v = 13) \rightarrow e + H_2(v = 14)$

```
b0 -1.602280495131D+01 b1 9.563875619739D-01 b2 -6.931229785638D-01
b3 1.673414501519D-01 b4 -3.227464611562D-02 b5 5.835033363511D-03
b6 -8.575055981320D-04 b7 7.451875835329D-05 b8 -2.665505460091D-06
Eth 0.124438
Max. rel. Error: .0006 %
Mean rel. Error: .0002 %
```

2.27 Reaction 2.13v12 $e + H_2(v = 13) \rightarrow e + H_2(v = 12)$

```
b0 -1.608840990302D+01 b1 8.020394394303D-01 b2 -6.165440945034D-01
b3 1.426308983770D-01 b4 -2.666919821799D-02 b5 4.942829173728D-03
b6 -7.631622155716D-04 b7 6.862293543371D-05 b8 -2.502085216731D-06
Eth 0.0
Max. rel. Error: .0010 %
Mean rel. Error: .0004 %
```

some rates: e + H2(v=a) \rightarrow e + H2(v=b). notation: 2.avb here: rates for v=14 v= 14 \rightarrow v= 13 $\Delta_{E_{elec}} = 0.124438$

2.28 Reaction 2.14v13 $e + H_2(v = 14) \rightarrow e + H_2(v = 13)$

```
b0 -1.589837154244D+01 b1 8.320824642517D-01 b2 -6.3142835888817D-01
b3 1.474153520168D-01 b4 -2.774686223813D-02 b5 5.112667638941D-03
b6 -7.809186117202D-04 b7 6.972006006944D-05 b8 -2.532180981291D-06
Eth 0.0
Max. rel. Error: .0009 %
Mean rel. Error: .0003 %
```

2.29 losses from *v*-Population

now: loss from vibrational state v: loss channel a = 1, a = 2, a = 3, a = 4. Notation: ..2.vla,

• a=1: $e + H_2(v)$ to repulsive triplet state $b^3\Sigma \to H + H$

currently available: Hydhel 2.2.5 (v=0) and Greenland scaling [2], or, as alternative: Tennyson rate coefficient (J. Tennyson, 2001)

• a=2: ion conversion $p + H_2(v) \rightarrow H_2^+ + H$

currently available: Hydhel 3.2.3 (v = 0) and Greenland scaling [2], i.e.:

cross sections are as in Hydhel, with incremented a0 coefficient for Greenland scaling

the "thermal" rate coeff. data labeled ..12th given here are evaluated from HYDHEL, 3.2.3, at $E_{H_2} = 0.37 \approx 0.0$ eV. The temperature scale here is $T = T_{H_2} = T_p$, i.e. to obtain this Maxwellian (single temperature) rate coefficient the HYDHEL beam-Maxwellian rate fit is evaluated at

 $T_{eff} = m/m_1T_1 + m/m_2T_2 = 1.5T$, with $m = 1, m_1 = 1, m_2 = 2$ and $T_1 = T_p, T_2 = T_{H_2}$.

The rate coeff. data labeled ...12 (without th) are for stationary H2 molecules (taken at $E_{H_2} = 0.1 \approx 0.0 \text{ eV}$), same as for v=0 in Hydhel, and then have been scaled (incremented fit coeff. b0) to higher vibr. states.

- a=3: dissociative attachment e + H₂(v) → H₂⁻ → H(n) + H⁻,
 Greenland scaling, [2]
- a=4: ionisation e + H₂(v) → H₂⁺ + e,
 Janev, Reiter report, JUEL, [3]
- a=5: dissociative excitation/ionisation e + H₂(v) → H + H * +e, or → H + H⁺ + 2e
 Janev, Reiter report, JUEL, [3], to be done, not yet here.

2.30 Reaction 2.011 $e + H_2(v = 0) \rightarrow e + H_2(b_{triplet}) \rightarrow e + H + H$ (Greenl.)

(HYDHEL 2.2.5, and Greenland scaling)

```
b0 -2.785523959742D+01 b1 1.052255591937D+01 b2 -4.973297770708D+00
b3 1.451288296907D+00 b4 -3.063256693791D-01 b5 4.434701866973D-02
b6 -4.098442028674D-03 b7 2.161417112329D-04 b8 -4.934489173929D-06
Max. rel. Error: .0008 %
Mean rel. Error: .0003 %
```

2.31 Reaction 2.011T $e + H_2(v = 0) \rightarrow e + H_2(b_{triplet}) \rightarrow e + H + H$ (Ten.)

Tennyson rate coeff .:

b0	-27.737228809932	b1	11.4261099558375	b2	-7.10684878187016
b3	2.91291925736074	b4	-0.813578474322528	b5	0.143951459534869
b6	-0.0152728085858885	b7	0.00088343832658218	b8	-2.13827792172883e-05
Max.	rel. Error: 8.159e-	05 %			
Mean	rel. Error: 7.611e-	06 %			

2.32 Reaction 2.012th $p + H_2(v = 0) \rightarrow H + H_2^+$ (ion conversion)

Thermal rate coeff.: Original HYDHEL fit vs. T_p and $E(H_2)$, taken at $E(H_2) = 0.37 \approx 0.0$ eV. Then rescaled (and refitted) for effective temperature $T_p = T_{H_2} = T$.

```
b0 -2.358503880904D+01 b1 1.287800684831D+00 b2 -1.477574532576D+00
b3 6.341267609262D-01 b4 -7.940548870324D-02 b5 -3.856752713590D-03
b6 1.747919751930D-03 b7 -1.472692136643D-04 b8 4.122891606416D-06
Max. rel. Error: .0007 %
Mean rel. Error: .0003 %
```

2.33 Reaction 2.012 $p + H_2(v = 0) \rightarrow H + H_2^+$ (ion conversion)

Rate coeff. for H2 at rest, derived from HYDHEL rate coeff. data. Taken at $E(H_2) = 0.1 \approx 0.0$ eV, and fit is for temperature $T_p = T$ with H_2 at rest.

b0	-2.440996809955E+01	b1	2.552627389749E+00	b2	-2.608194219039E+00
b3	1.347571390219E+00	b4	-3.646182244708E-01	b5	5.938400660590E-02
b6	-5.795480327782E-03	b7	3.075899232458E-04	b8	-6.769294455276E-06

2.34 Reaction 2.013 $e + H_2(v = 0) \rightarrow H_2^- \rightarrow H + H^-$

```
b0 -3.274002188165D+01 b1 2.669321144749D+00 b2 -1.988587518396D+00
b3 6.103750530912D-01 b4 -1.312496951350D-01 b5 1.990432011373D-02
b6 -2.026189571957D-03 b7 1.232520842300D-04 b8 -3.355796773264D-06
Max. rel. Error: .0145 %
Mean rel. Error: .0071 %
```

2.35 Reaction 2.014 $e + H_2(v = 0) \rightarrow e + H_2^+ + e$

Janev-Reiter, JUEL-rep. eth 1.542000E+01

```
b0 -3.540823398177E+01 b1 1.657145033166E+01 b2 -7.228943029682E+00
b3 2.032462219400E+00 b4 -3.938257813639E-01 b5 5.235094832810E-02
b6 -4.578745995938E-03 b7 2.369472437341E-04 b8 -5.461691892092E-06
TEMAX = 1.00000D 03 EV
Max. rel. Error: .xxx %
Mean rel. Error: .xxx %
```

2.36 Reaction 2.111 $e + H_2(v = 1) \rightarrow e + H_2(b_{triplet}) \rightarrow e + H + H$ (Greenl.)

```
b0 -2.781915029226D+01 b1 1.052255333317D+01 b2 -4.973289320743D+00
b3 1.451280690096D+00 b4 -3.063222749058D-01 b5 4.434616127142D-02
b6 -4.098317261058D-03 b7 2.161319529412D-04 b8 -4.934171143115D-06
Max. rel. Error: .0008 %
Mean rel. Error: .0003 %
```

2.37 Reaction 2.111T $e + H_2(v = 1) \rightarrow e + H_2(b_{triplet}) \rightarrow e + H + H$ (Ten.)

```
b0 -25.8958840785285 b1 9.30878084516833 b2 -6.11169315867176
b3 2.71647639013235 b4 -0.815302111062534 b5 0.151728705958444
b6 -0.0166681283588793 b7 0.000988401852658999 b8 -2.43697308162397e-05
Max. rel. Error: 6.975e-05 %
Mean rel. Error: 6.714e-06 %
```

2.38 Reaction 2.112th $p + H_2(v = 1) \rightarrow H + H_2^+$ (ion conversion)

Thermal rate coeff., Tp=TH2, Greenland scaling

b0 -2.292919657678D+01 b1 1.287794638677D+00 b2 -1.477559046391D+00 b3 6.341102406704D-01 b4 -7.939676653935D-02 b5 -3.859256113224D-03 b6 1.748319409629D-03 b7 -1.473026714030D-04 b8 4.124039577804D-06 Max. rel. Error: .0010 % Mean rel. Error: .0003 %

2.39 Reaction 2.112 $p + H_2(v = 1) \rightarrow H + H_2^+$ (ion conversion)

Rate coeff. for H2 at rest, derived from HYDHEL data. Greenland scaling

```
b0-2.375269260000E+01b12.552627389749E+00b2-2.608194219039E+00b31.347571390219E+00b4-3.646182244708E-01b55.938400660590E-02b6-5.795480327782E-03b73.075899232458E-04b8-6.769294455276E-06
```

2.40 Reaction 2.113 $e + H_2(v = 1) \rightarrow H_2^- \rightarrow H + H^-$

b0 -2.865748279758D+01 b1 2.055737192965D+00 b2 -1.716700156229D+00 b3 5.343326950875D-01 b4 -1.164300433732D-01 b5 1.783787331708D-02 b6 -1.827247029733D-03 b7 1.114651687003D-04 b8 -3.036205962969D-06 Max. rel. Error: .0118 % Mean rel. Error: .0050 %

2.41 Reaction 2.114 $e + H_2(v = 1) \rightarrow e + H_2^+ + e$

Janev-Reiter, JUEL-rep., eth 1.490400E+01

```
b0 -3.481334039125E+01 b1 1.624419918008E+01 b2 -7.360715783239E+00
b3 2.218244862146E+00 b4 -4.664334315731E-01 b5 6.642982009994E-02
b6 -6.050396486944E-03 b7 3.160608551072E-04 b8 -7.173333297668E-06
TEMAX = 1.00000D 03 EV
Max. rel. Error: .xxx %
Mean rel. Error: .xxx %
```

2.42 Reaction 2.2l1 $e + H_2(v = 2) \rightarrow e + H_2(b_{triplet}) \rightarrow e + H + H$ (Greenl.)

```
b0 -2.778516522635D+01 b1 1.052255988601D+01 b2 -4.973303177704D+00
b3 1.451291629987D+00 b4 -3.063269628723D-01 b5 4.434736776129D-02
b6 -4.098503003982D-03 b7 2.161476054735D-04 b8 -4.934722807335D-06
Max. rel. Error: .0006 %
Mean rel. Error: .0003 %
```

2.43 Reaction 2.211T $e + H_2(v = 2) \rightarrow e + H_2(b_{triplet}) \rightarrow e + H + H$ (Ten.)

```
b0 -24.4090557080575 b1 7.30549186675227 b2 -4.71605572033619
b3 2.14487780148394 b4 -0.672580354751647 b5 0.129887611959617
b6 -0.0146741596125013 b7 0.000888897227320994 b8 -2.22839862046592e-05
Max. rel. Error: 5.79e-05 %
Mean rel. Error: 5.914e-06 %
```

2.44 Reaction 2.212th $p + H_2(v = 2) \rightarrow H + H_2^+$ (ion conversion)

thermal Rate coeff. for T(p) = T(H2), Greenland scaling

```
b0 -2.202529493081D+01 b1 1.287806068192D+00 b2 -1.477582420825D+00
b3 6.341309771234D-01 b4 -7.940646003829D-02 b5 -3.856669758778D-03
b6 1.747921326823D-03 b7 -1.472696464009D-04 b8 4.122893523274D-06
Max. rel. Error: .0009 %
Mean rel. Error: .0002 %
```

2.45 Reaction 2.212 $p + H_2(v = 2) \rightarrow H + H_2^+$ (ion conversion)

Rate coeff. for H2 at rest, derived from HYDHEL data. Greenland scaling

```
b0-2.284596033000E+01b12.552627389749E+00b2-2.608194219039E+00b31.347571390219E+00b4-3.646182244708E-01b55.938400660590E-02b6-5.795480327782E-03b73.075899232458E-04b8-6.769294455276E-06
```

2.46 Reaction 2.213 $e + H_2(v = 2) \rightarrow H_2^- \rightarrow H + H^-$

```
b0 -2.591866933510D+01 b1 1.621906764170D+00 b2 -1.488240863403D+00
b3 4.555468112070D-01 b4 -9.740404663324D-02 b5 1.465136339309D-02
b6 -1.477453193987D-03 b7 8.903066054810D-05 b8 -2.403332587604D-06
Max. rel. Error: .0097 %
Mean rel. Error: .0039 %
```

2.47 Reaction 2.214 $e + H_2(v = 2) \rightarrow e + H_2^+ + e$

Janev-Reiter, JUEL-rep., eth 1.441700E+01

```
b0 -3.428836104964E+01 b1 1.565808679005E+01 b2 -6.893018168570E+00
b3 1.955837175253E+00 b4 -3.753879507425E-01 b5 4.764687790230E-02
b6 -3.813417228001E-03 b7 1.743203731125E-04 b8 -3.478720752808E-06
TEMAX = 1.00000D 03 EV
Max. rel. Error: .xxx %
Mean rel. Error: .xxx %
```

2.48 Reaction 2.3l1 $e + H_2(v = 3) \rightarrow e + H_2(b_{triplet}) \rightarrow e + H + H$ (Greenl.)

```
b0 -2.775328717144D+01 b1 1.052255367692D+01 b2 -4.973289555946D+00
b3 1.451278907194D+00 b4 -3.063199285155D-01 b5 4.434504336931D-02
b6 -4.098065267946D-03 b7 2.161046623371D-04 b8 -4.933024950567D-06
Max. rel. Error: .0009 %
Mean rel. Error: .0003 %
```

```
2.49 Reaction 2.3l1T e + H_2(v = 3) \rightarrow e + H_2(b_{triplet}) \rightarrow e + H + H (Ten.)
```

```
      b0
      -23.2471490990366
      b1
      5.82920685290242
      b2
      -3.74467798716235

      b3
      1.75797373751848
      b4
      -0.576480269917161
      b5
      0.115092345155716

      b6
      -0.0133095657860856
      b7
      0.000820052834830402
      b8
      -2.08263077082272e-05

      Max. rel. Error:
      4.832e-05 %

      Mean rel. Error:
      5.314e-06 %
```

2.50 Reaction 2.3l2th $p + H_2(v = 3) \rightarrow H + H_2^+$ (ion conversion)

thermal rate coeff. for T(p) = T(H2)

```
b0 -2.053940214067D+01 b1 1.287794934319D+00 b2 -1.477562410575D+00
b3 6.341146465792D-01 b4 -7.939962165046D-02 b5 -3.858201085727D-03
b6 1.748100436976D-03 b7 -1.472792368815D-04 b8 4.123039365518D-06
Max. rel. Error: .0010 %
```

```
Mean rel. Error: .0003 %
```

2.51 Reaction 2.312 $p + H_2(v = 3) \rightarrow H + H_2^+$ (ion conversion)

Rate coeff. for H2 at rest, derived from HYDHEL data. Greenland scaling

```
b0-2.135211821000E+01b12.552627389749E+00b2-2.608194219039E+00b31.347571390219E+00b4-3.646182244708E-01b55.938400660590E-02b6-5.795480327782E-03b73.075899232458E-04b8-6.769294455276E-06
```

2.52 Reaction 2.313 $e + H_2(v = 3) \rightarrow H_2^- \rightarrow H + H^-$

```
b0 -2.380889883947D+01 b1 1.145593802336D+00 b2 -1.262299189883D+00
b3 3.864542801636D-01 b4 -8.254357837871D-02 b5 1.238650827308D-02
b6 -1.244892294017D-03 b7 7.473447446431D-05 b8 -2.009848790756D-06
Max. rel. Error: .0076 %
Mean rel. Error: .0032 %
```

2.53 Reaction 2.314 $e + H_2(v = 3) \rightarrow e + H_2^+ + e$

Janev-Reiter, JUEL-rep., eth 1.395900E+01

b0 -3.378879447664E+01 b1 1.523672637854E+01 b2 -6.745590257052E+00 b3 1.974828926502E+00 b4 -4.098427218451E-01 b5 5.919650377042E-02 b6 -5.603508387710E-03 b7 3.087429479944E-04 b8 -7.428722816433E-06 TEMAX = 1.00000D 03 EV Max. rel. Error: .xxx % Mean rel. Error: .xxx %

2.54 Reaction 2.4l1 $e + H_2(v = 4) \rightarrow e + H_2(b_{triplet}) \rightarrow e + H + H$ (Greenl.)

```
b0 -2.772351621954D+01 b1 1.052256821107D+01 b2 -4.973321696839D+00
b3 1.451310462218D+00 b4 -3.063368639725D-01 b5 4.435025569759D-02
b6 -4.098974811888D-03 b7 2.161879690469D-04 b8 -4.936128529736D-06
Max. rel. Error: .0009 %
Mean rel. Error: .0003 %
```

2.55 Reaction 2.4l1T $e + H_2(v = 4) \rightarrow e + H_2(b_{triplet}) \rightarrow e + H + H$ (Ten.)

```
b0 -22.3116918809814 b1 4.66004285894235 b2 -2.89882553184163
b3 1.37064885936369 b4 -0.4659672655505 b5 0.095784763158149
b6 -0.0113104860539474 b7 0.000707639911960273 b8 -1.81837538257139e-05
Max. rel. Error: 4.04e-05 %
Mean rel. Error: 4.864e-06 %
```

2.56 Reaction 2.4l2th $p + H_2(v = 4) \rightarrow H + H_2^+$ (ion conversion)

thermal rate coeff. for T(p) = T(H2)

b0 -1.858781180352D+01 b1 1.287785079093D+00 b2 -1.477535830536D+00 b3 6.340894181665D-01 b4 -7.938783234796D-02 b5 -3.861258099902D-03 b6 1.748551617180D-03 b7 -1.473148894596D-04 b8 4.124214571833D-06 Max. rel. Error: .0008 % Mean rel. Error: .0003 %

2.57 Reaction 2.412 $p + H_2(v = 4) \rightarrow H + H_2^+$ (ion conversion)

Rate coeff. for H2 at rest, derived from HYDHEL data. Greenland scaling

```
b0-1.943201680000E+01b12.552627389749E+00b2-2.608194219039E+00b31.347571390219E+00b4-3.646182244708E-01b55.938400660590E-02b6-5.795480327782E-03b73.075899232458E-04b8-6.769294455276E-06
```
2.58 Reaction 2.413 $e + H_2(v = 4) \rightarrow H_2^- \rightarrow H + H^-$

```
b0 -2.181958767840D+01 b1 7.062174347527D-01 b2 -1.042070002229D+00
b3 3.144348543370D-01 b4 -6.595818350289D-02 b5 9.707201256601D-03
b6 -9.578202173189D-04 b7 5.659613126477D-05 b8 -1.502596517836D-06
Max. rel. Error: .0056 %
Mean rel. Error: .0023 %
```

2.59 Reaction 2.414 $e + H_2(v = 4) \rightarrow e + H_2^+ + e$

Janev-Reiter, JUEL-rep. eth 1.352900E+01

b0 -3.330086528303E+01 b1 1.491564676374E+01 b2 -6.802923904629E+00 b3 2.110712395565E+00 b4 -4.678815789295E-01 b5 7.099619985562E-02 b6 -6.872951706756E-03 b7 3.778766156092E-04 b8 -8.915811243923E-06 TEMAX = 1.00000D 03 EV Max. rel. Error: .xxx % Mean rel. Error: .xxx % **2.60** Reaction 2.511 $e + H_2(v = 5) \rightarrow e + H_2(b_{triplet}) \rightarrow e + H + H$ (Greenl.)

```
b0 -2.769585006151D+01 b1 1.052254581896D+01 b2 -4.973265511463D+00
b3 1.451254555062D+00 b4 -3.063085889212D-01 b5 4.434230078384D-02
b6 -4.097713187510D-03 b7 2.160824161522D-04 b8 -4.932505061094D-06
Max. rel. Error: .0009 %
Mean rel. Error: .0003 %
```

2.61 Reaction 2.511T $e + H_2(v = 5) \rightarrow e + H_2(b_{triplet}) \rightarrow e + H + H$ (Ten.)

```
b0 -21.6765406590837 b1 3.96287802270257 b2 -2.40258564400747
b3 1.12173673874494 b4 -0.386820176842012 b5 0.0806339479146663
b6 -0.00962479211187377 b7 0.000607325967190121 b8 -1.5716017024353e-05
Max. rel. Error: 3.548e-05 %
Mean rel. Error: 4.595e-06 %
```

2.62 Reaction 2.5l2th $p + H_2(v = 5) \rightarrow H + H_2^+$ (ion conversion)

thermal rate coeff. for T(p) = T(H2)

b0 -2.085159225482D+01 b1 1.287785621840D+00 b2 -1.477538158990D+00 b3 6.340918458670D-01 b4 -7.938847940329D-02 b5 -3.861353657325D-03 b6 1.748621163219D-03 b7 -1.473257018073D-04 b8 4.124762918375D-06 Max. rel. Error: .0008 % Mean rel. Error: .0003 %

2.63 Reaction 2.512 $p + H_2(v = 5) \rightarrow H + H_2^+$ (ion conversion)

```
b0-1.947342173000E+01b12.552627389749E+00b2-2.608194219039E+00b31.347571390219E+00b4-3.646182244708E-01b55.938400660590E-02b6-5.795480327782E-03b73.075899232458E-04b8-6.769294455276E-06
```

2.64 Reaction 2.513 $e + H_2(v = 5) \rightarrow H_2^- \rightarrow H + H^-$

```
b0 -2.044203459604D+01 b1 3.289282407147D-01 b2 -8.502098907687D-01
b3 2.506415915048D-01 b4 -5.103166869055D-02 b5 7.264584648861D-03
b6 -6.936883240811D-04 b7 3.980653731245D-05 b8 -1.031327104843D-06
Max. rel. Error: .0038 %
Mean rel. Error: .0014 %
```

2.65 Reaction 2.514 $e + H_2(v = 5) \rightarrow e + H_2^+ + e$

Janev-Reiter, JUEL-rep. eth 13.127

b0 -3.281190667595E+01 b1 1.451688819145E+01 b2 -6.829388255185E+00 b3 2.300762824373E+00 b4 -5.727472024827E-01 b5 9.761110682421E-02 b6 -1.043168740981E-02 b7 6.208936382936E-04 b8 -1.560452675954E-05 TEMAX = 1.00000D 03 EV Max. rel. Error: .xxx % Mean rel. Error: .xxx % **2.66** Reaction 2.611 $e + H_2(v = 6) \rightarrow e + H_2(b_{triplet}) \rightarrow e + H + H$ (Greenl.)

```
b0 -2.767028933904D+01 b1 1.052255117744D+01 b2 -4.973278873545D+00
b3 1.451265302500D+00 b4 -3.063125679682D-01 b5 4.434303316421D-02
b6 -4.097774935546D-03 b7 2.160836790142D-04 b8 -4.932435984375D-06
Max. rel. Error: .0009 %
Mean rel. Error: .0003 %
```

2.67 Reaction 2.611T $e + H_2(v = 6) \rightarrow e + H_2(b_{triplet}) \rightarrow e + H + H$ (Ten.)

```
b0 -21.3121502328226 b1 3.67180595146767 b2 -2.16627223962433
b3 0.955708249141364 b4 -0.32072282880924 b5 0.0661715411325917
b6 -0.00787337152084188 b7 0.000496850449448679 b8 -1.2879247141546e-05
Max. rel. Error: 3.356e-05 %
Mean rel. Error: 4.513e-06 %
```

2.68 Reaction 2.612th $p + H_2(v = 6) \rightarrow H + H_2^+$ (ion conversion)

thermal rate coeff. for T(p) = T(H2)

b0 -2.198120878181D+01 b1 1.287800277418D+00 b2 -1.477569386898D+00 b3 6.341199961692D-01 b4 -7.940196845073D-02 b5 -3.857656591908D-03 b6 1.748040548337D-03 b7 -1.472771995563D-04 b8 4.123096000888D-06 Max. rel. Error: .0008 % Mean rel. Error: .0003 %

2.69 Reaction 2.612 $p + H_2(v = 6) \rightarrow H + H_2^+$ (ion conversion)

```
b0-1.947342173000E+01b12.552627389749E+00b2-2.608194219039E+00b31.347571390219E+00b4-3.646182244708E-01b55.938400660590E-02b6-5.795480327782E-03b73.075899232458E-04b8-6.769294455276E-06
```

2.70 Reaction 2.613 $e + H_2(v = 6) \rightarrow H_2^- \rightarrow H + H^-$

```
b0 -1.927528972571D+01 b1 -5.457126038696D-02 b2 -6.576593507257D-01
b3 1.874931378235D-01 b4 -3.643480518488D-02 b5 4.897128398432D-03
b6 -4.390980935440D-04 b7 2.367076011992D-05 b8 -5.789590362768D-07
Max. rel. Error: .0020 %
Mean rel. Error: .0007 %
```

2.71 Reaction 2.614 $e + H_2(v = 6) \rightarrow e + H_2^+ + e$

Janev-Reiter, JUEL-rep. eth 1.275300E+01

```
b0 -3.241016595549E+01 b1 1.388073863431E+01 b2 -5.922094220968E+00
b3 1.604395247906E+00 b4 -2.946889149200E-01 b5 3.654977851345E-02
b6 -2.968203805941E-03 b7 1.443221949914E-04 b8 -3.204695160354E-06
TEMAX = 1.00000D 03 EV
Max. rel. Error: .xxx %
Mean rel. Error: .xxx %
```

2.72 Reaction 2.711 $e + H_2(v = 7) \rightarrow e + H_2(b_{triplet}) \rightarrow e + H + H$ (Greenl.)

```
b0 -2.764683592986D+01 b1 1.052256124887D+01 b2 -4.973309833709D+00
b3 1.451299433487D+00 b4 -3.063306982504D-01 b5 4.434828583212D-02
b6 -4.098628142788D-03 b7 2.161567917415D-04 b8 -4.935011253373D-06
Max. rel. Error: .0008 %
Mean rel. Error: .0003 %
```

2.73 Reaction 2.711T $e + H_2(v = 7) \rightarrow e + H_2(b_{triplet}) \rightarrow e + H + H$ (Ten.)

```
b0 -21.2234451158395 b1 3.79779548996827 b2 -2.20485191961662
b3 0.881816655859811 b4 -0.270729873773876 b5 0.0529758947071274
b6 -0.006119396039219 b7 0.000379920833744922 b8 -9.76407488585707e-06
Max. rel. Error: 3.49e-05 %
Mean rel. Error: 4.631e-06 %
```

2.74 Reaction 2.712th $p + H_2(v = 7) \rightarrow H + H_2^+$ (ion conversion)

thermal rate coeff. for T(p) = T(H2)

```
b0 -2.265768563070D+01 b1 1.287790813817D+00 b2 -1.477557104204D+00
b3 6.341128293460D-01 b4 -7.940032254390D-02 b5 -3.857581842174D-03
b6 1.747941965381D-03 b7 -1.472615566830D-04 b8 4.122302064791D-06
Max. rel. Error: .0008 %
Mean rel. Error: .0003 %
```

2.75 Reaction 2.712 $p + H_2(v = 7) \rightarrow H + H_2^+$ (ion conversion)

```
b0-1.947342173000E+01b12.552627389749E+00b2-2.608194219039E+00b31.347571390219E+00b4-3.646182244708E-01b55.938400660590E-02b6-5.795480327782E-03b73.075899232458E-04b8-6.769294455276E-06
```

2.76 Reaction 2.713 $e + H_2(v = 7) \rightarrow H_2^- \rightarrow H + H^-$

```
b0 -1.929224252337D+01 b1 -3.590154847244D-01 b2 -4.966611701523D-01
b3 1.315458104960D-01 b4 -2.278676033674D-02 b5 2.586659978513D-03
b6 -1.829570469995D-04 b7 7.105733698367D-06 b8 -1.085295608434D-07
Max. rel. Error: .0013 %
Mean rel. Error: .0005 %
```

2.77 Reaction 2.714 $e + H_2(v = 7) \rightarrow e + H_2^+ + e$

Janev-Reiter, JUEL-rep. eth 1.240800E+01

```
b0 -3.199508030297E+01 b1 1.365940877532E+01 b2 -6.049963928526E+00
b3 1.751601536116E+00 b4 -3.473823631818E-01 b5 4.594389870428E-02
b6 -3.858383561780E-03 b7 1.863363584155E-04 b8 -3.953846213463E-06
TEMAX = 1.00000D 03 EV
Max. rel. Error: .xxx %
Mean rel. Error: .xxx %
```

2.78 Reaction 2.811 $e + H_2(v = 8) \rightarrow e + H_2(b_{triplet}) \rightarrow e + H + H$ (Greenl.)

```
b0 -2.762548922048D+01 b1 1.052257612473D+01 b2 -4.973350220434D+00
b3 1.451343133232D+00 b4 -3.063544627643D-01 b5 4.435536964224D-02
b6 -4.099802397676D-03 b7 2.162583361807D-04 b8 -4.938582991498D-06
Max. rel. Error: .0008 %
Mean rel. Error: .0003 %
```

2.79 Reaction 2.811T $e + H_2(v = 8) \rightarrow e + H_2(b_{triplet}) \rightarrow e + H + H$ (Ten.)

```
b0 -21.2234451158395 b1 3.79779548996827 b2 -2.20485191961662
b3 0.881816655859811 b4 -0.270729873773876 b5 0.0529758947071274
b6 -0.006119396039219 b7 0.000379920833744922 b8 -9.76407488585707e-06
Max. rel. Error: 3.49e-05 %
Mean rel. Error: 4.631e-06 %
```

2.80 Reaction 2.812th $p + H_2(v = 8) \rightarrow H + H_2^+$ (ion conversion)

Rate coeff. for T(p) = T(H2)

```
b0 -2.312377572562D+01 b1 1.287797017082D+00 b2 -1.477563048344D+00
b3 6.341171844357D-01 b4 -7.940241959935D-02 b5 -3.857038385376D-03
b6 1.747872038635D-03 b7 -1.472577477196D-04 b8 4.122258391283D-06
Max. rel. Error: .0008 %
Mean rel. Error: .0003 %
```

2.81 Reaction 2.812 $p + H_2(v = 8) \rightarrow H + H_2^+$ (ion conversion)

Rate coeff. for H2 at rest, derived from HYDHEL data. Greenland scaling

b0-1.947342173000E+01b12.552627389749E+00b2-2.608194219039E+00b31.347571390219E+00b4-3.646182244708E-01b55.938400660590E-02b6-5.795480327782E-03b73.075899232458E-04b8-6.769294455276E-06

2.82 Reaction 2.813 $e + H_2(v = 8) \rightarrow H_2^- \rightarrow H + H^-$

```
b0 -1.958440259728D+01 b1 -6.441357547219D-01 b2 -3.509251619114D-01
b3 8.250967928444D-02 b4 -1.110578372126D-02 b5 6.353035206263D-04
b6 3.230666138956D-05 b7 -6.817667604373D-06 b8 2.879302754787D-07
Max. rel. Error: .0024 %
Mean rel. Error: .0012 %
```

2.83 Reaction 2.814 $e + H_2(v = 8) \rightarrow e + H_2^+ + e$

Janev-Reiter, JUEL-rep. eth 1.209300E+01

```
b0 -3.161209981241E+01 b1 1.315443924925E+01 b2 -5.565861497924E+00
b3 1.466628707574E+00 b4 -2.498209080604E-01 b5 2.622910410308E-02
b6 -1.531860781957E-03 b7 3.792496165572E-05 b8 -9.865107527778E-09
TEMAX = 1.00000D 03 EV
Max. rel. Error: .xxx %
Mean rel. Error: .xxx %
```

2.84 Reaction 2.911 $e + H_2(v = 9) \rightarrow e + H_2(b_{triplet}) \rightarrow e + H + H$ (Greenl.)

```
b0 -2.760624341071D+01 b1 1.052252684188D+01 b2 -4.973238725352D+00
b3 1.451236614115D+00 b4 -3.063019800822D-01 b5 4.434089612595D-02
b6 -4.097543054859D-03 b7 2.160716334553D-04 b8 -4.932231997412D-06
Max. rel. Error: .0008 %
Mean rel. Error: .0003 %
```

2.85 Reaction 2.911T $e + H_2(v = 9) \rightarrow e + H_2(b_{triplet}) \rightarrow e + H + H$ (Ten.)

```
b0 -21.2234451158395 b1 3.79779548996827 b2 -2.20485191961662
b3 0.881816655859811 b4 -0.270729873773876 b5 0.0529758947071274
b6 -0.006119396039219 b7 0.000379920833744922 b8 -9.76407488585707e-06
Max. rel. Error: 3.49e-05 %
Mean rel. Error: 4.631e-06 %
```

2.86 Reaction 2.912th $p + H_2(v = 9) \rightarrow H + H_2^+$ (ion conversion)

thermal Rate coeff. for T(p) = T(H2)

```
b0 -2.346789836907D+01 b1 1.287805383903D+00 b2 -1.477588720367D+00
b3 6.341441719511D-01 b4 -7.941608618199D-02 b5 -3.853256143552D-03
b6 1.747283304462D-03 b7 -1.472092156357D-04 b8 4.120607671872D-06
Max. rel. Error: .0007 %
Mean rel. Error: .0002 %
```

2.87 Reaction 2.912 $p + H_2(v = 9) \rightarrow H + H_2^+$ (ion conversion)

Rate coeff. for H2 at rest, derived from HYDHEL data. Greenland scaling

b0-1.947342173000E+01b12.552627389749E+00b2-2.608194219039E+00b31.347571390219E+00b4-3.646182244708E-01b55.938400660590E-02b6-5.795480327782E-03b73.075899232458E-04b8-6.769294455276E-06

2.88 Reaction 2.913 $e + H_2(v = 9) \rightarrow H_2^- \rightarrow H + H^-$

```
b0 -1.939772885025D+01 b1 -8.253817970642D-01 b2 -2.434784692591D-01
b3 4.045157332450D-02 b4 2.913895811381D-04 b5 -1.459971700840D-03
b6 2.791086540504D-04 b7 -2.348958212881D-05 b8 7.765205565247D-07
Max. rel. Error: .0046 %
Mean rel. Error: .0022 %
```

2.89 Reaction 2.914 $e + H_2(v = 9) \rightarrow e + H_2^+ + e$

Janev-Reiter, JUEL-rep. eth 1.180900E+01

```
b0 -3.129110031970E+01 b1 1.299658870009E+01 b2 -5.666154017553E+00
b3 1.584294271614E+00 b4 -2.941981567042E-01 b5 3.467135918621E-02
b6 -2.401613093175E-03 b7 8.406824396275E-05 b8 -9.845880388168E-07
TEMAX = 1.00000D 03 EV
Max. rel. Error: .xxx %
Mean rel. Error: .xxx %
```

2.90 Reaction 2.1011 $e + H_2(v = 10) \rightarrow e + e + H_2(b_{triplet}) \rightarrow e + H + H$ (Greenl.)

b0 -2.758911407569D+01 b1 1.052257675919D+01 b2 -4.973341819629D+00 b3 1.451330880965D+00 b4 -3.063476040789D-01 b5 4.435342752538D-02 b6 -4.099505380607D-03 b7 2.162348682406D-04 b8 -4.937828839451D-06 Max. rel. Error: .0008 %

```
Mean rel. Error: .0003 %
```

2.91 Reaction 2.1011T $e + H_2(v = 10) \rightarrow e + e + H_2(b_{triplet}) \rightarrow e + H + H$ (Ten.)

```
b0 -21.2234451158395 b1 3.79779548996827 b2 -2.20485191961662
b3 0.881816655859811 b4 -0.270729873773876 b5 0.0529758947071274
b6 -0.006119396039219 b7 0.000379920833744922 b8 -9.76407488585707e-06
Max. rel. Error: 3.49e-05 %
Mean rel. Error: 4.631e-06 %
```

2.92 Reaction 2.1012th $p + H_2(v = 10) \rightarrow H + H_2^+$ (ion conversion)

thermal rate coeff. for T(p) = T(H2)

```
b0 -2.373156447008D+01 b1 1.287797144053D+00 b2 -1.477569836046D+00
b3 6.341249292595D-01 b4 -7.940617689847D-02 b5 -3.856048097769D-03
b6 1.747721542109D-03 b7 -1.472452386033D-04 b8 4.121817056481D-06
Max. rel. Error: .0009 %
Mean rel. Error: .0002 %
```

2.93 Reaction 2.1012 $p + H_2(v = 10) \rightarrow H + H_2^+$ (ion conversion)

```
b0-1.947342173000E+01b12.552627389749E+00b2-2.608194219039E+00b31.347571390219E+00b4-3.646182244708E-01b55.938400660590E-02b6-5.795480327782E-03b73.075899232458E-04b8-6.769294455276E-06
```

2.94 Reaction 2.1013 $e + H_2(v = 10) \rightarrow H_2^- \rightarrow H + H^-$

```
b0 -1.961343230561D+01 b1 -8.639443544811D-01 b2 -2.205710582788D-01
b3 3.126712865456D-02 b4 2.879930125755D-03 b5 -1.957216223866D-03
b6 3.401585912652D-04 b7 -2.776571437959D-05 b8 9.057334076982D-07
Max. rel. Error: .0054 %
Mean rel. Error: .0026 %
```

2.95 Reaction 2.1014 $e + H_2(v = 10) \rightarrow e + H_2^+ + e$

Janev-Reiter, JUEL-rep. eth 11.557

```
b0 -3.100582302649E+01 b1 1.274999381088E+01 b2 -5.673204141782E+00
b3 1.689291367906E+00 b4 -3.519487708149E-01 b5 4.915723567388E-02
b6 -4.314196523316E-03 b7 2.129587027608E-04 b8 -4.482246060660E-06
TEMAX = 1.00000D 03 EV
Max. rel. Error: .xxx %
Mean rel. Error: .xxx %
```

2.96 Reaction 2.11ll $e + H_2(v = 11) \rightarrow e + H_2(b_{triplet}) \rightarrow e + H + H$ (Greenl.)

b0 -2.757408595229D+01 b1 1.052257439706D+01 b2 -4.973330731558D+00 b3 1.451319844531D+00 b4 -3.063427260066D-01 b5 4.435228299508D-02 b6 -4.099356745512D-03 b7 2.162248248938D-04 b8 -4.937557673448D-06 Max. rel. Error: .0008 % Mean rel. Error: .0003 %

2.97 Reaction 2.1111T $e + H_2(v = 11) \rightarrow e + H_2(b_{triplet}) \rightarrow e + H + H$ (Ten.)

```
b0 -21.2234451158395 b1 3.79779548996827 b2 -2.20485191961662
b3 0.881816655859811 b4 -0.270729873773876 b5 0.0529758947071274
b6 -0.006119396039219 b7 0.000379920833744922 b8 -9.76407488585707e-06
Max. rel. Error: 3.49e-05 %
Mean rel. Error: 4.631e-06 %
```

2.98 Reaction 2.1112th $p + H_2(v = 11) \rightarrow H + H_2^+$ (ion conversion)

thermal rate coeff. for T(p) = T(H2)

```
b0 -2.393739736481D+01 b1 1.287787931375D+00 b2 -1.477544702789D+00
b3 6.340970104750D-01 b4 -7.939032683233D-02 b5 -3.861042924976D-03
b6 1.748603370756D-03 b7 -1.473267134353D-04 b8 4.124879550605D-06
Max. rel. Error: .0007 %
Mean rel. Error: .0002 %
```

2.99 Reaction 2.1112 $p + H_2(v = 11) \rightarrow H + H_2^+$ (ion conversion)

```
b0-1.947342173000E+01b12.552627389749E+00b2-2.608194219039E+00b31.347571390219E+00b4-3.646182244708E-01b55.938400660590E-02b6-5.795480327782E-03b73.075899232458E-04b8-6.769294455276E-06
```

2.100 Reaction 2.1113 $e + H_2(v = 11) \rightarrow H_2^- \rightarrow H + H^-$

```
b0 -1.961343230561D+01 b1 -8.639443544811D-01 b2 -2.205710582788D-01
b3 3.126712865456D-02 b4 2.879930125755D-03 b5 -1.957216223866D-03
b6 3.401585912652D-04 b7 -2.776571437959D-05 b8 9.057334076982D-07
Max. rel. Error: .0054 %
Mean rel. Error: .0026 %
```

2.101 Reaction 2.1114 $e + H_2(v = 11) \rightarrow e + H_2^+ + e$

Janev-Reiter, JUEL-rep. eth 1.133400E+01

```
b0 -3.079446327037E+01 b1 1.259121133842E+01 b2 -5.554414001000E+00
b3 1.627653615551E+00 b4 -3.364988459532E-01 b5 4.759783628804E-02
b6 -4.327984150924E-03 b7 2.256855418333E-04 b8 -5.093163873610E-06
TEMAX = 1.00000D 03 EV
Max. rel. Error: .xxx %
Mean rel. Error: .xxx %
```

2.102 Reaction 2.12l1 $e + H_2(v = 12) \rightarrow e + H_2(b_{triplet}) \rightarrow e + H + H$ (Greenl.)

b0 -2.756116092185D+01 b1 1.052255091496D+01 b2 -4.973277908964D+00 b3 1.451269199285D+00 b4 -3.063172671814D-01 b5 4.434507032384D-02 b6 -4.098198643285D-03 b7 2.161264523859D-04 b8 -4.934121004497D-06 Max. rel. Error: .0008 % Mean rel. Error: .0003 %

2.103 Reaction 2.12l1T $e + H_2(v = 12) \rightarrow e + H_2(b_{triplet}) \rightarrow e + H + H$ (Ten.)

b0 -21.2234451158395 b1 3.79779548996827 b2 -2.20485191961662 b3 0.881816655859811 b4 -0.270729873773876 b5 0.0529758947071274 b6 -0.006119396039219 b7 0.000379920833744922 b8 -9.76407488585707e-06 Max. rel. Error: 3.49e-05 % Mean rel. Error: 4.631e-06 %

2.104 Reaction 2.12l2th $p + H_2(v = 12) \rightarrow H + H_2^+$ (ion conversion)

thermal rate coeff. for T(p) = T(H2)

```
b0 -2.409894660398D+01 b1 1.287796545437D+00 b2 -1.477563283235D+00
b3 6.341166151596D-01 b4 -7.940179418730D-02 b5 -3.857236994575D-03
b6 1.747896331887D-03 b7 -1.472584557526D-04 b8 4.122218513563D-06
Max. rel. Error: .0008 %
Mean rel. Error: .0003 %
```

2.105 Reaction 2.12l2 $p + H_2(v = 12) \rightarrow H + H_2^+$ (ion conversion)

```
b0-1.947342173000E+01b12.552627389749E+00b2-2.608194219039E+00b31.347571390219E+00b4-3.646182244708E-01b55.938400660590E-02b6-5.795480327782E-03b73.075899232458E-04b8-6.769294455276E-06
```

2.106 Reaction 2.1213 $e + H_2(v = 12) \rightarrow H_2^- \rightarrow H + H^-$

```
b0 -1.961343230561D+01 b1 -8.639443544811D-01 b2 -2.205710582788D-01
b3 3.126712865456D-02 b4 2.879930125755D-03 b5 -1.957216223866D-03
b6 3.401585912652D-04 b7 -2.776571437959D-05 b8 9.057334076982D-07
Max. rel. Error: .0054 %
Mean rel. Error: .0026 %
```

2.107 Reaction 2.12l4 $e + H_2(v = 12) \rightarrow e + H_2^+ + e$

Janev-Reiter, JUEL-rep. eth 11.166

```
b0 -3.059332240574E+01 b1 1.235407166829E+01 b2 -5.305620831066E+00
b3 1.453071037647E+00 b4 -2.664731004959E-01 b5 3.162021399547E-02
b6 -2.272804513332E-03 b7 8.697749637266E-05 b8 -1.276410280092E-06
TEMAX = 1.00000D 03 EV
Max. rel. Error: .xxx %
Mean rel. Error: .xxx %
```

2.108 Reaction 2.13l1 $e + H_2(v = 13) \rightarrow e + H_2(b_{triplet}) \rightarrow e + H + H$ (Greenl.)

b0 -2.755034619316D+01 b1 1.052258385150D+01 b2 -4.973360506789D+00 b3 1.451350903493D+00 b4 -3.063580178328D-01 b5 4.435636964964D-02 b6 -4.099970713992D-03 b7 2.162737880270D-04 b8 -4.939174367895D-06 Max. rel. Error: .0009 % Mean rel. Error: .0003 %

2.109 Reaction 2.13l1T $e + H_2(v = 13) \rightarrow e + H_2(b_{triplet}) \rightarrow e + H + H$ (Ten.)

b0 -21.2234451158395 b1 3.79779548996827 b2 -2.20485191961662 b3 0.881816655859811 b4 -0.270729873773876 b5 0.0529758947071274 b6 -0.006119396039219 b7 0.000379920833744922 b8 -9.76407488585707e-06 Max. rel. Error: 3.49e-05 % Mean rel. Error: 4.631e-06 %

2.110 Reaction 2.13l2th $p + H_2(v = 13) \rightarrow H + H_2^+$ (ion conversion)

thermal rate coeff. for T(p) = T(H2)

```
b0 -2.422483601892D+01 b1 1.287790908632D+00 b2 -1.477549007523D+00
b3 6.341005887109D-01 b4 -7.939255849820D-02 b5 -3.860134331857D-03
b6 1.748395205906D-03 b7 -1.473026752126D-04 b8 4.123793755724D-06
Max. rel. Error: .0009 %
Mean rel. Error: .0003 %
```

2.111 Reaction 2.13l2 $p + H_2(v = 13) \rightarrow H + H_2^+$ (ion conversion)

```
b0-1.947342173000E+01b12.552627389749E+00b2-2.608194219039E+00b31.347571390219E+00b4-3.646182244708E-01b55.938400660590E-02b6-5.795480327782E-03b73.075899232458E-04b8-6.769294455276E-06
```

2.112 Reaction 2.1313 $e + H_2(v = 13) \rightarrow H_2^- \rightarrow H + H^-$

```
b0 -1.961343230561D+01 b1 -8.639443544811D-01 b2 -2.205710582788D-01
b3 3.126712865456D-02 b4 2.879930125755D-03 b5 -1.957216223866D-03
b6 3.401585912652D-04 b7 -2.776571437959D-05 b8 9.057334076982D-07
Max. rel. Error: .0054 %
Mean rel. Error: .0026 %
```

2.113 Reaction 2.13l4 $e + H_2(v = 13) \rightarrow e + H_2^+ + e$

Janev-Reiter, JUEL-rep. eth 1.103600E+01

```
b0 -3.040637628145E+01 b1 1.206139604914E+01 b2 -5.133567877491E+00
b3 1.420670602666E+00 b4 -2.718421480963E-01 b5 3.485869586564E-02
b6 -2.812572602589E-03 b7 1.272053775577E-04 b8 -2.424574709641E-06
TEMAX = 1.00000D 03 EV
Max. rel. Error: .xxx %
Mean rel. Error: .xxx %
```

2.114 Reaction 2.14l1 $e + H_2(v = 14) \rightarrow e + H_2(b_{triplet}) \rightarrow e + H + H$ (Greenl.)

b0 -2.754163096543D+01 b1 1.052254544931D+01 b2 -4.973269874009D+00 b3 1.451261590180D+00 b4 -3.063130130080D-01 b5 4.434371585649D-02 b6 -4.097959650066D-03 b7 2.161048253687D-04 b8 -4.933341800181D-06 Max. rel. Error: .0008 % Mean rel. Error: .0003 %

2.115 Reaction 2.14l1T $e + H_2(v = 14) \rightarrow e + H_2(b_{triplet}) \rightarrow e + H + H$ (Ten.)

b0 -21.2234451158395 b1 3.79779548996827 b2 -2.20485191961662 b3 0.881816655859811 b4 -0.270729873773876 b5 0.0529758947071274 b6 -0.006119396039219 b7 0.000379920833744922 b8 -9.76407488585707e-06 Max. rel. Error: 3.49e-05 % Mean rel. Error: 4.631e-06 %

2.116 Reaction 2.14l2th $p + H_2(v = 14) \rightarrow H + H_2^+$ (ion conversion)

thermal rate coeff. for T(p) = T(H2)

Mean rel. Error:

b0 -2.432076996732D+01 b1 1.287803404369D+00 b2 -1.477573884680D+00 b3 6.341217583821D-01 b4 -7.940186237537D-02 b5 -3.857829177957D-03 b6 1.748067715781D-03 b7 -1.472776363802D-04 b8 4.122991462534D-06 Max. rel. Error: .0007 %

2.117 Reaction 2.14l2 $p + H_2(v = 14) \rightarrow H + H_2^+$ (ion conversion)

Rate coeff. for H2 at rest, derived from HYDHEL data. Greenland scaling

.0003 %

```
b0-1.947342173000E+01b12.552627389749E+00b2-2.608194219039E+00b31.347571390219E+00b4-3.646182244708E-01b55.938400660590E-02b6-5.795480327782E-03b73.075899232458E-04b8-6.769294455276E-06
```

2.118 Reaction 2.14l3 $e + H_2(v = 14) \rightarrow H_2^- \rightarrow H + H^-$

```
b0 -1.961343230561D+01 b1 -8.639443544811D-01 b2 -2.205710582788D-01
b3 3.126712865456D-02 b4 2.879930125755D-03 b5 -1.957216223866D-03
b6 3.401585912652D-04 b7 -2.776571437959D-05 b8 9.057334076982D-07
Max. rel. Error: .0054 %
Mean rel. Error: .0026 %
```

2.119 Reaction 2.14l4 $e + H_2(v = 14) \rightarrow e + H_2^+ + e$

Janev-Reiter, JUEL-rep. eth 10.959

```
b0 -3.032266556048E+01 b1 1.230019998846E+01 b2 -5.638800771953E+00
b3 1.795709971225E+00 b4 -4.147784008872E-01 b5 6.552622885626E-02
b6 -6.544169502584E-03 b7 3.672791438275E-04 b8 -8.764761530765E-06
TEMAX = 1.00000D 03 EV
Max. rel. Error: .xxx %
Mean rel. Error: .xxx %
```

2.120 Reaction 2.1.8rs $p + e \rightarrow H(n = 1) + h\nu$, direct rad.rec

Fujimoto, single step rate, for Lyman rad.rec. continuum emission to be used as Lyman-cont. source rate

b0 -2.957888914571D+01 b1 -5.407764512982D-01 b2 -1.887782807843D-02 b3 -5.957963562133D-03 b4 -6.689096738611D-04 b5 1.798038419103D-04 b6 5.588505208658D-06 b7 -4.618096511047D-06 b8 3.313570987992D-07 Max. rel. Error: .0700 % Mean rel. Error: .0372 %

3 H.3 : Fits for $< \sigma v > (E_b, T)$

3.1 Reaction 2.012 $p + H_2(v = 0) \rightarrow H(1s) + H_2^+$

same as in HYDHEL 3.2.3, for v = 0. Scaling from here to other vibr. states v

	E Index	к О	1	2
Т	Index			
	0	-2.393090018673e+01	6.248759475696e-01	4.860672617319e-02
	1	1.497880823202e+00	-1.321184618254e+00	1.610180305377e-01
	2	-1.108848312589e+00	1.026939763848e+00	-2.764437632008e-01
	3	2.723796545755e-01	-3.349189897157e-01	1.525831234833e-01
	4	2.721877464232e-02	4.328258310611e-02	-4.172607648071e-02
	5	-1.779177173774e-02	4.465034873018e-04	6.494173133750e-03
	6	2.547195398346e-03	-6.602886969983e-04	-5.936946344163e-04
	7	-1.581068390892e-04	6.000753124589e-05	2.989789198510e-05
	8	3.720016363224e-06	-1.724843689004e-06	-6.403267693113e-07
	E Indez	x 3	4	5
Т	Index			
	0	-1.200688114292e-01	8.087736504737e-03	9.460417081363e-03
	1	1.165310493854e-01	-3.963918450387e-02	4.451468403951e-03
	2	-3.948109106588e-02	3.853676685634e-02	-9.097709483121e-03
	3	-9.592981926094e-03	-1.131614493158e-02	3.519316476081e-03
	4	1.001163900824e-02	3.016020168360e-04	-4.649867654705e-04
	5	-2.726517864643e-03	3.947434451322e-04	-3.560364682888e-06
	6	3.516907384191e-04	-7.253981468239e-05	6.007588925145e-06
	7	-2.210901325776e-05	5.074761954649e-06	-4.890225279817e-07
	8	5.443461456508e-07	-1.285040546716e-07	1.225908917355e-08
	E Index	к 6	7	8
Т	Index			
	0	-2.128651089328e-03	1.685181886244e-04	-4.665309226730e-06
	1	-1.304738719348e-04	-8.714697396102e-06	4.796574269551e-07
	2	1.042066219239e-03	-5.955686719189e-05	1.358749516236e-06
	3	-4.463914380371e-04	2.672110767494e-05	-6.218012239798e-07
	4	7.356430658399e-05	-4.797055206851e-06	1.159195338618e-07
	5	-4.585211534749e-06	4.292978331848e-07	-1.209703556619e-08
	6	-1.866842996766e-08	-2.383240469589e-08	9.353713300206e-10
	7	1.067090708836e-08	1.188959741308e-09	-5.741789281748e-11
	8	-1.967393094286e-10	-3.854014407618e-11	1.748544462760e-12

Error 7.17e-03 (D)

Error is improved to 2.24e-03 (C) if only values of $\langle sv \rangle$ for T > 1 eV are considered.

4 H.4 : Fits for $< \sigma v > (n_e, T)$

Mean rel. Error: .6261 %

4.1 Reaction 2.1.5a $H + e \rightarrow H^+ + 2e, Ly_{\alpha}$ -removed

Effective hydrogenic ionisation rate. Data: T.Fujimoto Ly-alpha removed, Formulation II, data for radiation transfer, or Lyman-alpha opaque case, with all other Lyman lines transparent.

	E-I	ndex:	0		1		2
T-Ind	dex:						
	0	-3.02243	31884192D+01	1.4778	880772147D-01	-1.5	572672172571D-01
	1	1.2425	33748190D+01	-5.4703	884149249D-02	4.1	16202175547D-02
	2	-6.3142	77246192D+00	1.9056	561825335D-03	9.2	29826010107D-03
	3	2.4805	77766986D+00	-3.4510	67142808D-03	-6.5	534524280156D-03
	4	-7.5689	06138410D-01	8.9396	531300339D-03	-4.8	308204401856D-04
	5	1.6221	15446335D-01	-5.0499	063529433D-03	1.3	361061125082D-03
	6	-2.2171	92152793D-02	1.2658	865423492D-03	-4.6	544904483405D-04
	7	1.7086	76750718D-03	-1.4924	109336441D-04	6.4	193737984557D-05
	8	-5.6067	02924248D-05	6.7254	150104229D-06	-3.2	287579398592D-06
	E-I	ndex:	3		4		5
T-Ind	dex:						
	0	7.2808	79238421D-02	-1.5893	818183128D-02	1.8	352697229106D-03
	1	-1.6574	08268822D-02	2.7733	889081609D-03	-2.1	41817737737D-04
	2	-4.3328	42725523D-03	1.2755	573319668D-03	-2.0)24812982595D-04
	3	2.6081	12513447D-03	-4.9016	549510295D-04	5.0)94138248796D-05
	4	-3.7632	69379389D-04	6.6244	166844459D-05	1.8	344157708971D-08
	5	-9.8046	36464500D-05	-7.9837	57512249D-06	3.2	247109732244D-07
	6	6.2147	82620914D-05	-1.4643	396038380D-06	-1.9	069168432781D-07
	7	-1.11112	20948999D-05	7.0683	350505865D-07	-4.1	L04806461655D-09
	8	6.5475	64256484D-07	-5.8479	945540489D-08	2.3	361191962969D-09
	E-I	ndex:	6		7		8
T-Ind	dex:						
	0	-1.1578	75780788D-04	3.6479	82620347D-06	-4.5	547088373770D-08
	1	5.1283	77308193D-06	1.5440)90527203D-07	-6.6	541974919482D-09
	2	1.6953	87091392D-05	-6.9585	582121645D-07	1.0)99951417209D-08
	3	-2.84592	27207874D-06	7.4758	887055081D-08	-6.4	122897849582D-10
	4	-7.17343	10358984D-07	5.2507	74467977D-08	-1.1	31242699174D-09
	5	1.5145	82937665D-07	-1.3151	07905875D-08	3.0)17774523710D-10
	6	2.0218	03051693D-09	8.8638	305177302D-10	-2.8	375901203141D-11
	7	-7.3278	80180666D-10	-1.4327	79345041D-11	1.2	214953547643D-12
	8	-4.48253	35378130D-11	1.2011	50148690D-12	-3.5	597174268523D-14
Max.	rel.	Error:	2.5098 %				

4.2 Reaction 2.1.5b $H(n = 1) + e \rightarrow H^+ + 2e, Ly_{\alpha}$ -removed

Effective hydrogenic ionisation rate. Ly-alpha removed, Formulation I, data for radiation transfer or for Lyman-alpha opaque case, all other Lyman lines transparent, and n=2 state metastable

E	-Index:	0	1	2
T-Index	:			
0	-3.2483	84445230D+01	7.293410610463D-02	-6.942352986508D-02
1	1.4278	09037474D+01	-3.887286473033D-02	2.478859076894D-02
2	-6.7269	72866893D+00	1.092594330815D-02	-3.336487886830D-03
3	2.1766	74919017D+00	1.764246675785D-03	1.751409035955D-04
4	-5.0903	38523044D-01	-4.306390407210D-03	8.874703074411D-04
5	8.2959	47264795D-02	1.983243222211D-03	-5.602463387149D-04
6	-8.8567	46653956D-03	-4.038613669733D-04	1.187401531764D-04
7	5.5376	96204476D-04	3.808747081131D-05	-9.719861669731D-06
8	-1.5311	61137972D-05	-1.348551160867D-06	2.265271054600D-07
E	-Index:	3	4	5
T-Index	:			
0	3.0410	32169286D-02	-6.086012592412D-03	6.363019817757D-04
1	-9.0201	48697515D-03	1.210856135948D-03	-4.699101677556D-05
2	3.5698	52431711D-04	3.110102668251D-04	-7.721118867758D-05
3	-2.4113	63042853D-04	-3.598459978140D-05	1.139983285471D-05
4	6.4761	48410259D-05	-1.872619765692D-05	2.076737885855D-06
5	4.2014	14598449D-05	-1.540245625626D-06	1.104351486597D-07
6	-1.0399	45546008D-05	5.786742392780D-07	-8.808085434566D-08
7	1.5675	90362684D-07	1.201707880062D-07	-7.880947976248D-09
8	5.8364	70567764D-08	-1.779395134379D-08	1.679753858814D-09
E	-Index:	6	7	8
T-Index	:			
0	-3.4356	64297628D-05	8.802267580237D-07	-7.995819111051D-09
1	-4.0076	87273585D-06	3.873206604671D-07	-8.671626429538D-09
2	7.3934	67613764D-06	-3.187206713399D-07	5.125213569428D-09
3	-8.1252	24526149D-07	1.822044547356D-08	-1.061236415891D-11
4	-2.6146	72116853D-07	1.734774242072D-08	-3.884613855226D-10
5	1.4631	09045635D-08	-2.002994443576D-09	5.379365821640D-11
6	7.0929	31520645D-09	-2.134940156380D-10	2.032057312592D-12
7	-8.5845	12206848D-11	1.997928983568D-11	-4.790497915314D-13
8	-7.0836	80798821D-11	1.139617384842D-12	7.735673361710D-16
Max. re	l. Error:	1.6577 %		

Mean	rel.	Error:	.2764	00
ncan	TCT.	DIIOI •	.2701	0

4.3 Reaction 2.1.5c $H(n = 1) + e \rightarrow H(n = 2) + e, Ly_{\alpha}$ -removed

Effective hydrogenic ionisation rate. Ly-alpha removed, Formulation I, data for radiation transfer

E-I	ndex: 0		1	2
T-Index:				
0	-2.7327024	22613D+01	-1.508576131264D-04	1.872353272462D-04
1	9.9428678	47868D+00	-2.632841887401D-04	3.452012251367D-04
2	-4.9975302	69473D+00	6.559282602805D-04	-5.797337934145D-04
3	1.6830524	23447D+00	1.254342763651D-04	8.545926767443D-05
4	-3.8363377	45154D-01	-3.185827629333D-04	1.009778672991D-04
5	5.7206955	20317D-02	1.400592671321D-04	-5.978401828728D-05
6	-5.3589552	17722D-03	-2.746966330902D-05	1.277061974502D-05
7	2.8883477	92841D-04	2.516940058093D-06	-1.158570567442D-06
8	-6.9150745	09856D-06	-8.703714842321D-08	3.633724963304D-08
E-I	ndex: 3		4	5
T-Index:				
0	-7.6294735	88333D-05	1.550097510180D-05	-1.731418238339D-06
1	-1.3265559	04790D-04	2.509311823554D-05	-2.554298250891D-06
2	2.2506487	41189D-04	-4.119998836569D-05	4.069891413295D-06
3	-4.5370150	62412D-05	9.220799309537D-06	-8.411676927015D-07
4	-1.5171539	42255D-05	-3.043173799395D-08	1.407410168855D-07
5	1.1808614	22945D-05	-8.317621018664D-07	6.141225578357D-09
6	-2.5515486	40525D-06	1.942510874330D-07	-3.606869466105D-09
7	2.0522110	11805D-07	-1.010930204187D-08	-5.682582207333D-10
8	-4.3221154	92549D-09	-3.244269571886D-10	9.764976297168D-11
E-I:	ndex: 6		7	8
T-Index:				
0	1.0748057	89263D-07	-3.470606438007D-09	4.542480946192D-11
1	1.3940473	01654D-07	-3.818799358166D-09	4.101078748816D-11
2	-2.2623494	26703D-07	6.695796328753D-09	-8.223791846038D-11
3	3.8043470	55718D-08	-7.715880618270D-10	3.936358646223D-12
4	-7.7225744	74149D-09	-2.434863248973D-11	6.531045548972D-12
5	2.6664558	17423D-10	9.825348918612D-11	-4.050855928030D-12
6	1.1710367	15797D-10	-2.809228870343D-11	9.792621302229D-13
7	3.7464198	77493D-11	1.529859104815D-12	-8.525738644768D-14
8	-5.8109584	40786D-12	6.995905890738D-14	1.757130683111D-15
Max. rel.	Error:	.1532 %		
Mean rel.	Error:	.0592 %		

4.4 Reaction 2.1.5d $H(n = 2) + e \rightarrow H(n = 1) + e, Ly_{\alpha}$ -removed

Effective hydrogenic ionisation rate. Ly-alpha removed, Formulation I, data for radiation transfer

E-I	ndex:	0	1	2
T-Index:				
0	-1.65981	8649793D+01	1.429484983203D-02	-2.100141042578D-02
1	1.74233	0959484D+00	-5.997846101940D-03	6.059773560752D-03
2	-3.42201	7214424D-02	-7.679301781651D-03	9.535509218740D-03
3	-3.39252	5402761D-01	3.605303852806D-03	-2.919305119896D-03
4	7.94814	3827542D-02	-2.943088253866D-04	2.234196372195D-04
5	1.86718	2206299D-02	-6.654726528785D-04	5.292004513132D-04
6	-9.96209	5099418D-03	3.385340695970D-04	-3.160633510540D-04
7	1.41470	4279202D-03	-5.868922497053D-05	5.981393236066D-05
8	-6.77814	5294630D-05	3.399096070717D-06	-3.648373573909D-06
E-I	ndex:	3	4	5
T-Index:				
0	1.15229	9446960D-02	-3.077712244622D-03	4.375850699659D-04
1	-1.69372	3561537D-03	7.833198105940D-05	3.273993894179D-05
2	-4.93200	8159215D-03	1.299912776071D-03	-1.842176089711D-04
3	6.57158	1162102D-04	-4.079964162940D-06	-1.609954859886D-05
4	1.13893	4671427D-04	-8.745345049058D-05	1.853247621903D-05
5	-1.46538	0906612D-04	1.715005769551D-05	-6.057079632044D-07
6	9.48630	7883572D-05	-1.082995210965D-05	1.743274221470D-07
7	-1.99348	5945346D-05	2.808826990812D-06	-1.549916526132D-07
8	1.29747	9669764D-06	-2.047939003690D-07	1.510643098784D-08
E-I	ndex:	6	7	8
T-Index:				
0	-3.35646	5680433D-05	1.296836422250D-06	-1.971818325611D-08
1	-5.34697	0160704D-06	2.977637393971D-07	-5.689256722171D-09
2	1.40409	6288049D-05	-5.366619323826D-07	8.046595868836D-09
3	2.17537	1740624D-06	-1.124395092099D-07	2.066437244946D-09
4	-1.75121	3305596D-06	7.634570384085D-08	-1.251382124144D-09
5	-4.46686	7192030D-08	4.307746584152D-09	-9.756692581883D-11
6	5.66672	4942724D-08	-4.040606638396D-09	8.160750637647D-11
7	-7.61900	4757300D-10	3.585200856379D-10	-8.907451129040D-12
8	-4.28583	3264589D-10	-2.317364247767D-12	2.299707584654D-13
Max. rel.	Error:	9.1628 %		
Mean rel.	Error:	3.6082 %		

4.5 Reaction 2.1.5e $H(n = 2) + e \rightarrow H^+ + 2e, Ly_{\alpha}$ -removed

Effective hydrogenic ionisation rate. Ly-alpha removed, Formulation I, data for radiation transfer

E-I	Index:	0	1	2
T-Index:				
0	-1.9496	502962418D+01	1.572379381689D-01	-1.672687958682D-01
1	4.1515	579585185D+00	1.556233836878D-02	-3.245367410506D-02
2	-1.773	L55597615D+00	1.371251582122D-02	-2.968766720555D-03
3	5.3185	599536087D-01	-2.157101198306D-02	1.634450838611D-02
4	-1.4052	207852240D-01	2.865675278552D-03	-2.159292629010D-03
5	2.9640	517574118D-02	1.926302090118D-03	-1.444026989600D-03
6	-4.2366	596509078D-03	-6.231773237818D-04	4.167286753002D-04
7	3.477	708693863D-04	6.423694857182D-05	-3.477587053445D-05
8	-1.2187	787732227D-05	-2.124219526300D-06	6.673464438778D-07
E-1	Index:	3	4	5
T-Index:				
0	7.714	528275367D-02	-1.668245359835D-02	1.918023565068D-03
1	1.4139	987396431D-02	-3.508873991240D-03	4.794032041305D-04
2	8.4122	201007766D-04	-2.584848991331D-05	-7.643710148594D-06
3	-6.2500)45783812D-03	1.236161025217D-03	-1.405279759171D-04
4	9.4076	557488399D-04	-2.085162968365D-04	2.527049237995D-05
5	4.1703	317752366D-04	-6.005016591723D-05	4.962988065563D-06
6	-1.1136	539199877D-04	1.451094245195D-05	-1.040996593967D-06
7	6.389	730706016D-06	-2.193260195502D-07	-5.493878229105D-08
8	9.777	L30038298D-08	-7.137568289626D-08	1.185846172382D-08
E-1	Index:	6	7	8
T-Index:				
0	-1.1771	L18883477D-04	3.626797574496D-06	-4.401597343578D-08
1	-3.6532	292205533D-05	1.430913561828D-06	-2.222952832799D-08
2	9.5339	973070265D-07	-4.156400550013D-08	6.067986475434D-10
3	9.182	767471549D-06	-3.177805341251D-07	4.488049880822D-09
4	-1.6885	503865789D-06	5.760613277956D-08	-7.777721186164D-10
5	-2.4984	139288842D-07	7.498373582042D-09	-1.045833850715D-10
6	4.3592	L65697592D-08	-1.067795658171D-09	1.258171671672D-11
7	6.582	775573429D-09	-2.790931932103D-10	4.242120120127D-12
8	-9.0220	658909532D-10	3.311018546718D-11	-4.760695087298D-13
Max. rel.	Error:	3.8493 %		

Mean rel. Error: 1.2476 %

4.6 Reaction 2.1.8a $H^+ + e \rightarrow H, Ly_{\alpha}$ -removed

Effective hydrogenic recombination rate. Ly-alpha removed, Formulation II, data for radiation transfer

E-I	Index:	0	1			2
T-Index:						
0	-2.86140	5005821D+01	4.62069958	82138D-02	-4.310217	977998D-02
1	-8.09625	3665929D-01	-1.98260018	80666D-02	5.149269	267498D-03
2	-8.68005	3705955D-03	-2.77434769	0614D-03	1.830331	540352D-02
3	-3.42362	0117720D-03	-2.25351701	1392D-03	2.534802	275545D-04
4	2.21738	6625472D-03	3.90623915	6966D-05	-9.640084	691630D-04
5	-9.13395	7716113D-04	2.18848767	6863D-04	-1.894817	112935D-04
6	1.12765	4792924D-04	8.25187366	6618D-05	6.950956	5334568D-06
7	-2.22155	8155667D-06	-3.34379884	8899D-05	1.629103	8970917D-05
8	-2.64823	7167503D-07	2.61982639	3182D-06	-1.692290)353860D-06
E-I	Index:	3	4			5
T-Index:						
0	2.16363	3746471D-02	-4.93419850	8671D-03	6.014239	865534D-04
1	-3.53631	9884091D-03	8.64630543	86282D-04	-1.214633	3770778D-04
2	-9.53965	6849598D-03	2.35127661	7334D-03	-2.945300	396974D-04
3	5.10527	3834881D-05	-1.01901129	5818D-04	2.446793	338056D-05
4	7.93574	0272598D-04	-2.11257486	54114D-04	2.585778	8679511D-05
5	6.79015	4677976D-06	1.50280434	2818D-05	-3.491112	2930467D-06
6	-1.68651	9524158D-05	3.08198122	20261D-06	-2.409573	3774776D-08
7	-2.45833	8620147D-06	2.08115182	21523D-07	-4.465203	3160706D-08
8	4.26634	6328712D-07	-6.31699130	7367D-08	7.438508	336626D-09
E-1	Index:	6	7			8
T-Index:						
0	-3.93966	1867048D-05	1.30145452	23149D-06	-1.687548	3001227D-08
1	9.22840	1211596D-06	-3.66977278	32966D-07	5.952644	052228D-09
2	1.94295	7459134D-05	-6.32418684	6600D-07	7.888547	656643D-09
3	-2.46158	8471260D-06	1.14326314	6679D-07	-1.989303	3560372D-09
4	-1.53680	0069369D-06	3.97690363	8756D-08	-2.941649	864993D-10
5	3.17640	7704657D-07	-1.28382113	34880D-08	1.899998	8044740D-10
6	-3.32380	8525611D-08	2.63497885	6800D-09	-5.944238	3126509D-11
7	7.21799	1219922D-09	-4.75664362	28740D-10	1.051833	3018767D-11
8	-6.66400	3260557D-10	3.39963602	29899D-11	-6.762717	749689D-13
Max. rel.	Error:	15.1059 %				

Mean rel. Error: 1.7676 %

4.7 Reaction 2.1.8b $H^+ + e \rightarrow H(n = 1), Ly_{\alpha}$ -removed

Effective hydrogenic recombination rate. Ly-alpha removed, Formulation I, data for radiation transfer

E	-Index:	0	1	2
T-Index	:			
0	-2.9043	92824956D+01	4.748380595941D-02	-3.885509978119D-02
1	-7.4131	52839270D-01	-1.624618836039D-02	-6.527747741468D-03
2	1.0085	00503247D-02	1.085273506172D-02	1.887705494629D-04
3	-9.8772	31300575D-03	-2.738218262627D-03	3.784783831386D-03
4	1.2289	35647219D-03	-2.341814733406D-03	1.484146074200D-03
5	-3.0017	11248224D-04	9.023695534517D-05	-3.075667894504D-04
6	3.7401	27557627D-05	4.135859674382D-04	-2.862610500727D-04
7	-1.1000	07463011D-06	-9.739599957078D-05	7.956179072838D-05
8	-6.6236	69500573D-08	6.278503216096D-06	-5.468707947925D-06
E	-Index:	3	4	5
T-Index	:			
0	1.7129	27469063D-02	-3.361241945480D-03	3.438926027645D-04
1	5.6585	51260601D-03	-2.030634326153D-03	3.289693006643D-04
2	-1.2819	58835325D-03	5.920743039417D-04	-1.008055485423D-04
3	-3.0144	06755608D-03	8.818315221189D-04	-1.270611978746D-04
4	4.7710	92031069D-05	-1.376014146835D-04	2.882374587156D-05
5	1.8136	94194025D-04	-4.661737833573D-05	6.158134640331D-06
6	5.2981	62697377D-05	1.508573031919D-06	-1.429821922438D-06
7	-2.1874	15032423D-05	2.379088649469D-06	-5.219696847870D-08
8	1.6797	19615032D-06	-2.327142241096D-07	1.472211001966D-08
E	-Index:	6	7	8
T-Index	:			
0	-1.7917	47341723D-05	4.272872174542D-07	-3.244985957631D-09
1	-2.7415	32450191D-05	1.127790526767D-06	-1.802383606427D-08
2	8.3789	52723411D-06	-3.376132910878D-07	5.253174205221D-09
3	9.5620	69331749D-06	-3.593850777871D-07	5.323191995381D-09
4	-2.5617	38074337D-06	1.052502490482D-07	-1.640172707727D-09
5	-4.3469	85316250D-07	1.567372870851D-08	-2.272881976447D-10
6	1.5894	81882484D-07	-7.158954160829D-09	1.176279052424D-10
7	-8.5754	44723676D-09	6.123179214785D-10	-1.187879809144D-11
8	-2.9328	46221875D-10	-7.940750343776D-12	3.012879621855D-13
Max. re	l. Error:	2.5149 %		

Mean rel. Error: .5219 %

4.8 Reaction 2.1.8c $H^+ + e \rightarrow H(n = 2), Ly_{\alpha}$ -removed

Effective hydrogenic recombination rate. Ly-alpha removed, Formulation I, data for radiation transfer

E-I	Index: 0	1	2
T-Index:			
0	-2.960304455412D+01	-6.024281511757D-02	9.194777261188D-02
1	-8.255954605093D-01	-1.059347367199D-02	-8.897748584135D-03
2	-2.049851775797D-02	1.210884622564D-02	-1.639618703650D-05
3	-1.131520438019D-02	1.036367999042D-03	-4.552983427899D-03
4	2.618464046931D-03	-1.104301146490D-03	5.697755633356D-04
5	-4.632238103475D-04	-1.350103571232D-04	3.926250234735D-04
6	3.828369069689D-06	1.614159561983D-04	-1.494540585461D-04
7	9.786336636781D-06	-3.043853986174D-05	2.086521383726D-05
8	-8.078260754039D-07	1.777045842963D-06	-1.058881685100D-06
E-I	Index: 3	4	5
T-Index:			
0	-3.993740839764D-02	8.671366680674D-03	-1.005626441360D-03
1	5.582328043677D-03	-1.867055064403D-03	2.982196188632D-04
2	-1.369889136652D-03	6.132950791357D-04	-1.013519534168D-04
3	1.830974908065D-03	-3.588456542352D-04	3.670103811047D-05
4	2.000759347085D-04	-1.205008259199D-04	2.147857229656D-05
5	-2.459714435516D-04	6.403906157425D-05	-8.440570754674D-06
6	4.714824850786D-05	-6.679116746805D-06	4.429838046009D-07
7	-3.730974398628D-06	-1.399848707717D-07	1.044288516493D-07
8	1.128105892342D-07	3.549913345546D-08	-9.660977795422D-09
E-I	Index: 6	7	8
T-Index:			
0	6.365495678023D-05	-2.047562769978D-06	2.611485123919D-08
1	-2.485712379918D-05	1.024080695104D-06	-1.635316914657D-08
2	8.186804434437D-06	-3.211255631268D-07	4.870951413670D-09
3	-2.030958351106D-06	5.796735092413D-08	-6.705716269527D-10
4	-1.769810818327D-06	6.892843390956D-08	-1.025703945606D-09
5	5.936246712296D-07	-2.111031099839D-08	2.975783504596D-10
6	-1.203033234183D-08	6.720414281142D-12	3.583291567817D-12
7	-1.107938818946D-08	4.764505739843D-10	-7.448416706593D-12
8	8.952403415503D-10	-3.662329587020D-11	5.594497105623D-13
Max. rel.	Error: 2.8117 %		

Mean rel. Error: .7203 %

5 Appendix

References

- [1] Sawada, K., Fujimoto, T., J. Appl. Phys. 78 (5), (1995), p2913
- [2] Greenland, T., Reiter, D., "The Role of Molecular Hydrogen in Plasma Recombination", Report, JUEL-3258 (1996), FZ-Jülich
- [3] R.K. Janev, Reiter, D., U. Samm "Collision Processes in Low-Temperature Hydrogen Plasmas" Report, JUEL-4105 (December 2003), FZ-Jülich, ISSN 0944-2952