The data file AMJUEL: Additional Atomic and Molecular Data for EIRENE

D. Reiter FZJ, Forschungszentrum Jülich GmbH 52425 Jülich Germany

Version: January 13, 2020

Available via E-mail from d.reiter@fz-juelich.de, or as part of the EIRENE code git-repository hosted at FZ Jülich

Contents

Ta	able of contents	II						
Ι	Introduction							
	I.1 Record:	Х						
	I.2 to be done:	XVIII						
Π	Numerical Fits to σ and $\langle \sigma v \rangle$	XX						
	II.1 Example of Use of Fits	XXI						
	II.2 SLREAC.f: Fortran module for reading Data from AMJUEL	XXI						
	II.3 Types of data, general prescriptions	XXIV						
	II.3.0 H.0: interaction potentials	XXIV						
	II.3.1 H.1: cross-section vs. energy	XXIV						
	II.3.2 H.2: rate coefficient vs. temperature (zero beam energy)							
	II.3.5 H.5. fate coefficient vs. temperature and density	AAVI XXVI						
	II 3.5 H 5: momentum-weighted rates vs. temperature	XXVII						
	II 3.6 H 6: momentum-weighted rates vs. temperature and energy	XXVII						
	II.3.7 H.7: momentum-weighted rates vs. temperature and density	XXIX						
	II.3.8 H.8: energy-weighted rates vs. temperature	XXIX						
	II.3.9 H.9: energy-weighted rates vs. temperature and energy	XXX						
	II.3.10 H.10: energy-weighted rates vs. temperature and density	XXX						
	II.3.11 H.11: other data, e.g. reduced population coefficients	XXXII						
	II.3.12 H.12: other data, e.g. reduced population coefficients	XXXII						
	II.4 End of preface	XXXII						
0	H.0 : Fits for Potentials	1						
	0.1 Reaction 0.1T $p + H(1s) \rightarrow p + H(1s)$ potential, binary elastic	1						
	0.2 Reaction 0.2T $p + He(1s^21S) \rightarrow p + He(1s^21S)$ potential, binary elastic	2						
	0.3 Reaction 0.3T $p + H_2 \rightarrow p + H_2$ potential, binary elastic	3						
	0.4 Reaction 0.4T $He^+ + He \rightarrow He^+ + He$ potential, binary elastic	4						
	0.5 Reaction 0.51 $p + Ne \rightarrow p + Ne$ potential, binary elastic	5						
	0.6 Reaction 0.61 $p + Ar \rightarrow p + Ar$ potential, binary elastic	0 7						
	0.7 Reaction 0.71 $p + KT \rightarrow p + KT$ potential, binary elastic	8						
	0.9 Reaction 0.13p $p + Be \rightarrow p + Be$ potential	9						
	0.10 Reaction 0.14p $p + C \rightarrow p + C$ potential	9						
	0.11 Coulomb collisions (not ready)	10						
	0.11.1 Reaction 0.100 $e + e_b \rightarrow e + e_b$ Trubnikov potential	10						
	0.12 Reaction 0.101 $i + e_b \rightarrow i + e_b$ Trubnikov potential.	10						
	0.13 Reaction 0.102 $e + i_b \rightarrow e + i_b$ Trubnikov potential	10						
	0.14 Reaction 0.103 $i + i_b \rightarrow i + i_b$ Trubnikov potential	10						
1	H.1 : Fits for $\sigma(E_{lab})$	11						
	1.1 electron impact processes	11						
	1.1.1 Reaction 2.2.5 org $e + H_2(X_q^+S) \to \to e + H(1s) + H(1s) \dots$	11						
	1.1.2 Reaction 2.2.14 $e + H_2^+(v) \xrightarrow{\circ} H(1s) + H(n), (v = 0 \dots 9, n \ge 2)$.	13						

1.2	proton	impact collisions	14
	1.2.1	Reaction 0.1T $p + H(1s) \rightarrow p + H(1s)$ total cross section	14
	1.2.2	Reaction 0.1D $p + H(1s) \rightarrow p + H(1s)$ diff. cross section	14
	1.2.3	Reaction 0.1V $p + H(1s) \rightarrow p + H(1s)$ visc. cross-section	14
	1.2.4	Reaction 0.2T $p + He(1s^21S) \rightarrow p + He(1s^21S)$ total cross-section .	16
	1.2.5	Reaction 0.2D $p + He(1s^21S) \rightarrow p + He(1s^21S)$ diff. cross section .	16
	1.2.6	Reaction 0.2V $p + He(1s^21S) \rightarrow p + He(1s^21S)$ visc. cross section .	16
	1.2.7	Reaction 0.3T $p + H_2 \rightarrow p + H_2$ total cross-section	18
	1.2.8	Reaction 0.3D $p + H_2 \rightarrow p + H_2$ diff. cross-section	18
	1.2.9	Reaction 0.3V $p + H_2 \rightarrow p + H_2$ visc. cross-section	18
	1.2.10	Reaction 0.5T $p + Ne \rightarrow p + Ne$ total cross section	19
	1.2.11	Reaction 0.5D $p + Ne \rightarrow p + Ne$ diff. cross section	19
	1.2.12	Reaction 0.5V $p + Ne \rightarrow p + Ne$ visc. cross section	19
	1.2.13	Reaction 0.6T $p + Ar \rightarrow p + Ar$ total cross section	22
	1.2.14	Reaction 0.6D $p + Ar \rightarrow p + Ar$ diff. cross section	22
	1.2.15	Reaction 0.6V $p + Ar \rightarrow p + Ar$ visc. cross section	22
	1.2.16	Reaction 0.7T $p + Kr \rightarrow p + Kr$ total cross section	24
	1.2.17	Reaction 0.7D $p + Kr \rightarrow p + Kr$ diff. cross section	24
	1.2.18	Reaction 0.7V $p + Kr \rightarrow p + Kr$ visc. cross section	24
	1.2.19	Reaction 0.8T $p + Xe \rightarrow p + Xe$ total cross section	26
	1.2.20	Reaction 0.8D $p + Xe \rightarrow p + Xe$ diff. cross section	26
	1.2.21	Reaction 0.8V $p + Xe \rightarrow p + Xe$ visc. cross section	26
1.3	Reacti	on 0.13p $p + Be \rightarrow p + Be$	28
1.4	Reacti	on $0.13d d + Be \rightarrow d + Be$	28
1.5	Reacti	on 0.13t $t + Be \rightarrow t + Be$	28
1.6	Reacti	on 0.14p $p + C \rightarrow p + C$	29
1.7	Reacti	on $0.14dd + C \rightarrow d + C$	29
1.8	Reacti	on 0.14t $t + C \rightarrow t + C$	29
	1.8.1	Reaction 3.1.6FJ $p + H \rightarrow \rightarrow p + e + p$	30
	1.8.2	Reaction 3.1.8 org $p + H(1s) \rightarrow H(1s) + p$	32
	1.8.3	Reaction 3.1.8 $p + H(1s) \rightarrow H(1s) + p$	32
	1.8.4	Reaction 3.1.8J2 $p + H(1s) \rightarrow H(1s) + p$	32
	1.8.5	Reaction 3.1.8R $p + H(1s) \rightarrow H(1s) + p$	32
	1.8.6	Reaction 3.1.8ST $p + H(1s) \rightarrow H(1s) + p$	33
	1.8.7	Reaction 3.1.8ST2 $p + H(1s) \rightarrow H(1s) + p$	33
	1.8.8	Reaction 3.1.8SD $p + H(1s) \rightarrow H(1s) + p$	33
	1.8.9	Reaction 3.1.8L $p + H(1s) \rightarrow H(1s) + p$	35
1.9	He ⁺ in	npact processes	36
	1.9.1	Reaction 0.4T $He^+(1s) + He(1s^21S) \rightarrow He^+(1s) + He(1s^21S)$ total	
		cross-section	36
	1.9.2	Reaction 0.4D $He^+(1s) + He(1s^21S) \rightarrow He^+(1s) + He(1s^21S)$ diff.	
		cross-section	36
	1.9.3	Reaction 0.4V $He^+(1s) + He(1s^21S) \rightarrow He^+(1s) + He(1s^21S)$ visc.	
		cross-section	36

2	H.2 :	Fits for $\langle \sigma v \rangle(T)$	38
	2.1	Reaction 0.1T $p + H(1s) \rightarrow p + H(1s)$ total rate coef.	38
	2.2	Reaction 0.1D $p + H(1s) \rightarrow p + H(1s)$ diff. rate coef.	38
	2.3	Reaction 0.2T $p + He(1s^21S) \rightarrow p + He(1s^21S)$ total rate coef.	38
	2.4	Reaction 0.2D $p + He(1s^21S) \rightarrow p + He(1s^21S)$ diff. rate coef	38
	2.5	Reaction 0.3T $p + H_2 \rightarrow p + H_2$ total rate coef.	39
	2.6	Reaction 0.3D $p + H_2 \rightarrow p + H_2$ diff. rate coef.	39
	2.7	Reaction 0.4T $He^+(1s) + He(1s^21S) \rightarrow He^+(1s) + He(1s^21S)$ total rate coef.	39
	2.8	Reaction 0.4D $He^+(1s) + He(1s^21S) \rightarrow He^+(1s) + He(1s^21S)$ diff. rate coef.	39
	2.9	Reaction 0.5T $p + Ne \rightarrow p + Ne$ total rate coef.	39
	2.10	Reaction 0.5D $p + Ne \rightarrow p + Ne$ diff. rate coef	40
	2.11	Reaction 0.6T $p + Ar \rightarrow p + Ar$ total rate coef.	40
	2.12	Reaction 0.6D $p + Ar \rightarrow p + Ar$ diff. rate coef.	40
	2.13	Reaction 0.7T $p + Kr \rightarrow p + Kr$ total rate coef	40
	2.14	Reaction 0.7D $p + Kr \rightarrow p + Kr$ diff. rate coef.	40
	2.15	Reaction 0.8T $p + Xe \rightarrow p + Xe$ total rate coef.	41
	2.16	Reaction 0.8D $p + Xe \rightarrow p + Xe$ diff. rate coef	41
	2.17	Reaction 2.1.5FJ $e + H(1s) \rightarrow e + H^+ + e$	43
	2.18	Reaction 3.1.6FJ $p + H(1s) \rightarrow p + p + e$	43
	2.19	Reaction 3.1.8 $p + H(1s) \rightarrow H(1s) + p$	43
	2.20	Reaction 3.1.8FJ $p + H(1s) \rightarrow H(1s) + p$	43
	2.21	Reaction 2.2.5 org $e + H_2(X_a^+S) \rightarrow \dots \rightarrow e + H(1s) + H(1s) \dots \dots \dots$	45
	2.22	Reaction 2.2.14 $e + H_2^+(v) \rightarrow H(1s) + H(n)(v = 0 \dots 9, n \ge 2) \dots$	47
	2.23	Reaction 2.2.17 $e + H_2 \rightarrow e + H_2(v) \rightarrow H + H^-$	48
	2.24	Reaction 2.2.17s $e + H_2 \rightarrow H + H + e$ (Diss via H^- , cold H_2)	48
	2.25	Reaction 3.1.8L $p + H(1s) \rightarrow H(1s) + p$	48
	2.26	Reaction 3.2.3 $p + H_2 \rightarrow H + H_2^+$	49
	2.27	Reaction 3.2.30 $p + H_2 \rightarrow H + H_2^+$	51
	2.28	Reaction 2.7.5 $e + N_2 \rightarrow e + N + N$	53
	2.29	Reaction 2.7.9 $e + N_2 \rightarrow e + N_2^+ + e$	53
	2.30	Reaction 2.7.10 $e + N_2 \rightarrow e + N + N^+ + e$	53
	2.31	Reaction 2.7.11 $e + N_2^+ \rightarrow e + 2N^+ + e$	55
	2.32	Reaction 2.7.12 $e + N_2^+ \rightarrow e + N + N^+$	55
	2.33	Reaction 2.7.14 $e + N_2^+ \rightarrow N + N$	55
	2.34	Reaction 2.7.15 $e + N_2^+ \to e + N_2^{++} + e$	55
	2.35	Reaction 2.2FJ $e + He(1s^2 1S) \rightarrow e + He^+(1s) + e$	57
	2.36	Reaction 2.2B0 $e + He(1s^21S) \rightarrow e + He^+(1s) + e$	59
	2.37	Reaction 2.2B1 $e + He^+(1s) \rightarrow e + He^{++} + e$	59
	2.38	Reaction 2.4B0 $e + Be \rightarrow e + Be^+ + e$	61
	2.39	Reaction 2.4B1 $e + Be^+ \rightarrow e + Be^{++} + e$	61
	2.40	Reaction 2.5B0 $e + B \rightarrow e + B^+ + e$	63
	2.41	Reaction 2.5B1 $e + B^+ \rightarrow e + B^{++} + e$	63
	2.42	Reaction 2.6B0 $e + C \rightarrow e + C^+ + e$	65
	2.43	Reaction 2.6B1 $e + C^+ \rightarrow e + C^{++} + e$	65
	2.44	Reaction 2.7B0 $e + N \rightarrow e + N^+ + e$	67
	2.45	Reaction 2.7 $e + N \rightarrow e + N^+ + e$	67
	2.46	Reaction 2.8B0 $e + O \rightarrow e + O^+ + e$	69

	2.47	Reaction 2.8B1 $e + O^+ \rightarrow e + O^{++} + e$	69
	2.48	Reaction 2.10B0 $e + Ne \rightarrow e + Ne^+ + e$	69
	2.49	Reaction 2.10B1 $e + Ne^+ \rightarrow e + Ne^{++} + e$	69
	2.50	Reaction 2.18B0 $e + Ar \rightarrow e + Ar^+ + e$	71
	2.51	Reaction 2.18B1 $e + Ar^+ \rightarrow e + Ar^{++} + e$	71
	2.52	Reaction 2.26B0 $e + Fe \rightarrow e + Fe^+ + e$	73
	2.53	Reaction 2.26B1 $e + Fe^+ \rightarrow e + Fe^{++} + e^-$	73
	2.54	Reaction 3.1 $W + e \rightarrow W^+ + 2e$	73
3	нз.	Fits for $\langle \sigma u \rangle (E, T)$	75
5	3.1	Reaction 0.1T $n + H(1s) \rightarrow n + H(1s)$ elastic $L_{2,2}$	75
	3.2	Reaction 0.1D $p + H(1s) \rightarrow p + H(1s)$, clastic, $I_{0,0} = \dots = \dots = \dots$ Reaction 0.1D $p + H(1s) \rightarrow p + H(1s)$ elastic $I_{1,0}$	75
	3.2	Reaction 0.2T $p + H(1s) \rightarrow p + H(1s)$, cluster, $H_{1,0} = \dots = 1$ Reaction 0.2T $n + He(1s^{2}1S) \rightarrow n + He(1s^{2}1S)$ elastic $L_{2,0}$	79
	3.5	Reaction 0.2D $p + He(1s^{2}1S) \rightarrow p + He(1s^{2}1S)$, clastic, $I_{0,0}$	81
	3.5	Reaction 0.2D p + $H_{2} \rightarrow n + H_{2}$ elastic $I_{2,2}$	83
	3.6	Reaction 0.3D $p + H_2 \rightarrow p + H_2$, elastic, $I_{1,0}$	85
	3.7	Reaction 0.5D $p + H_2$ $p + H_2$, classic, $H_{1,0}$ Reaction 0.4T $He^+(1s) + He(1s^{2}1S) \rightarrow He^+(1s) + He(1s^{2}1S)$ elastic $I_{1,0}$	87
	3.8	Reaction 0.4D $He^+(1s) + He(1s^{2}1S) \rightarrow He^+(1s) + He(1s^{2}1S)$, elastic, $I_{0,0}$	89
	3.9	Reaction 0.5T $n + Ne \rightarrow n + Ne$ elastic $I_{0,0}$	91
	3.10	Reaction 0.5D $p + Ne \rightarrow p + Ne$, elastic, $I_{1,0}$	93
	3.11	Reaction 0.6T $p + Ar \rightarrow p + Ar$, elastic, $I_{0,0}$	95
	3.12	Reaction 0.6D $p + Ar \rightarrow p + Ar$, elastic, $I_{1,0}$	97
	3.13	Reaction 0.7T $p + Kr \rightarrow p + Kr$, elastic, $I_{0,0}$	99
	3.14	Reaction 0.7D $p + Kr \rightarrow p + Kr$, elastic, $I_{1,0}$	101
	3.15	Reaction 0.8T $p + Xe \rightarrow p + Xe$, elastic, $I_{0,0}$	103
	3.16	Reaction 0.8D $p + Xe \rightarrow p + Xe$, elastic, $I_{1,0}$	105
	3.17	Reaction 2.1.5 $e + H \rightarrow 2e + H^+$,	107
	3.18	Reaction 2.3.9 $e + He(1s^21S) \rightarrow 2e + He^+(1s), \ldots \ldots$	109
	3.19	Reaction 3.1.8 $p + H(1s) \rightarrow H(1s) + p$	111
	3.20	Reaction 0.13p $p + Be \rightarrow p + Be$, elastic	113
	3.21	Reaction 0.13d $d + Be \rightarrow d + Be$, elastic	114
	3.22	Reaction 0.13t $t + Be \rightarrow t + Be$, elastic	115
	3.23	Reaction 0.14p $p + C \rightarrow p + C$, elastic	116
	3.24	Reaction 0.14d $d + C \rightarrow d + C$, elastic	117
	3.25	Reaction 0.14t $t + C \rightarrow t + C$, elastic	118
	3.26	Reaction 3.1.8 org $p + H(1s) \rightarrow H(1s) + p$	119
	3.27	Reaction 3.1.8L $p + H(1s) \rightarrow H(1s) + p$	121
	3.28	Reaction 3.2.3 $p + H_2(v) \rightarrow H + H_2^+$	123
	3.29	Reaction 3.3.1 $p + He(1s^21S) \rightarrow H + He^+(1s) \dots \dots \dots \dots$	125
	3.30	Reaction 3.3.6a $p + He^*(1s^12s^11S) \to H^*(2s) + He^+(1s)$	127
	3.31	Reaction 3.3.6b $p + He^{*}(1s^{1}2s^{1}3S) \rightarrow H^{*}(2s) + He^{+}(1s) \dots \dots \dots \dots$	129
4	H.4 :	Fits for $\langle \sigma v \rangle(n_e, T)$	131
	4.1	Reaction 2.1.5JH $H + e \rightarrow H^+ + 2e$	131
	4.2	Reaction 2.1.50 $H + e \rightarrow H^+ + 2e$, Ly-opaque	133
	4.3	Reaction 2.1.5 $H + e \rightarrow H^+ + 2e$	135
	4.4	Reaction 2.1.8JH $H^+ + e \rightarrow H(1s)$	137

4.5	Reaction 2.1.80 $H^+ + e \rightarrow H(1s)$ Ly-opaque	139
4.6	Reaction 2.1.8 $H^+ + e \rightarrow H(1s)$	141
4.7	Reaction 2.1.8a $H^+ + e \rightarrow H(1s) + hv$	143
4.8	Reaction 2.1.8b $H^+ + e + e \rightarrow H(1s) + e$	145
4.9	Reaction 2.2.5 $e + H_2 \rightarrow e + H + H$	147
4.10	Reaction 2.2.5g $e + H_2 \rightarrow e + H + H$	149
4.11	Reaction 2.2.9 $e + H_2 \rightarrow 2e + H_2^+$	151
4.12	Reaction 2.2.10 $e + H_2 \rightarrow 2e + \tilde{H} + H^+$	153
4.13	Reaction 2.2.11 $e + H_2^+ \rightarrow 2e + H^+ + H^+$	155
4.14	Reaction 2.2.12 $e + H_2^+ \rightarrow e + H + H^+$	157
4.15	Reaction 2.2.14 $e + H_2^+ \rightarrow H + H$	159
4.16	Reaction 2.3.9a $e + He^{-1s^2} S \rightarrow e + He^{+1s} + e$	161
4.17	Reaction 2.3.9b $e + He(1s^21S; r) \rightarrow e + He^+(1s) + e$	163
4.18	Reaction 2.3.9c $e + He(1s^21S; r) \to e + He(1s^12s^11S; r)$	165
4.19	Reaction 2.3.9d $e + He(1s^21S; r) \to e + He(1s^12s^13S; r)$	167
4.20	Reaction 2.3.9e $e + He(1s^{1}2s^{1}1S; r) \rightarrow e + He(1s^{2}1S; r)$	169
4.21	Reaction 2.3.9f $e + He(1s^{1}2s^{1}1S; r) \to e + He^{+}(1s) + e$. 171
4.22	Reaction 2.3.9g $e + He(1s^{1}2s^{1}1S; r) \rightarrow e + He(1s^{1}2s^{1}3S; r)$	173
4.23	Reaction 2.3.9h $e + He(1s^{1}2s^{1}3S; r) \rightarrow e + He(1s^{2}1S; r)$. 175
4.24	Reaction 2.3.9 $i e + He(1s^{1}2s^{1}3S; r) \rightarrow e + He(1s^{1}2s^{1}1S; r) \dots \dots \dots$. 177
4.25	Reaction 2.3.9 j $e + He(1s^{1}2s^{1}3S; r) \rightarrow e + He^{+}(1s) + e$. 179
4.26	Reaction 2.3.13a $e + He^+(1s) \rightarrow He(1s^21S)$	181
4.27	Reaction 2.3.13b $e + He^+(1s) \rightarrow He(1s^21S;r)$	183
4.28	Reaction 2.3.13c $e + He^+(1s) \rightarrow He(1s^12s^11S; r) + hv$	185
4.29	Reaction 2.3.13d $e + He^+(1s) \rightarrow He(1s^12s^13S; r) + hv$. 187
4.30	Reaction 2.2C $e + He^+(1s) \rightarrow He^{++} + e + e$	189
4.31	Reaction 2.6A0 $e + C \rightarrow C^+ + 2e$. 191
4.32	Reaction 2.7A0 $e + N \rightarrow N^+ + 2e$	193
4.33	Reaction 2.8A0 $e + O \rightarrow O^+ + 2e$	195
4.34	Reaction 2.3.2B0 $e + He^+(1s) \rightarrow He(1s^21S) + hv$. 197
4.35	Reaction 2.3.2B1 $e + He^{++} \rightarrow He^{+}(1s) + hv$. 199
4.36	Reaction 2.3.2C $e + He^{++} \rightarrow He^{+}(1s) + hv$	201
4.37	Reaction 2.3.4B0 $e + Be^+ \rightarrow Be + hv$	203
4.38	Reaction 2.3.4B1 $e + Be^{++} \rightarrow Be^{+} + hv$	205
4.39	Reaction 2.3.5B0 $e + B^+ \rightarrow B + hv$. 207
4.40	Reaction 2.3.5B1 $e + B^{++} \rightarrow B^{+} + hv$	209
4.41	Reaction 2.3.6B0 $e + C^+ \rightarrow C + hv$	211
4.42	Reaction 2.3.6A0 $e + C^+ \rightarrow C + hv$	213
4.43	Reaction 2.3.7A0 $e + N^+ \rightarrow N + hv$	215
4.44	Reaction 2.3.8A0 $e + O^+ \rightarrow O + hv$	217
4.45	Reaction 2.3.10B0 $e + Ne^+ \rightarrow Ne + hv$	219
4.46	Reaction 2.3.10B1 $e + Ne^{++} \rightarrow Ne^{+} + hv$. 221
4.47	Reaction 2.3.18B0 $e + Ar^+ \rightarrow Ar + hv$	223
4.48	Reaction 2.3.18B1 $e + Ar^{++} \rightarrow Ar^{+} + hv$. 225
4.49	Reaction 3.2.3r $p + H_2(+e) \rightarrow H + H + H$ (MAR via H_2^+ , cold H_2)	. 227
4.50	Reaction 3.2.3d $p + H_2(+e) \rightarrow p + H + H(+e)$ (MAD via H_2^+ , cold H_2).	230
4.51	Reaction 3.2.3i $p + H_2(+e) \rightarrow p + p + H + e(+e)$ (MAI via H_2^+ , cold H_2)	. 232

	4.52	Reaction 7.2.3a $p + H^- \rightarrow H + H$ (for cold H^-)	234
	4.53	Reaction 7.2.3b $p + H^- \rightarrow H + H^+ + 2e$ (for cold H^-)	236
	4.54	Reaction 2.2.17r $e + H_2(+p) \rightarrow H + H + H$ (MAR via H^- , cold H_2)	238
	4.55	Reaction 2.2.17d $e + H_2(+p) \rightarrow p + H + H$ (MAD via H^- , cold H_2)	241
5	H.5 :	Fits for $\langle \sigma \cdot v \cdot momentum \rangle(T)$	243
6	H.6 :	Fits for $\langle \sigma \cdot v \cdot momentum \rangle(E,T)$	244
7	H.7 :	Fits for $\langle \sigma \cdot v \cdot momentum \rangle(n_e, T)$	245
8	H.8 :	Fits for $\langle \sigma \cdot v \cdot E_p angle(T_b) \ [cm^3/s \cdot eV]$	247
	8.1	Reaction 2.2.14 $e + H_2^+(v) \to H(1s) + H^*(n)(v = 0 - 9, n \ge 2)$	247
	8.2	Reaction 2.7.14 $e + N_2^+ \to N + N^*(n)$	247
	8.3	Reaction 2.2B0 $e + He(1s^21S) \rightarrow e + He^+(1s) + e \ 11/94$ update	249
	8.4	Reaction 2.2B1 $e + He^+(1s) \rightarrow e + He^{++} + e 11/94$ update	249
	8.5	Reaction 2.4B0 $e + Be \rightarrow e + Be^+ + e$ 1/96 update	251
	8.6	Reaction 2.4B1 $e + Be^+ \rightarrow e + Be^{++} + e$ 1/96 update	251
	8.7	Reaction 2.5B0 $e + B \rightarrow e + B^+ + e^{-1/96}$ update	253
	8.8	Reaction 2.5B1 $e + B^+ \rightarrow e + B^{++} + e^{-1/96}$ update	253
	8.9	Reaction 2.0B0 $e + C \rightarrow e + C' + e$ 1/98 update	200
	8.10 8.11	Reaction 2.0B1 $e + C^+ \rightarrow e + C^{++} + e^{-1/98}$ update	200
	0.11 8 12	Reaction 2.10B0 $e + N \rightarrow e + N^{+} + e^{-1/96}$ update	257
	8.12	Reaction 2.10B0 $e + Ne^+ \rightarrow e + Ne^+ + e 1/96$ update	259
	8 14	Reaction 2.18B0 $e + Ar \rightarrow e + Ar^+ + e^{1/96}$ update	261
	8.15	Reaction 2.18B1 $e + Ar^+ \rightarrow e + Ar^{++} + e$ 1/96 update	261
	8.16	Reaction 2.26B0 $e + Fe \rightarrow e + Fe^+ + e^{2/06}$ update	263
	8.17	Reaction 2.26B1 $e + Fe^+ \rightarrow e + Fe^{++} + e^{-2/06}$ update	263
	8.18	Reaction 3.1.8L $p + H(1s) \rightarrow H(1s) + p$	265
9	Н.9:	Fits for $\langle \sigma \cdot v \cdot E_n \rangle (E_0, T_n) [cm^3/s \cdot eV]$	265
	9.1	Reaction 3.1.8 $p + H(1s) \rightarrow H(1s) + p$	265
	9.2	Reaction 3.1.8 $\hat{L} p + \hat{H}(1s) \rightarrow \hat{H}(1s) + p$	268
	9.3	Reaction 3.3.1 $p + He(1s^2 1S) \rightarrow H + He^+(1s) \dots \dots \dots \dots \dots$	270
	9.4	Reaction 3.3.6a $p + He^*(1s^12s^11S) \to H^*(2s) + He^+(1s)$	272
	9.5	Reaction 3.3.6b $p + He^*(1s^12s^13S) \to H^*(2s) + He^+(1s)$	274
10	H.10	:Fits for $\langle \sigma \cdot v \cdot E_p \rangle (n_p, T_p) \ [cm^3/s \cdot eV]$	276
	10.1	Reaction 2.1.5JH $e + H \rightarrow H^+ + 2e$	278
	10.2	Reaction 2.1.5 $e + H \rightarrow H^+ + 2e$	280
	10.3	Reaction 2.1.50 $e + H \rightarrow H^+ + 2e$ Ly-opaque	282
	10.4	Reaction 2.1.8 $H^+ + e \rightarrow H(1s)$	284
	10.5	Reaction 2.1.80 $H^+ + e \rightarrow H(1s)$ Ly-opaque	287
	10.6	Reaction 2.2.h2c $H_2 + e \rightarrow \dots$	289
	10.7	Reaction 2.2.h2r $H_2 + e \rightarrow \dots$	291
	10.8	$\operatorname{Keaction} 2.3.9a \ e + He(1s^{2}1S) \to He^{+}(1s) + 2e \dots \dots \dots \dots \dots \dots \dots \dots \dots $	293
	10.9	Reaction 2.3.13a $e + He^{+}(1s) \rightarrow He(1s^{2}1S)$	295

	10.10	Reaction 2.6A0 $e + C \rightarrow C^+ + 2e$	297
	10.11	Reaction 2.7A0 $e + N \rightarrow N^+ + 2e$	299
	10.12	Reaction 2.8A0 $e + O \rightarrow O^+ + 2e$	301
	10.13	Reaction 2.3.6A0 $C^+ + e \rightarrow C$	303
	10.14	Reaction 2.3.7A0 $N^+ + e \rightarrow N$	305
	10.15	Reaction 2.3.8A0 $O^+ + e \rightarrow O$	307
11	H.11 :	Other single polynomial fits	309
	11.1	Reaction 2.2B0 $He + e \rightarrow He^*$, $\langle de \rangle (T_e) [eV]$,	309
	11.2	Reaction 2.4B0 $Be + e \rightarrow Be^*$, $\langle de \rangle (T_e) [eV]$, $\ldots \ldots \ldots$	309
	11.3	Reaction 2.5B0 $B + e \rightarrow B^*$, $\langle de \rangle (T_e) [eV]$	309
	11.4	Reaction 2.6B0 $C + e \rightarrow C^*$, $\langle de \rangle (T_e) [eV]$	311
	11.5	Reaction 2.7B0 $N + e \rightarrow N^*$, $\langle de \rangle (T_e) [eV] \dots \dots \dots \dots$	311
	11.6	Reaction 2.10B0 $Ne + e \rightarrow Ne^*$, $\langle de \rangle (T_e) [eV]$	311
	11.7	Reaction 2.18B0 $Ar + e \rightarrow Ar^*$, $\langle de \rangle (T_e) [eV] \dots \dots \dots \dots$	311
	11.8	Reaction 2.0b $p + H_2(v = 0) \rightarrow H_2^+ +, \text{Ratio } H_2^+/H_2^$	314
	11.9	Reaction 2.0c $p + H_2(v) \to H_2^+ +, \text{Ratio } H_2^+/H_2 \dots \dots \dots \dots$	314
	11.10	Reaction 4.0a $H_2 + H_2^+ \rightarrow H_3^+ + H$, Ratio $H_3^+/H_2^- \dots \dots \dots \dots \dots$	316
	11.11	Reaction 7.0a $e + H_2(v) \rightarrow H^- + H$, Ratio H^-/H_2 from DA	317
	11.12	Reaction 7.0b $e + H_2(0) \rightarrow H^- + H$, Ratio H^-/H_2 from DA	317
12	H.12:	Other double polynomial fits	319
14	12.1	Reaction 2.1.5 $H + e \leftrightarrow H^+ + 2e$ Ratio $H^+/H(1)$	319
	12.2	Reaction 2.1.5a $H + e \rightarrow H^+ + 2e$, Ratio $H(3)/H(1)$	321
	12.3	Reaction 2.1.5b $H + e \rightarrow H^+ + 2e$, Ratio $H(2)/H(1)$	323
	12.4	Reaction 2.1.5c $H + e \rightarrow H^+ + 2e$, Ratio $H(4)/H(1)$	325
	12.5	Reaction 2.1.5d $H + e \rightarrow H^+ + 2e$, Ratio $H(5)/H(1)$	327
	12.6	Reaction 2.1.5e $H + e \rightarrow H^+ + 2e$, Ratio $H(6)/H(1)$	329
	12.7	Reaction 2.1.5tot $H + e \rightarrow H^+ + 2e$, Ratio $H(tot)/H(1)$	331
	12.8	Reaction 2.1.5de $H + e \rightarrow H^+ + 2e$, $\langle de \rangle [eV]$	333
	12.9	Reaction 2.1.50 $H + e \rightarrow H^+ + 2e$, $\langle de \rangle [eV]$ Ly-opaque	335
	12.10	Reaction 2.1.8 $H^+ + e \leftrightarrow H(1s)$, Ratio $H(1)/H^+$	337
	12.11	Reaction 2.1.8a $H^+ + e \rightarrow H(1s)$, Ratio $H(3)/H^+$	339
	12.12	Reaction 2.1.8b $H^+ + e \rightarrow H(1s)$, Ratio $H(2)/H^+$	341
	12.13	Reaction 2.1.8c $H^+ + e \rightarrow H(1s)$, Ratio $H(4)/H^+$	343
	12.14	Reaction 2.1.8d $H^+ + e \rightarrow H(1s)$, Ratio $H(5)/H^+$	345
	12.15	Reaction 2.1.8e $H^+ + e \rightarrow H(1s)$, Ratio $H(6)/H^+$	347
	12.16	Reaction 2.1.8tot $H^+ + e \rightarrow H(1s)$, Ratio $H(tot)/H^+$	349
	12.17	Reaction 2.1.8de $H^+ + e \to H(1s), \ < de > +13.6 \ [eV]$	351
	12.18	Reaction 2.1.80 $H^+ + e \rightarrow H(1s)$, $\langle de \rangle + 13.6 \ [eV]$ Ly-opaque	353
	12.19	Reaction 2.2a $e + He \rightarrow He^*$ Ratio $He(6)/He(1)$	355
	12.20	Reaction 2.2b $e + He \rightarrow He^*$ Ratio $He(7)/He(1)$	357
	12.21	Reaction 2.2c $e + He \rightarrow He^*$ Ratio $He(8)/He(1)$	359
	12.22	Reaction 2.2d $e + He \rightarrow He^*$ Ratio $He(10)/He(1)$	361
	12.23	Reaction 2.2e $e + He \rightarrow He^*$ Ratio $He(16)/He(1)$	363
	12.24	Reaction 2.3.2a $e + He^+ \rightarrow He^*$ Ratio $He(6)/He^+$	365
	12.25	Reaction 2.3.2b $e + He^+ \rightarrow He^*$ Ratio $He(7)/He^+$	367

12.26 Reaction 2.3.2c $e + He^+ \rightarrow He^*$ Ratio $He(8)/He^+$	369
12.27 Reaction 2.3.2d $e + He^+ \rightarrow He^*$ Ratio $He(10)/He^+$	371
12.28 Reaction 2.3.2e $e + He^+ \rightarrow He^*$ Ratio $He(16)/He^+$	373
12.29 Reaction 2.3.9a $He(1s^21S) + e \rightarrow He^+(1s) + 2e < de > [eV]$	375
12.30 Reaction 2.3.13a $e + He^+(1s) \rightarrow He(1s^21S) + hv < de > +24.58 [eV]$	377
12.31 Reaction 2.6A0 $C + e \rightarrow C^+ + 2e < de > [eV]$	379
12.32 Reaction 2.3.6A0 $C^+ + e \rightarrow C < de > +11.3 [eV]$	381
12.33 Reaction 2.2.5a $H_2 + e \rightarrow + H(3)$, Ratio $H(3)/H_2$	383
12.34 Reaction 2.2.5b $H_2 + e \rightarrow + H(2)$, Ratio $H(2)/H_2$	385
12.35 Reaction 2.2.5c $H_2 + e \rightarrow + H(4)$, Ratio $H(4)/H_2$	387
12.36 Reaction 2.2.5d $H_2 + e \rightarrow + H(5)$, Ratio $H(5)/H_2$	389
12.37 Reaction 2.2.5e $H_2 + e \rightarrow + H(6)$, Ratio $H(6)/H_2$	391
12.38 Reaction 2.2.5fl $H_2 + e \rightarrow + H_2(N = 3, Triplet)$	393
12.39 Reaction 2.2.5 fu $H_2 + e \rightarrow \dots + H_2(N = 3, Triplet, d - state) \dots$	395
12.40 Reaction 2.2.5 we $H_2 + e \rightarrow + H_2(N = 2, Singlet C)$	397
12.41 Reaction 2.2.5ly $H_2 + e \to + H_2(N = 2, Singlet B)$	399
12.42 Reaction 2.2.14a $H_2^+ + e \rightarrow + H(3)$, Ratio $H(3)/H_2^+$	401
12.43 Reaction 2.2.14b $H_2^+ + e \rightarrow + H(2)$, Ratio $H(2)/H_2^+$	403
12.44 Reaction 2.2.14c $H_2^+ + e \rightarrow + H(4)$, Ratio $H(4)/H_2^+$	405
12.45 Reaction 2.2.14d $H_2^+ + e \rightarrow + H(5)$, Ratio $H(5)/H_2^+$	407
12.46 Reaction 2.2.14e $H_2^+ + e \rightarrow + H(6)$, Ratio $H(6)/H_2^+$	409
12.47 Reaction 2.2.15a $H_3^+ + e \rightarrow + H(3)$, Ratio $H(3)/H_3^+$	411
12.48 Reaction 2.2.15b $H_3^+ + e \rightarrow + H(2)$, Ratio $H(2)/H_3^+$	414
12.49 Reaction 2.2.15c $H_3^+ + e \rightarrow + H(4)$, Ratio $H(4)/H_3^+$	416
12.50 Reaction 2.2.15d $H_3^+ + e \rightarrow + H(5)$, Ratio $H(5)/H_3^+$	418
12.51 Reaction 2.2.15e $H_3^+ + e \rightarrow + H(6)$, Ratio $H(6)/H_3^+$	420
12.52 Reaction 7.2a $H^- + p \rightarrow \dots + H(3)$, Ratio $H(3)/H^-$, cold H^-	422
12.53 Reaction 7.2b $H^- + p \rightarrow \dots + H(2)$, Ratio $H(2)/H^-$, cold H^-	424
12.54 Reaction 7.2c $H^- + p \rightarrow \dots + H(4)$, Ratio $H(4)/H^-$, cold H^-	426
12.55 Reaction 7.2d $H^- + p \rightarrow \dots + H(5)$, Ratio $H(5)/H^-$, cold H^-	428
12.56 Reaction 7.2e $H^- + p \rightarrow \dots + H(6)$, Ratio $H(6)/H^-$, cold H^-	430
12.57 Reaction 2.0a $e + H_2 \rightarrow H_2^+ +$, Ratio H_2^+/H_2	432
12.58 Reaction 2.0b $e + H_2(v = 0) \rightarrow H_2^+ + \dots$, Ratio H_2^+/H_2	434
12.59 Reaction 2.0c $e + H_2(v) \to H_2^+ +$, Ratio H_2^+/H_2	436

13 Appendix

438

I Introduction

Additional atomic data fits, read by EIRENE

I.1 Record:

- update 6.12/94 Bor ionization raten H.2, 2.5B0, 2.5B1 Bor rec. rates H.4, 2.3.5B0, 2.3.5B1
- update 6.4/95 elast. data revised, from: elrep.dat
- update 25.4/95 H.9, 3.1.8 improved
- update 12. 1/96 Arg ionization rates H.2, 2.18B0, 2.18B1 Arg rec. rates H.4, 2.3.18B0, 2.3.18B1 Arg el.cool H.8, 2.18B0, 2.18B1, H.11,2.18B0 Be el.cool H.8, 2.4B0, 2.4B1, H.11,2.4B0 B el.cool H.8, 2.5B0, 2.5B1, H.11,2.5B0
- update 12. 2/96 N ionization rate H.2, 2.7B0
- update 7. 3/96 He+ ionization rate H.4, 2.2C He++ recomb. rate H.4, 2.3.2C
- update 17. 8/96 elast.rate H.3, 0.3T revised
- update 3. 9/96 new: negative ions: H⁻ contributions to Lyman and Balmer series added: ratios H.12 7.2a, 7.2b 2.0b, 2.0c added: ratios H.11 7.0 2.0a

Note regarding the role of vibrationally excited molecules:

if H2(v) is present, then in addition to the existing processes one may have:

H2(v) + e \rightarrow H + H^-, and the H^- may provide a photon (e.g., H-alpha) after mutual neutralisation with protons,

or

H2(v) + $p \rightarrow H_2^+$ + H , and the H_2^+ may provide a photon (e.g., H-alpha) after dissociative recombination

Hence a suggested extended procedure in the EIRENE hydrogen line emission routines (e.g. Ba_alpha):

There have been already 4 channels contributing to H-light emissions:

- 1.) proportional to H density PDENA(..)
- 2.) proportional to H⁺ density DIIN(..)
- 3.) propportional to H₂ density PDENM(..)
- 4.) proportional to H_2^+ density PDENI(..)

.....

now: we add one further channel:

.....

- 5.) proportional to H⁻ - density PDENI(..)

For example the CR population coefficient $H(n=3)/H^-$ is stored in AMJUEL, H.12, 7.2a This ratio must be multiplied by the H⁻ density and by the Einstein coefficient 4.41e7 (as in the other channels) to obtain an emissivity. Since we may not always have computed the H⁻ density, we multiply instead by the H₂ density (PDENM) and by the CR-equilibrium ratio H⁻/H₂. This latter ratio is stored in AMJUEL H.11, 7.0

To account for the additional new channel producing H_2^+ (ion conversion) it is suggested to only replace the H_2^+ density (PDENI) in the line emission routines now by H_2 (PDENM) and by the CR equilibrium ratio: H_2^+/H_2 . That CR equilibrium ratio is stored in H.12, 2.0c. This equilibrium ratio includes the above mentioned additional process leading to H_2^+ production. If instead the H_2^+ density PDENI IN EIRENE is computed only from electron impact collisions, not yet including additionally ion impact (ion conversion) collisions, then the CR equilibrium density ratio H.12, 2.0b must be retained in the line emission routines as multiplicative factor for the H_2 density, for consistency.

• update 6. 9/96

H- cx multistep recombination, low proton energy, H.4 7.2.3a H- cx multistep ionization, low proton energy, H.4 7.2.3b

• update 26.2/97

Corona H-ionization rate from SOLXY: out, because: wrong, and never used anyway (i.e. H.8 2.1.5G out).

• update 18.3/97

H.4 2.1.5FU, H.4 2.1.8FU (fujimoto rates) (0.1-1e3 eV) H.2 3.2.3 (only slow molecules) H.2 2.2.17 • update 28.7/97

H.3 3.2.3 = HYDHEL H.3 3.2.3 (vs. Ebeam and Ti) + plus slow vibr. ex. molecules must be modified to account for Ebeam of vibr. excited molecules (scale cross-section). DONE: see below: 11.05.04 H.4 2.2.5g, as 2.2.5 but vibr. distribution of H2 molecules

- update 8.8/97
 H.2 2.10B0, 2.10B1
 H.8 2.10B0, 2.10B1
 H.11 2.10B0
- update 18.8/97 H.3 0.1D 0.2D, 0.3D 0.4D
- update 8.9/97

H.1 3.1.8R (Riviere) revised (better extrapolation to low energy) H.1 3.1.8ST new (Schultz total cx cross-section) H.1 3.1.8SD new (Schultz momentum transfer cross-section) H.1 3.1.8 (Janev total cx cross-section, also: 3.1.8J) H.1 3.1.8J2 new (Janev total cx cross-section *2 = mom trans. x-section)H.1 3.1.8ST2 new (Schultz total cx cross-section *2 = mom trans. x-section)note: 3.1.8SD $\approx 2 * 3.1.8$ ST within line thickness

• update 23.9/97

H.2 2.6B0 strahl carbon data ionization
H.4 2.3.6B0 strahl carbon data recombination
H.4 2.3.6B0 strahl carbon ionization
H.4 2.3.6A0 ADAS carbon ionization
H.10 2.6A0 ADAS carbon line radiation plus 11.3 per ionization
(=electron cooling rate)
H.10 2.3.6A0 ADAS carbon line radiation due to recombination
(=electron cooling rate)
H.12 2.6A0 ADAS carbon line radiation per ionization
H.12 2.6A0 ADAS carbon line radiation per ionization

• update 22.4/98

H.2 3.1.6FJ Freeman and Jones ion impact ionization, Ebeam=0.

• update 10.10/98

red. pop. coeff revised (n=2, n=3) and new ones (n=4, n=5) now all based on Sawada/Fujimoto's modifications to Johnson/Hinnov

- H.12 2.1.5 a,b,c,d reduced pop. coeff, coupling to H ground state
- H.12 2.1.8 a,b,c,d reduced pop. coeff, coupling to H+
- H.12 2.2.5 a,b,c,d reduced pop. coeff, coupling to H2
- H.12 2.2.14 a,b,c,d reduced pop. coeff, coupling to H2+
- H.12 7.2 a,b,c,d reduced pop. coeff, coupling to H-

• update 20.1/99

H.12 2.2.5e Fulcher emissivity (cm^3/s) , coupling to H2, relative d state population amongst N=3 triplet: 2/9

• update 17.2/99 H.12 2.2.5g revised (because of low Te extrapolation) new format for plots for H.4, h2, h2fuji, h2fuji-vibr done for 2.2.5, 2.2.5g, 2.2.9, 2.2.11

• update 10.4/99 Fujimoto He-col.rad model revised. Form.II ionization rate H.4 2.3.9a, done elec. cooling rate H.10 2.3.9a, done $\delta_E/ionis$ H.12 2.3.9a, done Form.I ionization rates revised. K1 \rightarrow K10=K1-K12-K13 K2 \rightarrow K20=K2-K21-K23 K3 \rightarrow K30=K3-K31-K32 H.4 2.3.9b, 2.3.9c 2.3.9d redone (only 2.3.9b,K10, differs from earlier version) H.4 2.3.9h, 2.3.9f 2.3.9g redone (only 2.3.9f,K20, differs from earlier version) H.4 2.3.9h, 2.3.9i 2.3.9j redone (only 2.3.9j,K30, differs from earlier version)

• update 2.7/99

Johnson Hinnov ionization and recombination revised. all rates are now available for Ly-transparent (as in older versions) and (new) for Lyopaque conditions. The labels for the opaque data have an additional "o". E.g.: H.4 2.1.5 (for transparent data for effective ionization) and (new): H.4 2.1.50 (same process, but Lyman-opaque conditions). Same for: H.4 2.1.8 and (new) H.4 2.1.80

• update 2.7/99

During this update, an error in the Johnson Hinnov code was detected. It affects the rate H.10 2.1.8, at $T_e > 10 eV$. The slope of the effective electron cooling rate above this T_e was too steep. H.10 2.1.8 (and, correspondingly: H.12 2.1.8) have been corrected.

• update 23.11/99

H.1, 3.1.6, Freeman and Jones ion impact ionization cross-section, for beam penetration runs.

Figure H.12 2.2.5b corrected (was wrong figure).

update 3.2/00 new: ratio of population coeff. p(6)/p(1) H.12 7.2e added H.12 2.2.14e added H.12 2.2.5e added. Former 2.2.5e (Fulcher emissivity) is now: 2.2.5fl H.12 2.1.5e added. Former 2.1.5e (del-e) is now: 2.1.5de H.12 2.1.8e added. Former 2.1.8e (del-e) is now: 2.1.8de

- update 23.5/00
 H.12 2.2.5fl revised: labeling of n=2 triplet levels in Sawada's code corrected.
- update 06.8/00 H.2 2.26B0 and H.2 2.26B1 added (ionization rates for Iron).
- update 26.12/00 H.1 (elastics: p + noble gases).

update 21.01/01 error detected in H.1, 0.3D, 0.3V and 0.4D, 0.4V, fit coefficients for extrapolation wrong (different expression). Corrected. H.3 (elastics: p + noble gases).
Figures included/redone for all elastics H.1 0.1 – 0.8, and same for H.3, I_{0.0} and I_{1.0}

- update 16.03/01 H.10 and H.12 added for 2.3.13a (He.rec.elec.cooling rates) Figures added, helraecr and helraecc
- update 1.10/01 H.12 2.2.5fu added (to replace 2.2.5fl)
- update 1.11/01 H.12 2.2a, 2.2b, 2.2c 2.3.2a, 2.3.2b, 2.3.2c added Helium population coefficients, for states no. 6,7 and 10
- update 8.11/01
 H.12 2.2c → 2.2d ,2.3.2c → 2.3.2d
 newly included: 2.2c, 2.2e, 2.3.2c, 2.3.2e Helium population coefficients, for states no. 8
 and 16
- update 23.01/02
 H.0 Potentials for elastic collision processes included fit-flag 01 (repulsive) and fit-flag 02 (Morse) introduced.

```
update 13.03/04
3.1.8L: Langevin approximation for cx , for testing of internal consistency H.1: 3.1.8L done
H.2: 3.1.8L done (in July 2015)
H.3: 3.1.8L done (in Sept.2016
H.9: 3.1.8L done
H.3: 3.1.8c done
H.3: 3.1.
```

- update 11.05/04 H.11 2.0a, 2.0b redone, correct $E_{H2} = 0.1 \text{ eV}$ H.11 7.0c renamed to H.11 7.0a H.12 2.0a, 2.0b and 2.0c fits and plots new, $E_{H2} = 0.1 \text{ eV}$ H.4 2.2.5r, 2.2.5d, 2.2.5i fits and plots, MAR, MAD and MAI rate coeff. H.3 3.2.3 new, E_{H2} consistent for all H2(v) H.2 3.2.3 and 2.2.17 redone, $E_{H2} = 0.1$
- update 18.04/05 H.12 2.1.5 added: H⁺ in Col-Rad. equil. with H_{ground} atoms H.12 2.1.8 added: H_{ground} in Col-Rad. equil. with H⁺ ions
- update 14.02/06
 Strahl (ADAS89) data completed for Iron H.8 2.26B0, 2.26B1, H.11 2.26B0
- update 14.07/06
 H.4 7.2.3a 7.2.3b redone
 Col rad p + H− → H + H and → H + p, for E_{H−} = 0.1 eV
 MAR,MAD,MAI rates via H2+, for condensed H2+, renamed from 2.2.5r,d,i to 3.2.3r,d,i
- update 14.01/07 H.10, 2.1.8-t: for comparison with ADAS PRB remove d(ln(sigv))/d(lnT) corrections in free-bound transition then: good agreement with ADAS PRB found (tested for JET divertor case) hence: this correction seemed to be missing in ADAS Also added: H.12 2.1.8de-t, (DE per event) and figures Old H.12 2.1.5t and 2.1.8t renamed into 2.1.5tot and 2.1.8tot, resp. Sept. 18: The intermediate "test fits" H.10 2.1.8-t, H.12 2-1-8de-t from 2007 removed now.
- update 07.08/07 2.1.5 H.4 and H.10 Johnson-Hinnov renamed to 2.1.5JH new "default" is Sawada-Fujimoto: old H.4 2.1.5FU now: H.4 2.1.5 and H.10 2.1.5 (FU) is newly added.
 to be done: H.12 2.1.5de (JH to be replaced by FU: H.12 2.1.5de) H.4 2.1.8 already renamed to H.4 2.1.8JH, and new default is FU: H.4 2.1.8 to be done: H.10 2.1.8 H.12 2.1.8de (JH to be replaced by FU)
- update 17.08/07 H.0 0.100 to H.0 0.103: defaults for Fokker-Planck collisions between charged particles, *ee*, *ei*, *ie*, and *ii* collisions. Fit-Flag: 03
- update Nov. 07: introduce subsections for H.1, to order reactions according to electron impact, proton impact, He+ impact, etc..
- update oct. 09: fit H.3: 2.1.5, for electron impact of H beam (Eb > 700 eV, across cold edge (Te < 1000 eV)
- update oct. 09: fit H.3: 2.3.9, for electron impact of He beam across cold edge
- update jan. 2010: some text added regarding ADAS CR rates ...A0, in H.4, H.10 and H.12

- update Mar. 2011: fit H.3: 3.2.3 corrected. Was completely off. Figure was ok, i.e. bug in fit program. Newly fitted using odrpack95.
- remove blanks from parenthesis (e.g. $H2(a bc) \rightarrow H2(abc)$, for online plots under www.eirene.de)
- update Dec. 08 2011: O ionisation, O+ recombination: ADAS 96, H.4 and H.10 fits added 2.8A0 and 2.3.8A0, resp.
- update Dec. 09 2011:

N ionisation, N+ recombination: ADAS 96, H.4 and H.10 fits added 2.7A0 and 2.3.7A0, resp.

• update July 12:

H.2: 3.2.30 re-introduced, for backward compatibility, i.e. $E_{H_2} = 0.37$ eV, (as around year 2000) whereas now (since 2004) in H.2: 3.2.3 this energy is 0.1 eV.

- update August 12: new figures for H4: 2.2.12 and 2.2.14 (the red HYDHEL curves had been missing. Both these fits have problems below 0.1 eV. to be done. reaction H.2 2.2.5 renamed to 2.2.50 (this is the old, incorrect fit from the 87 Springer book), not to be used anyway.
- update Aug. 12: added H.12: 2.2.15a,..2.2.15e red. pop. coeff H(2)...,H(6) with respect to H3+, based on production of H*(n=2) via Janev, HYDHEL H.2: 2.2.15
- update Sept.13: N,N2,N2+ corona model.

1.) added H.8 and H.11 for N+e ionisation, constant electron energy loss = ionisation potential

2.) revised H.8 and H.11 for Ar and C ionisation, (constant electron energy loss=ionisation potential, to derive electron cooling fits H.8 and H.11 from those for rate coefficients H.23.) new H.2 rate coeff. added for N2 and N2+:

H.2 2.7.5, 2.7.9, 2.7.10, 2.7.11, 2.7.12, 2.7.15 (and 2.7.14 added Jan 2016)

checked: e+N ionisation. cross-section Bell and Brooks are identical. Checked: rate coefficients H.2 2.7, 2.7B0 are identical too. (hence: rate coeffs. should also be identical to open ADAS). further checks: H.4 e + N vs. H.2 e + N?? Is the ADAS corona limit correct?, see plot for H.4 rate coeff., label of red curve incorrect on this plot

• Jan 14:

some reaction headers edited, in H.12 (for automatic online processing)

• Jan 15:

electron energy loss rates for H_2 added: H.10 2.2.H2c (total electron cooling) and H.10 2.2.H2r (radiation energy loss rate only). Both in eV cm³/s. Currently these two rates are related to processes 2.2.5 (DE) plus 2.2.9 (I), but not yet including dissociative ionization channels 2.2.10

• April 15:

HYDHEL cross-section for 3.1.8 (cx) added here too (same as in hydhel.tex file)

This can be used for low and high E0 limit extrapolation. to be done: make H.2 rate to be used for low E0 limit extrapolation...Nov. 17 done now !

• April 15:

Some header texts changed, e.g $ratio \rightarrow Ratio$ in H.12 headers

• June 15:

state notations changed for H, H2, He, to remove further blanks from parenthesis, and now also to distinguish meta-stable-resolved effective rates from single meta-stable-QSS rates. The former have an additional ";r" in their state notation. Also paragraph headers for Trubnikov potentials (H.0) changed.

• July 15:

started to add H.2 rates from fits of H.3 rates for Ebeam $\rightarrow 0$ Done for 0.1, 0.2 and 0.3 elastic reactions. The low Ebeam value was found by comparing H.3 rate fits with independent integration of H.1 cross-sections at low E. Strictly: the H.3 fits should automatically become identical to the H.2 fits for low Ebeam, or EIRENE should automatically use these H.2 fits below a critical Ebeam.

Similarly: H.4, such that H.2 is the correct corona limit at low densities. And also similarly: low T limit (for H.2, H.3 and H.4) should automatically turn into H.1 cross-section(E) times sqrt(E)...., or at least: threshold behaviour $1/T^2 \times \exp(-\Delta E/T)$??

• Oct 15:

Further H.2 rates added for heavy particle collisions. These H.2 rates should be scalable to the corresponding Omega integrals for continuum descriptions consistent with the kinetic formulations based on H.3 rates. done: 0.4, 0.5, 0.6, 0.7, 0.8, both: T (total) and D (diffusion) rates.

• Oct 15:

started to add T1MIN, T1MAX, N2MIN, N2MAX, E2MIN, E2MAX parameters for extrapolation beyond fit range. Currently all H.4 rates should have N2MIN=1.e8, and be extrapolated with these values taken also for all lower electron densities (Corona limit). In this case $ln^i(\tilde{ne}) = 0.0$, i = 1, 2, ..., 8, fit must reduce to H.2 format. I.e., these 9 H.2 coefficients can directly be obtained as subset of the 81 H.4 coefficients.

• Jan.16:

N2+ diss.rec added: rate: 2.7.14, linear on log-log scale, and hence corresponding H.1 and H.8 data follow analytically.

• May 16:

H.2 2.2.17s, H.4 2.2.17r and H.4 2.2.17d: effective, H- condensed, DIS, MAR, MAD rate coefficients for H2, via H2-.

• June 16:

H.4 2.1.5 and H.10 2.1.5 CR electron impact ionisation: fit range extended from 1e3 to 2e4 eV, new fits and figures

• Jan. 17:

H.11 4.0a added. Ratio of production rate constant for H3+ to destruction rate coefficient

(vs.(Te)). From this ratio, by multiplying it with nH2+/ne, one finds the nH3+/nH2 ratio, when H2+ and H3+ are in equilibrium with H2.

• Jun. 17:

H.4 2.1.8, H.10 2.1.8 and H.12 2.1.8 de redone, fit range extended from 0.1 - 1e3, to 0.1..2e4, to avoid spurious recombination rates in hot core plasmas.

• Aug. 17:

H.1 3.1.8 and 3.1.8J2 left asympt. (al0) corrected. Slope was correct, but a small jump at E=0.1 eV. H.1 3.1.8ST and 3.1.8ST2 left asympt. added. Was missing.

• Nov. 17:

H.1 3.1.8 right asympt. added (taken from hydhel). Also H.2 3.1.8 added, (taken from hydhel)

• Mar. 18:

H.12 2.2.5fu, redone. Also: 2.2.5we and 2.2.5ly added (upper werner and lyman band states pop. coef.)

• May 18:

0.13 p,d,t and 0.14 p,d.t added. H.1 and H.3 Elastic cross-sections and rate coeff. (Krstic, Schultz), taken here for vel. dep. relaxation approximation (scattering angle=pi)

• May 18:

H.2 3.1 added: ionisation of W, used a few years ago in a PET paper (Mekkaoui et al.) on study of plasma fluctuations on impurity penetration and cx sputtering.

I.2 to be done:

- Check text in H.12, 2.2.5fl: is Aik already multiplied into this ratio fit, i.e. is this fit a "Fulcher emission rate" (1/s), or is this factor still to be multiplied?
- Further H.2 rate fits available for heavy particle reactions, e.g. 0.5,..., 3.1.6,....still to be implemented
- Check Behringer (Strahl) database for Li ionisation and recomb...
- 2.2.14: H.2 fit made strictly linear on log-log scale, for H.1, H.2 and H.8. Then use H.2 coefficients to derive, exactly, the corresponding H.1 and H.8 coefficients. Done for H.8, 2.2.14, To be done for H.1 for this process, and also for other (probably mostly recombination) processes, e.g. 2.1.8, 2.2.15, 2.3.13, 2.7.14....
- Aug. 17: 3.1.8 H.2, H.3 and H.9 rate coefs. must be redone, due to Aug. 17 correction of left asmpt. in cross-section. Will perhaps further improve the tracklength estim. energy balance. So far we have no 3.1.8S (Schultz) rate coeff. of any kind.

Additional atomic data fits, read by EIRENE Format as HYDHEL DATEN [2] or METHANE DATEN [1]. See description in HYDHEL.pdf

II Numerical Fits to σ and $\langle \sigma v \rangle$

(See again: [2], only slightly generalized version here:)

We derived numerical fits for σ and $\langle \sigma v \rangle$ so that these processes can be evaluated easily in numerical codes and in other instances that demand simple and/or repeated evaluations. Since σ and $\langle \sigma v \rangle$ vary over many orders of magnitude, we made polynomial fits for $\ln \sigma$ in terms of $\ln E$ and for $\ln \langle \sigma v \rangle$ in terms of $\ln T$:

$$\ln \sigma = \sum_{n=0}^{N} a_n (\ln E)^n,$$

$$\ln\langle \sigma v \rangle = \sum_{n=0}^{n} b_n (\ln T)^n,$$

For the electron reactions, or any process in which the projectile particle is assumed to be almost at rest relative to the Maxwellian background, $\langle \sigma v \rangle$ is essentially independent of E within the range of energies considered here.

A more useful fit for the heavy-particle reactions is a double polynomial fit in both E and T:

$$\ln\langle \sigma v \rangle = \sum_{n=0}^{N} \sum_{m=0}^{M} \alpha_{n,m} (\ln E)^m (\ln T)^n.$$

Such a fit requires a large number of coefficients in order to be accurate, but can be used for arbitrary E and T.

Analogously, a fit for the density and temperature dependent reaction rate coefficients is a double polynomial fit in both n and T:

$$\ln\langle \sigma v \rangle = \sum_{n=0}^{N} \sum_{m=0}^{M} \alpha_{n,m} (\ln \tilde{n})^m (\ln T)^n.$$

Most fits in the present database with density and temperature dependence have been set up for density range 1e8 - 1e16 cm⁻³, but with the density parameter \tilde{n} being a scaled density: $\tilde{n} = n/10^8$, n in cm⁻³. As a result, at $n = 10^8$, $\ln(\tilde{n}) = 0$ the 2-parametric fit collapses to a one parametric fit vs. temperature only:

$$\ln\langle \sigma v \rangle(T, n \le 10^8) = \sum_{n=0}^N \alpha_{n,0} (\ln T)^n$$

which can be taken as Corona (density independent) limit, for proper low density parameter asymptotic behaviour.

Further asymptotically correct forms of these fits (at other boundaries of the parameters E, n, T, are described below in subsections II.3.1, II.3.2, etc.. for the various types of data.

II.1 Example of Use of Fits

As an example (taken from [2]) of the use of the tables of fits for cross-sections and reaction rate coefficients consider the calculation of $\langle \sigma v \rangle$ for reaction 2.1.5, $e + H(ls) \rightarrow e + H^+ + e$. We compute

$$\ln\langle \sigma v \rangle = \sum_{n=0}^{8} b_n (\ln T)^n$$

below for T = 10 eV using the coefficients for reaction 2.1.5 in Sect. 8.2 in [2]. In the calculation below, only six digits need to be kept for these to be nearly perfect fits (see Sect. 8.2) and the coefficients have been truncated at six digits.

$$\ln\langle \sigma v \rangle = -3.27139e + 01 + 1.35365e + 01(2.30259) -5.73932e + 00(2.30259)^2 + 1.56315e + 00(2.30259)^3 -2.87705e - 01(2.30259)^4 + 3.48255e - 02(2.30259)^5 -2.63197e - 03(2.30259)^6 + 1.11954e - 04(2.30259)^7 -2.03914e - 06(2.30259)^8$$

$$\ln \langle \sigma v \rangle = -19.07995.$$

Thus,

$$\langle \sigma v \rangle = 5.17228e - 09 \ cm^3/s.$$

II.2 SLREAC.f: Fortran module for reading Data from AMJUEL

Single parameter fits are identified by the character string

```
'p0' in case of H.0 (interaction potential, or differential cross-section)
'a0' in case of H.1 (cross-section)
'b0' in case of H.2 (rate coefficient vs. T-target, E0=0.)
'e0' in case of H.5 (momentum-weighted rate coeff. vs. T-target, E0=0.)
'h0' in case of H.8 (energy-weighted rate coefficient vs. T-target, E0=0.)
'k0' in case of H.11
```

Format: E20.12

Double parameter fits are identified by the character string 'Index' Data are transferred from a data file into the EIRENE code by calls to subroutine SLREAC, listed below.

```
C
SUBROUTINE SLREAC (IR,FILNAM,H123,REAC,CRC)
C
input
```

FILNAM: read a&m data from file filnam, e.q. AMJUEL, HYDHEL, METHAN, CONST С : store data on EIRENE array CREAC(..., IR) С IR H123 : identifyer for data type in filnam, e.g. H.1, H.2, H.3, ... С REAC : number of reaction in filnam, e.g. 2.2.5 С CRC : type of process, e.g. EI, CX, OT, etc С С internal С ISW <-- H123 IO derived from ISW, initial value of 2nd index in CREAC С С output ISWR : EIRENE flag for type of process (1,2,...7) С CREAC : EIRENE storage array for a&m data CREAC(9,0:9,IR) С MODCLF: see below С С DELPOT: ionization potential (for H.10 data), currently handled in input.f. not nice! С IFTFLG: EIRENE flag for type of fitting expression ("fit-flag=...") С С DEFAULTS: =2 FOR POTENTIAL (GEN. MORSE) С =0 FOR ALL OTHERS (POLYNOMIAL, DOUBLE POLYNOMIAL) С C READ A&M DATA FROM THE FILES INTO EIRENE ARRAY CREAC С С C OUTPUT (IN COMMON COMXS): С READ DATA FROM "FILNAM" INTO ARRAY "CREAC" С DEFINE PARAMETER MODCLF(IR) (5 DIGITS NMLKJ) С FIRST DECIMAL J =1 POTENTIAL AVAILABLE С (ON CREAC(\ldots , -1, IR)) С =0 ELSE J С SECOND DECIMAL K =1 CROSS-SECTION AVAILABLE С (ON CREAC(..,0,IR)) С =0 ELSE Κ С THIRD DECIMAL L =1 <SIGMA V> FOR ONE С PARAMETER E (E.G. С PROJECTILE ENERGY OR ELECTRON С DENSITY) AVAILABLE С (ON CREAC(\ldots , 1, IR)) С =2 <SIGMA V> FOR С 9 PROJECTILE ENERGIES AVAILABLE С (ON CREAC(.., J, IR), J=1, 9) С =3 <SIGMA V> FOR С 9 ELECTRON DENSITIES AVAILABLE С (ON CREAC(.., J, IR), J=1, 9) С L =0 ELSE С FOURTH DECIMAL M DATA FOR MOMENTUM EXCHANGE С TO BE WRITTEN С FIFTH DECIMAL N =1 DELTA E FOR ONE PARAMETER E (E.G. С PROJECTILE ENERGY OR ELECTRON С DENSITY) AVAILABLE С (ON CREAC(..,1,IR)) С =2 DELTA E FOR С 9 PROJECTILE ENERGIES AVAILABLE

С						(ON CH	REAC(.	.,J,IH	R),J=	1,9)	
С					=3	3 D	ELTA	E FOF	ર			
С						9	ELE(CTRON	DENSI	FIES	AVAILA	ЗLЕ
С						(ON CH	REAC(.	.,J,IH	R),J=	1,9)	
С			Ν		=() E	LSE					
С												
	USE	PRECISION										
	USE	PARMMOD										
	USE	COMPRT										
	USE	COMXS										
	USE	PHOTON										
С	current	version:	see	EIRENE	on	FZJ	GIT	repos	sitory,	, und	er:	
С	Eirene	/file-hand	ling	/slreac	.f							

END

II.3 Types of data, general prescriptions

The present compilation contains data fits for atomic/molecular processes which can utilized in EIRENE runs. Fits are stored here for interaction potentials (H.0), total cross-sections (H.1), rate coefficients (H.2, H.3 and H.4) and momentum- (H.5, H.6 and H.7) and energy-weighted (H.8, H.9, H.10) rate coefficients, respectively, as well as some supplementary data fits (H.11 and H.12), often reduced population coefficients, and meant mainly for post-processing and other purposes.

II.3.0 H.0: interaction potentials

The classical elastic collision kinetics is determined by the interaction potential V(r). In EIRENE for given (random sampling) impact parameter b and relative collision energy E_r (in eV) the deflection angle χ in the center of mass system is computed and the test particle velocity is then changed accordingly in the laboratory system. There are various options for potential functions V(r). The potential is always in eV, and the distance r (and also b in EIRENE) are in (atomic) units of the Bohr radius $a_0 = 0.529 \times 10^{-8}$ cm. The parameter FIT-FLAG determines which particular fit expression is used for the potential. The potential V(r) can be specified then by up to 9 fit coefficients p_0, \ldots, p_8 , see Section 0.

FIT-FLAG=

- =1 purely repulsive potential: to be written
- =2 Morse like potential:

$$V(r) = \epsilon \left[e^{2g(1-\rho)} - 2e^{g(1-\rho)} \right]$$

with

$$\rho := r/r_m \quad ; \quad g := \begin{cases} g_1 & \text{for } \rho < 1\\ g_1 g_2 & \text{for } \rho \ge 1 \end{cases}$$
(1)

with the parameters:

$$p_{0} = \epsilon \text{ (eV)}$$

$$p_{1} = g_{1}$$

$$p_{2} = g_{2}$$

$$p_{3} = r_{m} \text{ (in units of } a_{0}\text{), the minimum of } V(r) : V(r_{m}) = -\epsilon$$
Derived Parameters are:
$$p_{4} = r_{0} = r_{m} \left(1 - \frac{\ln 2}{g_{1}}\right), \text{ the root of } V(r) : V(r_{0}) = 0$$

$$p_{5} = r_{w} = r_{m} \left(1 + \frac{\ln 2}{g_{1}g_{2}}\right), \text{ the point of inflection of } V(r)$$

$$p_{6} \text{ not in use}$$

$$p_{7} = V(r_{w}) = -\frac{3\epsilon}{4}$$

$$p_{8} \text{ not in use}$$

II.3.1 H.1: cross-section vs. energy

Fits for $\sigma(E_{lab,1})$ [cm²]

Collision cross are functions of relative velocity, but, due to historic reasons in the EIRENE databases, which initially had been built on data of ref. [2], the laboratory energy of one of

the colliding particles (usually the charged particle) is used, with the second collision partner (usually the neutral particle) being at rest. I.e., $\sigma = \sigma(E_{lab,1})$. To convert to center of mass energies, or to other isotopes of the same atom, one uses $E_{lab,1} = m_1/2 v_1^2$ and $E_{CM} = \mu/2 v_{rel}^2$ with $\mu = m_1 m_2/(m_1 + m_2)$ being the reduced mass and $v_{rel} = |v_1 - v_2|$ the relative collision velocity.

Cross-sections for elastic collision processes (classical orbits) are given in this paragraph.

We distinguish between total, diffusion and viscosity cross-sections, by capital letters T, D and V attached to a cross-section label.

These are defined as (written here as function of relative collision velocity v_{rel}):

A): the "total scattering cross-section"

$$\sigma^{t}(v_{rel}) = \int_{0}^{\pi} d\theta \frac{\partial \sigma(\theta, v_{rel})}{\partial \theta} \sin(\theta)$$
(2)

where θ is the scattering angle in the center of mass frame and $d\sigma/d\theta$ is the differential scattering cross-section, which, in an EIRENE application is internally derived classically from the interaction potentials specified under H.0, with proper cut-offs at small scattering angles. B): the "diffusion cross-section"

$$\sigma^{d}(v_{rel}) = \int_{0}^{\pi} d\theta \frac{\partial \sigma(\theta, v_{rel})}{\partial \theta} (1 - \cos(\theta)) \sin(\theta)$$
(3)

in which scattering events are weighted with their momentum transfer efficiency $(1 - \cos(\theta))$ C) the "viscosity cross-section"

$$\sigma^{v}(v_{rel}) = \int_{0}^{\pi} d\theta \frac{\partial \sigma(\theta, v_{rel})}{\partial \theta} (1 - \cos^{2}(\theta)) \sin(\theta)$$
(4)

arising in continuum descriptions of gas and plasma transport, e.g. the Chapman-Enskog expansion.

Special cases, Langevin cross-section In some special cases the cross-section fits in polynomial form become exact, both for cross-sections and for their associated (weighted) rate coefficients. This is the case for cross-sections of the form

$$\sigma(v) = c_r v^r \left[cm^2 \right] \tag{5}$$

with c_r a positive constant and parameter r > -4. An important special case is r = -1, the Langevin cross-section. The corresponding Maxwellian rate coefficient is

$$\langle \sigma(v) \cdot v \rangle(T) = \sqrt{\frac{2T}{m}}^{(r+1)} c_r \frac{2}{\sqrt{\pi}} \Gamma(\frac{r}{2} + 2) \left[cm^3/s \right]$$
(6)

For the Langevin cross-section, r = -1, this reduces simply to a constant rate coefficient:

$$\langle \sigma(v) \cdot v \rangle(T_p) = c_r \ [cm^3/s] \tag{7}$$

Cross-sections in this present database are fitted vs. "laboratory" collision energy E, rather than vs. collision velocity v, with $v = \text{cvela}\sqrt{E(eV)/m(amu)}$, the reference velocity in the EIRENE code is cvela = $1.38912e6 \ [cm/s]$ and m is the mass of the charged particle, assuming the neutral particle to be at rest (not to be confused with the reduced mass m_r). A resulting linear fit (on log-log scale) for $\ln(\sigma(E)) = a_0 + a_1 \ln(E)$ then is:

II.3.2 H.2: rate coefficients vs. temperature (zero beam energy)

Fits for $\langle \sigma(v) \cdot v \rangle(T_p) \ [cm^3/s]$

Maxwellian rate coefficients are taken for neutral particle energy $E_0 = 0.0$ eV and for background (plasma) drift velocity $\mathbf{V}_p = \mathbf{0}$ vs. temperature T_p (electron or ion temp., resp.) of the Maxwellian $f_{maxw}(v_p, T_p)$. I.e. :

 $\langle \sigma v \rangle (T_p) = \int d^3 v_p \, \sigma(v_p) \cdot v_p \cdot f_{maxw}(\mathbf{v}_p, T_p)$

The rate coefficients can be scaled to different isotopes and to finite neutral particle temperatures T_0 by evaluating the fits at an effective temperature T_{eff} given by

$$T_{eff} = \frac{m_p}{m_1} T_1 + \frac{m_p}{m_2} T_2 \tag{8}$$

Here m_p is the mass of the background particle (typically ions or electrons)) as used in calculating the rate coefficients, m_1 and m_2 are the masses of the two isotopes in the particular collision process considered, and T_1 and T_2 are their two temperatures.

For electron impact collisions on heavy (neutral) particles (mass $m_1 = m_0$), i.e. with $m_2 = m_p = m_e$ we have: $m_e \ll m_1$, and hence typically $T_{eff} \approx T_e = T_2$, so the re-scaling to an effective temperature is only required for heavy particle (here: ion impact) collisions.

II.3.3 H.3: rate coefficient vs. temperature and energy

Beam-Maxwellian rate coefficients. These coefficients are generalisations of the H.2 (isotropic) Maxwellian rate coefficients and account for either a finite velocity (energy E_0) of the test particle (or beam) or a fluid drift V_p in the Maxwellian background, or both.

Beam-Maxwellian rate coefficients with drifting Maxwellians $f_{maxw}(T_p, V_p)$ of the background particles "p", with temperature T_p of the Maxwellian and with $|\mathbf{V}_{\mathbf{p}}| = V_p$ can be evaluated in the rest frame of the background "p", i.e. with the beam energy parameter re-defined as

$$\widetilde{E}_0 = m_0/2|\mathbf{V_0} - \mathbf{V_p}|^2 \tag{9}$$

These rate coefficients are therefore fits with two independent parameters, and averaging is over an isotropic (stationary) Maxwellian:

Fits are for $\langle \sigma \cdot v_{rel} \rangle (E_0, T_p) [cm^3/s]$

The fit expression is a double polynomial of order 8 in each of the independent variables E_0 and T_p . The fitted expression is $\ln \langle \sigma \cdot v_{rel} \rangle (\ln E_0, \ln T_p)$. Note that the role of the beam particle is now reversed as compared to that of cross-section data, the energy parameter is now the energy of the mono-energetic (neutral) particle beam (with mass m_0), which is traveling in a host medium of (charged) particles "p", mass m_p , with stationary Maxwellian distribution and temperature T_p .

II.3.4 H.4: rate coefficient vs. temperature and density

Fits for $\langle \sigma \cdot v_{rel} \rangle (n_p, T_p) [cm^3/s]$

Same expression of fit as for Beam-Maxwellian rate coefficients, but with beam energy E_0 (eV) replaced by density n_p . I.e. these rates are given for a fixed energy of the "beam-particle", typically $E_0 = 0.0$ eV, but a density dependence arises due to multiple (ladder-like) processes involved in one "effective step".

For historic reasons and to preserve backward compatibility, the density n_p in this fit must be given in units of $10^8 cm^{-3}$, i.e., with density given in cm^{-3} and the numerical value then divided by 10^8 , or density given in m^{-3} and then divided by $100^3 \times 10^8 = 10^{14}$.

Asymptotical behaviour, density parameter Unless otherwise stated the valid range of the scaled density $\ln(\tilde{n}) = \ln(n/10^8)$ ranges from $\ln(\tilde{n}) = \ln(1.0) = 0.0$ (at $n = 10^8 cm^{-3}$) to $\ln(\tilde{n}) = \ln(10^8) = 8 \ln(10) \approx 18.421$ (at $n = 10^{16} cm^{-3}$). Rescaling the fit expression to a density parameter $\hat{n} = 1/b \ln(n/10^8)$ with $b = 8 \ln(10)$ brings the validity range $[10^8, 10^{16}]$ of the density parameter $n \ [cm^{-3}]$ to the interval [0, 1] for the scaled density parameter \hat{n} . At these boundaries for the scaled density parameter the collisional radiative rate coefficients become density independent (Corona and LTE conditions, respectively). The fit expression (see II)

$$\ln\langle \sigma v \rangle = \sum_{n=0}^{N} \sum_{m=0}^{M} \alpha_{n,m} (\ln \tilde{n})^{m} (\ln T)^{n}$$

then becomes

$$\ln\langle \sigma v \rangle = \sum_{n=0}^{N} \sum_{m=0}^{M} \hat{\alpha}_{n,m} (\hat{n})^m (\ln T)^n$$

with $\hat{\alpha}_{n,m} = b^n \alpha_{n,m}$. At the validity boundaries $\hat{n} = 0$ and $\hat{n} = 1$ this expression collapses to the correct limiting single parameter fits for the temperature dependence:

$$\ln\langle \sigma v \rangle = \sum_{n=0}^{N} \hat{\alpha}_{n,0} (\ln T)^n$$

at $n \le 10^8 \, cm^{-3}$) and

$$\ln\langle \sigma v \rangle = \sum_{n=0}^{N} \hat{\beta}_n (\ln T)^r$$

at $n \ge 10^{16} \, cm^{-3}$) with $\hat{\beta}_n = \sum_{m=0}^M \hat{\alpha}_{n,m}$

The range between the density independent Corona and LTE limits, taken here to be $[10^8, 10^{16}]$, is representative for most relvant applications of EIRENE, but stricktly is also temperature dependent. The range should be made wider (on both boundaries) at lower temperatures (below a few eV) and shrinks (at both boundaries) at higher temperatures. Therefore the density parameter \hat{n} in the fit might better be made temperature dependent, e.g. as $\hat{n} = b \ln(an)/ln(T)$, analogous as for the energy parameter in H.3 fits, see II.3.3.

Asymptotical behaviour, temperature parameter to be written

II.3.5 H.5: momentum-weighted rates vs. temperature

currently not in use. Probably for electron-neutral friction vs. T_e , Omega integrals, etc..

II.3.6 H.6: momentum-weighted rates vs. temperature and energy

This section contains reaction rates for track-length estimators for momentum sources (EIRENE, options IESTM=2). The momentum exchange in a collision of a test particle, subscript 0 and another (e.g. plasma) particle, subscript p, is:

$$\Delta \mathbf{P}_0 = m_0 \cdot (\mathbf{v}_0 - \mathbf{v}_0') = \mu (1 - \cos(\theta)) (\mathbf{v}_0 - \mathbf{v}_p)$$
(10)

with $\mathbf{v}'_0, \mu, \theta$ being the post collision test particle velocity, the reduced mass and the scattering angle in the center of mass frame, respectively. The second equality follows from momentum

conservation and the additional assumption that no internal energy is transferred during the collision (i.e., elastic, or resonant ($v'_0 = v_p, v'_p = v_0$) charge exchange). Also here: $m_0 = m'_0$ and $m_p = m'_p$. Generalizations to un-symmetric resonant charge exchange are discussed below.

Stationary Maxwellian background The rate coefficient of momentum transfer from a single test particle, with velocity v_0 and energy E_0 to the thermal (stationary) plasma background (temperature T_p) is

$$\mathbf{sm}_{0} = \langle \sigma \cdot v_{rel} \cdot \Delta \mathbf{P}_{0} \rangle (E_{0}, T_{p}) = \langle \sigma \cdot v_{rel} \cdot (\mathbf{v}_{0} - \mathbf{v}_{0}') \cdot m_{0} \rangle (E_{0}, T_{p})$$
(11)
$$= \mathbf{e}_{0} \, \mu \sqrt{\frac{2T_{p}}{m_{p}}} \cdot \left[I_{1}^{(1)}(E_{0}, T_{p}) - \frac{1}{2} \sqrt{\frac{m_{0} \cdot T_{p}}{m_{p} \cdot E_{0}}} I_{0}^{(1)}(E_{0}, T_{p}) \right]$$

where $\langle \cdots \rangle$ denotes averaging over the stationary Maxwellian distribution for ion velocities (plasma background) $f_{maxw}(v_p, T_p)$;

 $\mathbf{e}_0 = \mathbf{v}_0/v_0$ the speed unit vector in the direction of the test particle flight. Due to symmetry (isotropy) of the background velocity distribution and averaging over this distribution, momentum can be transferred to/from test particles (and hence also to/from bulk (plasma) particles) only in the direction of test particle flight.

 $\sigma(v_{rel})$ and v_{rel} are the collision cross-section and the relative velocity of colliding particles $v_{rel} = |\mathbf{v}_0 - \mathbf{v}_p|$, respectively;

 T_p and E_0 is the plasma temperature and the test particle (beam) energy, respectively; m_p and m_0 is the mass of the plasma particle and the test particle, respectively;

 $\mu = (m_p \cdot m_0)/(m_p + m_0)$ is the reduced mass;

 v_0 and v'_0 is the velocity of the test particle before and after collision, respectively;

 $I^{(l,n)}(E_0,T_p)$ is the generalized Beam-Maxwellian collision integral introduced in [6]. l = 0 stands for using the total collision cross-section $\sigma^t(v_{rel}) = \int d\theta \sin(\theta) \ d\sigma(v_{rel},\theta)/d\theta$, here $d\sigma/d\theta$ denotes the differential scattering cross-section and θ is the scattering angle. The superscript l = 1, 2... stands for momentum transfer, viscosity, ... cross-sections, respectively,

$$\sigma^{l}(v_{rel}) = \int d\theta \sin(\theta) \, d\sigma(v_{rel}, \theta) / d\theta \cdot [1 - \cos^{l}(\theta)], l = 1, 2, \dots$$
(12)

After averaging the momentum exchange rate coefficient once again, this time over the test particle velocity distribution $f_0(\mathbf{v}_0)$, the resulting momentum transfer rate becomes a vector in the direction of $\mathbf{V}_0 = \int d^3 v_0 \mathbf{v}_0 f_0(\mathbf{v}_0)$, i.e. in the direction of the mean test particle (flow) speed:

$$\mathbf{Sm}_0(f_0, T_p) = \langle \langle \sigma \cdot v_{rel} \cdot \Delta \mathbf{P}_0 \rangle \rangle(f_0, T_p)$$
(13)

and we see that this rate vanishes for isotropic distributions f_0 , simply already because of $V_0 = 0$.

drifting Maxwellian background We now turn to momentum exchange rates between the test particle community, subscript 0 and a background (plasma), subscript p.

As discussed already for general Beam-Maxwellian rate coefficients, paragraph H.3, in a first step we transform to the rest frame of the plasma:

$$\mathbf{V}_p = \int d^3 v_p \mathbf{v}_p f(\mathbf{v}_p); \quad \widetilde{\mathbf{v}}_0 = \mathbf{v}_0 - \mathbf{V}_p; \quad \widetilde{E}_0 = \frac{m_0}{2} \widetilde{v}_0^2; \quad \widetilde{\mathbf{V}}_0 = \mathbf{V}_0 - \mathbf{V}_p$$
(14)

where $\tilde{\mathbf{v}}_0$ is the test particle velocity in the rest frame of the plasma and \tilde{E}_0 is the corresponding energy, Eq. (9). Momentum transfer from a single test particle to a drifting Maxwellian plasma background is then in the direction $\tilde{\mathbf{e}}_0 = \tilde{\mathbf{v}}_0/\tilde{v}_0$

The vector $\widetilde{\mathbf{V}}_0$ is the average (macroscopic) test particle flow velocity in the rest frame of the plasma; The total rate of momentum transfer from the entire test particle community "0" to the (drifting Maxwellian) background community "p" is a vector in this direction $\widetilde{\mathbf{E}}_0 = \widetilde{\mathbf{V}}_0 / \widetilde{V}_0$. From here on: to be re-written, below: old text from Vlad....

Parallel momentum transfer rate (momentum *loss* for the background (plasma)):

$$\mathbf{Sm}_{mu_{\parallel}}^{i} = \mathbf{b} \left(\widetilde{\mathbf{e}}_{mom} \cdot \mathbf{b} \right) \left\langle \sigma \cdot v_{r} \cdot p \right\rangle \left(\widetilde{E}_{0}, T_{p} \right)$$

Where

 \mathbf{V}_{t}^{L} and \mathbf{V}_{dr} is the test particle velocity in laboratory frame and the plasma drift velocity;

b is the magnetic field unit vector.

The final rate is in laboratory frame.

The programming realization can be found in EIRENE in volume-processes/fpatha.f, fpathm.f and couple_Tria_new/uptcop.f

The rates in the present database have been calculated for hydrogen atoms ($m_0 = 1$ amu) in a hydrogen ion background ($m_p = 1$ amu). The mass rescaling is the following. If $\sigma = \sigma(V_r)$ then $I^{(l,n)} = F\left(\frac{E}{m_t}\right), \frac{T}{m_p}$ and

$$\left\langle \sigma \cdot v_r \cdot p \right\rangle (E,T) = \frac{m_r^n}{m_r^o} \left\langle \sigma \cdot v_r \cdot p \right\rangle \left(\frac{m_t^o}{m_t^n} E, \frac{m_p^o}{m_p^n} T\right)$$

This kind of rescaling is applied for charge exchange, see volume-processes/xstcx.f. If $\sigma = \sigma(E_r)$ then $I^{l,n} = \frac{1}{\sqrt{m_r}} F\left(\frac{m_r}{m_p}T, \frac{m_r}{m_t}E\right)$ and

$$\left\langle \sigma \cdot v_r \cdot p \right\rangle = \left\langle \sigma \cdot v_r \cdot p \right\rangle \left(\frac{m_r^n \cdot m_p^o}{m_r^o \cdot m_p^n} T, \frac{m_r^n \cdot m_t^o}{m_r^o \cdot m_t^n} E \right)$$

This rescaling is used for elastic collisions according to [21], see volume-processes/xstel.f. Here superscript "o" means the masses for those the fitting was calculated, and "n" means real masses.

The rate 0.3 (elastic $p + H_2$ collisions) from this set was successfully compared with the same sources, calculated by collisional estimator. The same test for the resonant CX rates 3.1.8 was not yet successful

II.3.7 H.7: momentum-weighted rates vs. temperature and density

II.3.8 H.8: energy-weighted rates vs. temperature

Under label H.8 energy-weighted rate coefficients are stored, vs. temperature (eV) of the Maxwellian electron or heavy particle distributions. (E.g., unless otherwise stated, these rates are taken for test particles at rest: $E_0 \approx 0.0 eV$). The general relation between the energy-weighted rate coefficients H.8 and the "ordinary" rate coefficients H.2 is (integration by parts):

$$H.8[eVcm^3/s] = kT \times H.2 \times \left[3/2 + \frac{d\ln(H.2)}{d\ln T}\right]$$
(15)

with rate coefficient H.2 in cm^3/s . If the H.2 rate coefficients are fitted as:

$$\ln(H.2) = \sum_{i=0}^{8} b_i \ln^i(T)$$
(16)

then

$$\frac{d\ln(H.2)}{d\ln T} = \sum_{i=0}^{7} b_{i+1}(i+1)\ln^{i}(T) = b_{1} + 2b_{2}\ln(T) + 3b_{3}\ln^{2}(T) + \dots$$
(17)

and hence, for the H.8 coefficient, in the same fit format as for the H.2 coefficient:

$$\ln(H.8) = \ln(kT) + \ln(H.2) + \ln(3/2 + b_1 + 2b_2\ln(T) - \dots)$$
(18)

If a H.2 rate coefficient is linear on a log-log scale, as e.g. often the case for recombination processes, then $b_2 = b_3 = \dots = b_8 = 0$, and hence, for the fit coefficients of the corresponding H.8 rate coefficient:

 $h_0 = b_0 + \ln[3/2 + b_1], h_1 = b_1 + 1, h_2 = h_3 = \dots = h_8 = 0$

An explicit numerical example is detailed under H.8 2.2.14 (dissociative combination of $H_2^+(v)$ molecular ions).

II.3.9 H.9: energy-weighted rates vs. temperature and energy

II.3.10 H.10: energy-weighted rates vs. temperature and density

Fits for $\langle \sigma \cdot v \cdot E \rangle (n_e, T) [cm^3/s \cdot eV]$

The units of T and n in the fits are the same as for H.4 and H.7 rates. E is the total energy loss for the electron or ion gas per collision event, in eV. These rates, therefore, if multiplied by the electron charge $1.6022 \ 10^{-19}$, are electron- or ion energy loss rates in Watt/cm³. Unless otherwise noted these are total energy loss rate coefficients associated with the particular process or set of processes. If such a process is an "effective process", implicitly including fast transitions between excited states of particles which are considered to be in a certain (collisional radiative) equilibrium, then these total effective rates include also line- (bound-bound) and continuum (free-bound) radiation losses, kinetic energy of products (e.g. in case of dissociation processes) and internal (potential) energy differences between pre- and post-collision particles, but **not** bremsstrahlung (free-free) losses.

If the potential energy difference in a particular collision process is negative, as, e.g., in recombination processes or in electron impact de-excitation of meta-stables to a lower level, then this total energy loss rate may become negative, for some values of the parameters, and remain positive for others. I.e., the coefficients may change sign within the parameter range covered by the fit. The fits in this database are, however, often given for the logarithm of the rate coefficient. In such cases we have subtracted the (negative) potential energy contribution from these coefficients before fitting.

More generally, the fitted coefficients, therefore, read:

 $\langle \sigma \cdot v \cdot E \rangle_{fit} = \langle \sigma \cdot v \cdot E \rangle - \Delta E_{subtr.} \langle \sigma \cdot v \rangle$

with $\Delta E_{subtr.}$ specified for each particular rate coefficient below, together with the fitting coefficients.

By default we have chosen $\Delta E_{subtr.} = 0$. in this expression for all processes in which the potential energy is enhanced ("sub-elastic" processes, such as ionization, excitation).

For the opposite case (recombination, collisional de-excitation, i.e., "super-elastic" processes, we have chosen $\Delta E_{subtr.} = \Delta E_{pot}$

One can show with some boring algebra on the matrices which arise in collisional radiative models that with this particular choice of the subtracted energy loss rate for collisional radiative electron cooling rates the remaining fitted expression $\langle \sigma \cdot v \cdot E \rangle_{fit}$ turns out to be exactly the radiation energy loss rate associated with a particular process or set of processes.

In other words: the total effective electron cooling rate is the sum of the effective radiation energy loss rate plus the effective potential energy loss rate, however, with the latter rate being simply given as

 $\langle \sigma \cdot v \cdot \Delta E_{pot} \rangle_{effective} = \Delta E_{pot} \cdot \langle \sigma \cdot v \rangle_{effective}$

In this expression $\langle \sigma \cdot v \rangle_{effective}$ is just the effective rate coefficient for the process under consideration, i.e. the coefficient for the same process as given in section H.4.

Note: Electron cooling rate coefficients (as well as radiation rate coefficients) are physically related to a particular species, not necessarily to a particular process.

E.g. electron cooling and radiation rates for H_2 molecules correspond to electron collisions on H_2 and are therefore not related to either dissociative excitation, dissociative ionization or ionization of that molecule individually, but only to the (weighted) sum of these three channels. Similarly, electron cooling rates associated with a Helium atom, if meta-stables He atoms are retained explicitly in the transport equations, are related to a weighted sum of excitation, deexcitation and ionization processes from a particular meta-stable state, but not to these individual processes.

II.3.11 H.11: other data, e.g. reduced population coefficients

single parameter fit for any other data, e.g. to be used in special user supplied programs, i.e. not generally understood by EIRENE, but can be used in problem specific "...USR" routines of EIRENE, e.g. for post processing. The data fitted in H.11 are, therefore, typically not rate-coefficients, but often (not always) ratios between two single parameter rate coefficients. This comprises data derived from CR models, such as reduced population coefficients, or QSS equilibrium density ratios. Typically the density ratios A/B are distinguished by the formation process of species B, from species A:

$$n_A \langle \sigma v; A \to B \rangle(T) = n_B \langle \sigma v; B_{loss} \rangle(T) \to n_B / n_A = \frac{\langle \sigma v; A \to B \rangle(T)}{\langle \sigma v; B_{loss} \rangle(T)}$$
(19)

Also reduced population coefficients are such density ratios, however the production of upper level B may result from various multi-step processes, all starting from ("coupled to") A.

II.3.12 H.12: other data, e.g. reduced population coefficients

double parameter fit for any other data, e.g. to be used in special user supplied programs, i.e. not generally understood by EIRENE, but can be used in problem specific "..USR" routines of EIRENE, e.g. for post processing. The data fitted in H.12 are, therefore, typically not rate-coefficients, but often (not always) ratios between two rate coefficients, see (19). The double parameter fit data in the present paragraph result if at least one of the two involved rate coefficients have a density dependence in addition to the temperature dependence.

Exceptions exist, where a hard-wired reading of data from this section is coded into EIRENE: these are the reduced population coefficients for hydrogenic plasmas, i.e. 2.1.5a,...2.1.5e, 2.2.5a, 2.2.5e, etc... are currently automatically read in EIRENE post processing routines in code section "output", routines: Ba_alpha, Ly_alpha, Ba_beta, Ba_gamma, Ba_gamma,...

II.4 End of preface

This next string is searched by EIRENE in subroutine SLREAC to initialize search for a particular set of fit coefficients. From here on, a character string **'H.n'**, n an integer, must only appear in the section title, but not in the text. Likewise: identifiers p0, a0, b0,,h0, k0 are used in SLREAC and must not appear in the text elsewhere, from here on.

0 H.0 : Fits for Potentials

0.1 Reaction 0.1T $p + H(1s) \rightarrow p + H(1s)$ potential, binary elastic

This potential is not yet implemented here. It is still explicitly programmed in EIRENE, elastics.f. It is the first repulsive H_2^+ potential.

0.2 Reaction 0.2T $p + He(1s^21S) \rightarrow p + He(1s^21S)$ potential, binary elastic

Morse potential, see [9]

0.3 Reaction 0.3T $p + H_2 \rightarrow p + H_2$ potential, binary elastic

Morse potential, see [9]

```
fit-flag 02
p0 2.7000000000D+00 p1 3.00000000D+00 p2 1.000000000D+00
p3 2.83550000000D+00 p4 2.1803800000D+00 p5 3.49068700000D+00
p6 0.000000000D+00 p7 -2.0250000000D+00 p8 0.000000000D+00
```

0.4 Reaction 0.4T $He^+ + He \rightarrow He^+ + He$ potential, binary elastic

Morse potential, see [9]

```
fit-flag 02
p0 2.5500000000D+00 p1 2.350000000D+00 p2 0.900000000D+00
p3 1.98420000000D+00 p4 1.3990800000D+00 p5 2.63450000000D+00
p6 0.000000000D+00 p7 -1.91250000000D+00 p8 0.000000000D+00
```
0.5 Reaction 0.5T $p + Ne \rightarrow p + Ne$ potential, binary elastic

```
fit-flag 02
p0 2.2800000000D+00 p1 2.680000000D+00 p2 0.850000000D+00
p3 1.87090000000D+00 p4 1.3870000000D+00 p5 2.44020000000D+00
p6 0.000000000D+00 p7 -1.7100000000D+00 p8 0.000000000D+00
```

0.6 Reaction 0.6T $p + Ar \rightarrow p + Ar$ potential, binary elastic

```
fit-flag 02
p0 4.0400000000D+00 p1 2.500000000D+00 p2 0.860000000D+00
p3 2.47560000000D+00 p4 1.7892000000D+00 p5 3.27370000000D+00
p6 0.0000000000D+00 p7 -3.0300000000D+00 p8 0.000000000D+00
```

0.7 Reaction 0.7T $p + Kr \rightarrow p + Kr$ potential, binary elastic

```
fit-flag 02
p0 4.4500000000D+00 p1 2.500000000D+00 p2 0.800000000D+00
p3 2.77790000000D+00 p4 2.00770000000D+00 p5 3.74060000000D+00
p6 0.000000000D+00 p7 -3.3375000000D+00 p8 0.000000000D+00
```

0.8 Reaction 0.8T $p + Xe \rightarrow p + Xe$ potential, binary elastic

```
fit-flag 02
p0 6.7500000000D+00 p1 3.800000000D+00 p2 1.080000000D+00
p3 3.28820000000D+00 p4 2.68840000000D+00 p5 3.84360000000D+00
p6 0.000000000D+00 p7 -5.06250000000D+00 p8 0.000000000D+00
```

0.9 Reaction 0.13p $p + Be \rightarrow p + Be$ potential

Default: scattering by angle PI in CM system (strong collision)

0.10 Reaction 0.14p $p + C \rightarrow p + C$ potential

Default: scattering by angle PI in CM system (strong collision)

0.11 Coulomb collisions (not ready)

0.11.1 Reaction 0.100 $e + e_b \rightarrow e + e_b$ Trubnikov potential

bulk-electrons on test-electron, Fokker-Planck elastic

Data for Trubnikov Potentials for Fokker-Planck collision operator, bulk-electrons on testelectrons.

currently: none

0.12 Reaction 0.101 $i + e_b \rightarrow i + e_b$ Trubnikov potential

bulk-electrons + test-ions, Fokker-Planck elastic

Data for Trubnikov Potentials for Fokker-Planck collision operator, bulk-electrons on test-ions. currently: none

0.13 Reaction 0.102 $e + i_b \rightarrow e + i_b$ Trubnikov potential

bulk-ions on test-electron, Fokker-Planck elastic

Data for Trubnikov Potentials for Fokker-Planck collision operator, bulk-ions on test-electrons. currently: none

```
fit-flag 03
p0 0.00000000000D+00 p1 0.000000000D+00 p2 0.000000000D+00
p3 0.000000000D+00 p4 0.000000000D+00 p5 0.000000000D+00
p6 0.000000000D+00 p7 0.000000000D+00 p8 0.000000000D+00
```

0.14 Reaction 0.103 $i + i_b \rightarrow i + i_b$ Trubnikov potential

bulk-ions + test-ions, Fokker-Planck elastic Data for Trubnikov Potentials for Fokker-Planck collision operator, bulk-ions on test-ions. currently: none

```
fit-flag 03
p0 0.0000000000D+00 p1 0.00000000D+00 p2 0.000000000D+00
p3 0.000000000D+00 p4 0.00000000D+00 p5 0.000000000D+00
p6 0.000000000D+00 p7 0.00000000D+00 p8 0.000000000D+00
```

1 H.1 : Fits for $\sigma(E_{lab})$

1.1 electron impact processes

1.1.1 Reaction 2.2.5 org $e + H_2(X_a^+S) \to ... \to e + H(1s) + H(1s)$

Fit as given in monograph [2], repeated here only for reference purposes. EIRENE uses in its default database the corresponding fit as given in the unpublished preprint for [2]. This latter fit seems to be more plausible and has been put into the file HYDHEL. It is therefore recommended to read these fit coefficients from the database HYDHEL, and not from here (AMJUEL).

 $e + H_2(X_q^+S) \to e + H(b^3\Sigma_u^+, a^3\Sigma_q^+, c^3\Pi_u) \to e + H(1s) + H(1s)$

```
a0 -2.297914361380e+05
                          a1
                              5.303988579693e+05
                                                    a2 -5.316636672593e+05
   3.022690779470e+05
                          a4 -1.066224144320e+05
                                                    a5 2.389841369114e+04
a3
a6 -3.324526406357e+03
                          a7
                              2.624761592546e+02
                                                    a8 -9.006246604428e+00
   Eth 8.5
   Emin 1.08e+01
                             1.00e-19
                                         smax 2.92e-17
                                                                5.62e-01
                    s(Emin)
                                                          Error
```

This page is intentionally left blank

1.1.2 Reaction 2.2.14 $e + H_2^+(v) \to H(1s) + H(n), (v = 0 \dots 9, n \ge 2)$

EIRENE uses in its default database the corresponding fit from [2], but with all fit coefficients except the first two being set to zero, i.e. a linear fit on a log-log scale.

This latter fit seems to be more plausible. It is therefore recommended to read these fit coefficients from the present database AMJUEL, and not from HYDHEL.

```
a0 -3.479249259777e+01
                         al -1.103564847459e+00
                                                  a2 0.00000000000000e+00
  0.000000000000e+00
                         a4 0.000000000000e+00
                                                  a5 0.000000000000e+00
a3
   0.000000000000e+00
                         a7 0.000000000000e+00
                                                  a8 0.000000000000e+00
a6
   Emin 1.00e-01 s(Emin) 9.85e-15
                                       smax 9.85e-15
                                                        Error 1.74e-25
   Eth 0.0
   Mcross 9.1093826E-31
```

1.2 proton impact collisions

Elastic collisions between neutral and charged particles, Bachmann/Reiter ([9]) cross-sections as function of E_{lab} ,

 $E_{lab} = (m_{lab}/2) \cdot v^2$

 m_{lab} is the ion mass throughout. "T" stands for "total" cross-section (obtained with cut off at impact parameter such that diffusion and viscosity cross-sections remain accurate. "D" stands for "diffusion" cross-section, and "V" for "viscosity" cross-section.

1.2.1 Reaction 0.1T $p + H(1s) \rightarrow p + H(1s)$ total cross section

```
0.00000000000D+00 a1 0.0000000000D+00
                               a0
 a4
                               a7
 al0 -3.253031352541D+01 al1 -2.559032645641D-01 al2 -1.449996483552D-02
 ar0 -3.262937357400D+01 ar1 -8.719626183599D-02 ar2 -7.346647926269D-02
      1.82060E 00 eV
ELABMIN=
      1.82060E 00 eV
ELABMAX=
    Eth 0.0
```

1.2.2 Reaction 0.1D $p + H(1s) \rightarrow p + H(1s)$ diff. cross section

```
a0 -3.349115100108D+01 a1 -4.047040620920D-01 a2 -4.340959073105D-02
a3 -5.224890973622D-03 a4 -1.019115858754D-04 a5 -3.314157761518D-06
a6 -4.336259011986D-05 a7 -1.781020734395D-06 a8 1.220393550627D-06
a10 -3.320677627738D+01 a11 -2.205942040112D-01 a12 0.0000000000D+00
ar0 -2.753878563969D+01 ar1 -2.0000000000D+00 ar2 0.000000000D+00
ELABMIN= 0.02000E 00 eV
ELABMAX= 2.00000E 02 eV
Eth 0.0
```

1.2.3 Reaction 0.1V $p + H(1s) \rightarrow p + H(1s)$ visc. cross-section

```
a0 -3.353420922048D+01 a1 -3.522409780724D-01 a2 -3.587214262651D-02
a3 -4.282561006823D-03 a4 -3.230618998917D-04 a5 -4.343173698940D-05
a6 -1.753965583282D-05 a7 -4.580920664987D-07 a8 3.738689325195D-07
a10 -3.330015157525D+01 a11 -1.992625366488D-01 a12 0.00000000000D+00
ar0 -2.709329427260D+01 ar1 -2.0000000000D+00 ar2 0.000000000D+00
ELABMIN= 0.02000E 00 eV
ELABMAX= 2.00000E 02 eV
Eth 0.0
```

Note: This elastic reaction should only be used, if the resonant charge exchange differential cross-section (and hence: diffusion cross-section) is reduced accordingly. The sum: elastic plus charge exchange transport ("diffusion"-) cross-section should be twice the charge exchange total cross-section. The assumption of an exchange of identity (scattering angle π in the center of mass system) at charge exchange produces that factor 2. Hence the need for a revised (smaller) charge exchange scattering angle, if the elastic collision contribution is explicitly added in.

1.2.4 Reaction 0.2T $p + He(1s^21S) \rightarrow p + He(1s^21S)$ total cross-section

```
a0 -3.357907136508D+01 a1 -9.811659406594D-02 a2 3.798308269292D-01
a3 -1.259671949006D+00 a4 -4.473947519984D-02 a5 1.565182597363D+00
a6 -1.203733922915D+00 a7 3.525830383820D-01 a8 -3.668922671043D-02
a10 -3.355838377904D+01 al1 -2.845473342853D-01 al2 -1.351427675077D-02
ar0 -3.706830076698D+01 ar1 4.204258692619D-01 ar2 -9.648359210100D-02
ELABMIN= 0.50810E 00 eV
ELABMAX= 2.94431E 01 eV
Eth 0.0
```

1.2.5 Reaction 0.2D $p + He(1s^21S) \rightarrow p + He(1s^21S)$ diff. cross section

```
a0 -3.425585328953D+01 a1 -8.999762959781D-01 a2 -3.434858124811D-01
a3 1.549750110754D-02 a4 3.963555202866D-02 a5 3.343570605088D-04
a6 -2.207534449376D-03 a7 -3.378852519380D-05 a8 4.224511209820D-05
a10 -3.390101844960D+01 a11 -2.111706771112D-01 a12 0.00000000000D+00
ar0 -3.034765152080D+01 ar1 -2.0000000000D+00 ar2 0.000000000D+00
ELABMIN= 0.01250E 00 eV
ELABMAX= 1.25000E 02 eV
Eth 0.0
```

1.2.6 Reaction 0.2V $p + He(1s^21S) \rightarrow p + He(1s^21S)$ visc. cross section

a0 -3.443725345071D+01	al -4.337427858507D-01	a2 -2.896488696126D-01
a3 -6.451669335555D-02	a4 2.950009865269D-02	a5 5.752283385868D-03
a6 -1.589840628629D-03	a7 -1.502468439244D-04	a8 3.151161681447D-05
al0 -3.432276031579D+01	all -2.111706771112D-01	al2 0.00000000000000000000000000000000000
ar0 -2.978907423990D+01	ar1 -2.000000000000000000	ar2 0.00000000000000000000000000000000000
ELABMIN= 0.01250e 00 eV		
ELABMAX= 1.25000e 02 eV		
Eth 0.0		

1.2.7 Reaction 0.3T $p + H_2 \rightarrow p + H_2$ total cross-section

```
a0 -3.452141819446D+01
                           al
                              1.092015526305D+01 a2 -2.732690257819D+01
   a3 3.466297654768D+01
                           a4 -2.524607958646D+01 a5 1.092376446349D+01
   a6 -2.770065796605D+00
                               3.796353200921D-01
                                                   a8 -2.168988142310D-02
                           a7
 al0 -3.275286840950D+01 al1 -2.351764912137D-01 al2 -1.045602118569D-02
  ar0 -3.537275807146D+01 ar1 2.144573517210D-01 ar2 -4.643079956637D-02
ELABMIN=
         1.55980E 00 eV
ELABMAX=
          6.18164E 01 eV
       Eth 0.0
```

1.2.8 Reaction 0.3D $p + H_2 \rightarrow p + H_2$ diff. cross-section

```
a0 -3.318680874597D+01 a1 -3.580417289312D-01 a2 -2.274382376951D-01
a3 -5.005702120342D-02 a4 2.369248748869D-02 a5 5.013459267775D-03
a6 -1.357018742589D-03 a7 -1.393776090855D-04 a8 3.029808591929D-05
a10 -3.319348529474D+01 a11 -1.72691800000D-01 a12 0.0000000000D+00
ar0 -2.668769803274D+01 ar1 -2.000000000D+00 ar2 0.000000000D+00
ELABMIN= 0.01500E 00 eV
ELABMAX= 1.50000E 02 eV
Eth 0.0
```

1.2.9 Reaction 0.3V $p + H_2 \rightarrow p + H_2$ visc. cross-section

```
a0 -3.362402037774D+01 a1 -2.337285826242D-01 a2 -5.404526201247D-02
a3 -4.473235272373D-02 a4 -4.691524784882D-03 a5 3.121568334037D-03
a6 4.229065229431D-04 a7 -6.739555319843D-05 a8 -7.756198335533D-06
a10 -3.342235494450D+01 a11 -1.726917299089D-01 a12 0.0000000000D+00
ar0 -2.658939177532D+01 ar1 -2.000000000D+00 ar2 0.000000000D+00
ELABMIN= 0.01500E 00 eV
ELABMAX= 1.50000E 02 eV
Eth 0.0
```


Comparison of the classical cross-sections given here with quantal calculations by Krstic et al., J. Phys. B, **32**, 2415 (1999), the latter converted from center of mass energy to (proton) laboratory energy.

1.2.10 Reaction 0.5T $p + Ne \rightarrow p + Ne$ total cross section

a0 -3.333282545037D+01	al -2.591757686627D-01	a2 5.905962318567D-02
a3 -2.001826855775D-01	a4 -5.669049674832D-02	a5 3.137174515541D-01
a6 -2.299821550060D-01	a7 6.688038706682D-02	a8 -6.994996779393D-03
al0 -3.334100609281D+01	all -2.660471531811D-01	al2 -1.171591760471D-02
ar0 -3.771378768853D+01	ar1 9.099449063061D-01	ar2 -1.337354731926D-01
ELABMIN= 0.62790E 00 eV		
ELABMAX= 3.19973E 01 eV		
Eth 0.0		

1.2.11 Reaction 0.5D $p + Ne \rightarrow p + Ne$ diff. cross section

a0 -3.397612223333D+01	al -7.944741087630D-01	a2 -3.200443973964D-01
a3 2.143674395544D-02	a4 4.021546316704D-02	a5 -4.263678799110D-04
a6 -2.276386458638D-03	a7 -3.001154820480D-06	a8 4.436110664443D-05
al0 -3.344006570082D+01	all -1.264736732177D-01	al2 0.00000000000000000000000000000000000
ar0 -2.871071324009D+01	ar1 -2.000000000000000000	ar2 0.00000000000000000000000000000000000
ELABMIN= 0.01050E 00 eV		
ELABMAX= 1.05000E 02 eV		
Eth 0.0		

1.2.12 Reaction 0.5V $p + Ne \rightarrow p + Ne$ visc. cross section

a0 -3.425296680643D+01	al	-4.079254123231D-01	a2	-2.051623201200D-01
a3 -4.669640022898D-02	a4	1.746802660208D-02	a5	4.241270429401D-03
a6 -7.397954249705D-04	a7	-1.059957777533D-04	a8	1.168831982170D-05
al0 -3.373988599214D+01	al1	-1.264736732177D-01	al2	0.000000000000000000000000000000000000
ar0 -2.849668424775D+01	ar1	-2.000000000000000000	ar2	0.000000000000000000000000000000000000
ELABMIN= 0.01050e 00 eV				
ELABMAX= 1.05000e 02 eV				
Eth 0.0				

1.2.13 Reaction 0.6T $p + Ar \rightarrow p + Ar$ total cross section

a0 -3.252771558768D+01	al -2.994313973955D-01	a2 -3.235294539387D-01
a3 1.292660022245D+00	a4 -1.875728041457D+00	a5 1.314385161305D+00
a6 -4.834707764434D-01	a7 8.976263360824D-02	a8 -6.639912411263D-03
al0 -3.255656992304D+01	al1 -2.557987010452D-01	al2 -1.142012674223D-02
ar0 -3.733310020910D+01	ar1 9.621654379319D-01	ar2 -1.332505124850D-01
ELABMIN= 1.00563E 00 eV		
ELABMAX= 5.43280E 01 eV		
Eth 0.0		

1.2.14 Reaction 0.6D $p + Ar \rightarrow p + Ar$ diff. cross section

a0 -3.300046179597D+01	a1	-5.241652502840D-01	a2	-2.862188345952D-01
a3 -3.808042387800D-02	a4	2.731692136471D-02	a5	3.732186449899D-03
a6 -1.323867831716D-03	a7	-9.428149507977D-05	a8	2.340068227020D-05
al0 -3.200195937779D+01	al1	3.219272946637D-02	al2	0.000000000000000000000000000000000000
ar0 -2.798873683611D+01	ar1	-2.00000000000000000	ar2	0.000000000000000000000000000000000000
ELABMIN= 0.01025E 00 eV				
ELABMAX= 1.02500E 02 eV				
Eth 0.0				

1.2.15 Reaction 0.6V $p + Ar \rightarrow p + Ar$ visc. cross section

a0 -3.344659528005D+01	al -2.316327281065D-01	a2 -7.902810934692D-02
a3 -7.081702521173D-02	a4 -8.163451484200D-03	a5 5.173767719011D-03
a6 8.930487483240D-04	a7 -1.149225205768D-04	a8 -2.179416064042D-05
al0 -3.222949872234D+01	all 3.219272946637D-02	al2 0.00000000000000000000000000000000000
ar0 -2.777200494194D+01	ar1 -2.000000000000000000	ar2 0.00000000000000000000000000000000000
ELABMIN= 0.01025e 00 eV		
ELABMAX= 1.02500e 02 eV		
Eth 0.0		

1.2.16 Reaction 0.7T $p + Kr \rightarrow p + Kr$ total cross section

a3 1.046180820426D+00 a4 -1.532374878331D+00 a5 1.080443653930D+ a6 -3.994323904320D-01 a7 7.448807486523D-02 a8 -5.532560545765D- a10 -3.219832641289D+01 a11 -2.577194242716D-01 a12 -1.156457632593D- ar0 -3.656299611480D+01 ar1 7.386503642992D-01 ar2 -1.095842303625D- ELABMIN= 0.99496E 00 eV ELABMAX= 5.69606E 01 eV Eth 0.0	a0 -3.217099198301D+01	al -2.966377676688D-01	a2 -2.616163755904D-01
a6 -3.994323904320D-01 a7 7.448807486523D-02 a8 -5.532560545765D- al0 -3.219832641289D+01 al1 -2.577194242716D-01 al2 -1.156457632593D- ar0 -3.656299611480D+01 ar1 7.386503642992D-01 ar2 -1.095842303625D- ELABMIN= 0.99496E 00 eV ELABMAX= 5.69606E 01 eV Eth 0.0	a3 1.046180820426D+00	a4 -1.532374878331D+00	a5 1.080443653930D+00
al0 -3.219832641289D+01 al1 -2.577194242716D-01 al2 -1.156457632593D- ar0 -3.656299611480D+01 ar1 7.386503642992D-01 ar2 -1.095842303625D- ELABMIN= 0.99496E 00 eV ELABMAX= 5.69606E 01 eV Eth 0.0	a6 -3.994323904320D-01	a7 7.448807486523D-02	a8 -5.532560545765D-03
ar0 -3.656299611480D+01 ar1 7.386503642992D-01 ar2 -1.095842303625D- ELABMIN= 0.99496E 00 eV ELABMAX= 5.69606E 01 eV Eth 0.0	al0 -3.219832641289D+01	all -2.577194242716D-01	al2 -1.156457632593D-02
ELABMIN= 0.99496E 00 eV ELABMAX= 5.69606E 01 eV Eth 0.0	ar0 -3.656299611480D+01	ar1 7.386503642992D-01	ar2 -1.095842303625D-01
ELABMAX= 5.69606E 01 eV Eth 0.0	ELABMIN= 0.99496E 00 eV		
Eth 0.0	ELABMAX= 5.69606E 01 eV		
	Eth 0.0		

1.2.17 Reaction 0.7D $p + Kr \rightarrow p + Kr$ diff. cross section

a0 -3.262831875045D+01	a1	-5.132763454362D-01	a2	-2.834710685102D-01
a3 -4.303577717283D-02	a4	2.549874332091D-02	a5	4.067614437201D-03
a6 -1.176633809631D-03	a7	-1.008012190920D-04	a8	1.995735768760D-05
al0 -3.206995069647D+01	al1	-5.998480905376D-02	al2	0.000000000000000000000000000000000000
ar0 -2.770706826427D+01	ar1	-2.000000000000000000	ar2	0.000000000000000000000000000000000000
ELABMIN= 0.01011E 00 eV				
ELABMAX= 1.01114E 02 eV				
Eth 0.0				

1.2.18 Reaction 0.7V $p + Kr \rightarrow p + Kr$ visc. cross section

a0 -3.308937458718D+01	al -2.158553767021D-01	a2 -6.932630020130D-02
a3 -7.534625980338D-02	a4 -1.066481934150D-02	a5 5.423170191562D-03
a6 1.055574923129D-03	a7 -1.193974259452D-04	a8 -2.508108481903D-05
al0 -3.227537561040D+01	all -5.998480905376D-02	al2 0.00000000000000000000000000000000000
ar0 -2.750803302740D+01	ar1 -2.000000000000000000	ar2 0.00000000000000000000000000000000000
ELABMIN= 0.01011e 00 eV		
ELABMAX= 1.01114e 02 eV		
Eth 0.0		

Elastic Coll. Total-, Diffusion- and Visc. cross section

1.2.19 Reaction 0.8T $p + Xe \rightarrow p + Xe$ total cross section

au -8.022/45305889D+01	al	1.56349/534909D+02	a2	-2.198787103607D+02
a3 1.720041600893D+02	a4	-8.202458014402D+01	a5	2.443504314279D+01
a6 -4.445085155020D+00	a7	4.519723658716D-01	a8	-1.969077046350D-02
al0 -3.273372765185D+01	al1	-1.978370734932D-01	al2	-7.780729379878D-03
ar0 -3.529762555521D+01	ar1	2.820997908369D-01	ar2	-4.141441372472D-02
ELABMIN= 4.11282E 00 eV				
ELABMAX= 1.22993E 02 eV				
Eth 0.0				

1.2.20 Reaction 0.8D $p + Xe \rightarrow p + Xe$ diff. cross section

a0 -3.318665017785D+01	al	-1.652711162673D-01	a2	-8.820446797035D-02
a3 -4.031476436668D-02	a4	4.816376369566D-03	a5	2.865304171410D-03
a6 -2.624353623005D-04	a7	-6.271242694944D-05	a8	6.709771809639D-06
al0 -3.367397269144D+01	al1	-2.502739321615D-01	al2	0.000000000000000000000000000000000000
ar0 -2.275819247054D+01	ar1	-2.000000000000000000000000000000000000	ar2	0.000000000000000000000000000000000000
ELABMIN= 0.01008E 00 eV				
ELABMAX= 1.00760E 03 eV				
Eth 0.0				

1.2.21 Reaction 0.8V $p + Xe \rightarrow p + Xe$ visc. cross section

a0	-3.353160943338D+01	al	-1.556474053592D-01	a2	-3.165283483361D-02
a3	-2.954761000116D-02	a4	-1.020213798216D-04	a5	1.787583845145D-03
aб	-4.672186377936D-05	a7	-3.577368889534D-05	a8	2.586881672353D-06
al0	-3.326401521314D+01	al1	-1.220855990887D-01	al2	0.000000000000000000000000000000000000
ar0	-2.266117187300D+01	ar1	-2.00000000000000000	ar2	0.000000000000000000000000000000000000
ELABMI	N= 0.01008e 00 eV				
ELABMA	X= 1.00760e 03 eV				
	Eth 0.0				

1.3 Reaction 0.13p $p + Be \rightarrow p + Be$

Relaxation model, take: half of the momentum transfer cross-section section [P. Krstic, D. Schultz, PP, vol. 16 (2009), p. 053503]

```
-3.432911046254e+01
   a0
                               a1
                                     -2.981766563063e-01
                                                           a2
                                                                  -2.747140212160e-03
         -9.888209801767e-02
                                      1.277819275721e-02
                                                                   5.604365199896e-03
   аЗ
                               a4
                                                           a5
                                      1.873165090959e-04
                                                                  -6.739311119307e-06
         -1.798975676281e-03
                               a7
                                                           a8
   a6
ELABMIN=1.000000e-01 eV
ELABMAX=1.000000e+04 eV
MAXERR=9.420281e+00 \%
MIDERR=3.699055e+00 \%
```

1.4 Reaction 0.13d $d + Be \rightarrow d + Be$

Relaxation model, take: half of the momentum transfer cross-section section [P. Krstic, D. Schultz, PP, vol. 16 (2009), p. 053503]

```
a0
         -3.429847239061e+01
                               a1
                                     -2.970572100641e-01
                                                           a2
                                                                  2.225098488848e-02
         -1.038644613722e-01
                               a4
                                      1.090206315848e-02
                                                           a5
                                                                  6.452930419639e-03
   a3
         -1.922155122744e-03
                                      1.949450215711e-04
                                                                 -6.904617523867e-06
   a6
                               a7
                                                           a8
ELABMIN=1.000000e-01 eV
ELABMAX=1.000000e+04 eV
MAXERR=9.480029e+00 \%
MIDERR=3.721394e+00 \%
```

1.5 Reaction 0.13t $t + Be \rightarrow t + Be$

Relaxation model, take: half of the momentum transfer cross-section section [P. Krstic, D. Schultz, PP, vol. 16 (2009), p. 053503]

```
a0
         -3.496365351820e+01
                                     -3.001445356961e-01
                                                                  4.591434817499e-02
                               a1
                                                           a2
   a3
         -1.076154031752e-01
                               a4
                                      8.896989671817e-03
                                                           a5
                                                                  7.236320863176e-03
         -2.026608049532e-03
                                      2.007699253304e-04
                                                                 -7.009352516893e-06
   a6
                               a7
                                                           a8
ELABMIN=1.000000e-01 eV
ELABMAX=1.000000e+04 eV
MAXERR=9.649480e+00 \%
MIDERR=3.664496e+00 \%
```

1.6 Reaction 0.14p $p + C \rightarrow p + C$

Relaxation model, take: half of the momentum transfer cross-section section [P. Krstic, D. Schultz, PP, vol. 13 (2006), p. 053501]

```
-3.469669448083e+01
                                     -6.465336127803e-01
   a0
                               a1
                                                           a2
                                                                 -2.507493283133e-01
          5.150725759535e-02
                                      2.606050422216e-02
                                                                 -1.200069052688e-02
   a3
                               a4
                                                           a5
                                     -1.320377335268e-04
                                                                   3.583861884216e-06
          1.870487465021e-03
                               a7
                                                           a8
   a6
ELABMIN=1.000000e-01 eV
ELABMAX=1.000000e+04 eV
MAXERR=1.359190e+01 \%
MIDERR=3.567110e+00 \%
```

1.7 Reaction 0.14d $d + C \rightarrow d + C$

Relaxation model, take: half of the momentum transfer cross-section section [P. Krstic, D. Schultz, PP, vol. 13 (2006), p. 053501]

```
a0
         -3.467431708479e+01
                               a1
                                     -6.039120001583e-01
                                                           a2
                                                                 -2.291079734779e-01
   a3
          3.028388597223e-02
                               a4
                                      2.684378189799e-02
                                                           a5
                                                                 -9.913519764240e-03
          1.329864451784e-03
                                     -7.980666826518e-05
                                                                  1.784639219274e-06
   a6
                               a7
                                                           a8
ELABMIN=1.000000e-01 eV
ELABMAX=1.000000e+04 eV
MAXERR=1.766724e+01 \%
MIDERR=4.238927e+00 \%
```

1.8 Reaction 0.14t $t + C \rightarrow t + C$

Relaxation model, take: half of the momentum transfer cross-section section [P. Krstic, D. Schultz, PP, vol. 13 (2006), p. 053501]

```
a0
         -3.534658901399e+01
                                     -5.578781967387e-01
                                                                 -2.132235368452e-01
                               a1
                                                           a2
   a3
          1.089144735337e-02
                               a4
                                      2.797214775907e-02
                                                           a5
                                                                 -8.126362752782e-03
          8.523433043919e-04
                                     -3.327701820563e-05
                                                                  1.778193853599e-07
   a6
                               a7
                                                           a8
ELABMIN=1.000000e-01 eV
ELABMAX=1.000000e+04 eV
MAXERR=2.049295e+01 \%
MIDERR=4.869674e+00 \%
```

1.8.1 Reaction 3.1.6FJ $p + H \rightarrow ... \rightarrow p + e + p$

Freeman and Jones coefficients, transformed from the keV to eV energy scale, E is the proton energy, [19].

```
a0 -5.607099441961D+02 a1 2.905103863403D+02 a2 -6.871403140568D+01
a3 8.714435377189D+00 a4 -6.169007495812D-01 a5 2.294651604603D-02
a6 -3.49544400000D-04 a7 0.000000000D+00 a8 0.000000000D+00
Eth 0.0
```

This page is intentionally left blank

1.8.2 Reaction 3.1.8 org $p + H(1s) \rightarrow H(1s) + p$

original Janev-Langer fit as in 1987 Springer book, i.e. without asympt. energy correction.

```
a0 -3.274123792568e+01
                         a1 -8.916456579806e-02
                                                   a2 -3.016990732025e-02
   9.205482406462e-03
                             2.400266568315e-03
                                                   a5 -1.927122311323e-03
a3
                         a4
a6 3.654750340106e-04
                         a7 -2.788866460622e-05
                                                      7.422296363524e-07
                                                   a8
   Emin 1.00e-01
                    s(Emin)
                             7.00e-15
                                        smax 7.00e-15
                                                         Error
                                                                2.25e-03
   Eth 0.0
   Mcross 1.0E+00
```

1.8.3 Reaction 3.1.8 $p + H(1s) \rightarrow H(1s) + p$

same as HYDHEL cx total cross-section. Improved from original Janev-Langer fit at low energies by asymptotic fit.: al0 + al1* ln(E) al0 changed in Aug.17., ar0,... added in Nov. 17

```
a0 -3.274123792568e+01
                             a1 -8.916456579806e-02
                                                       a2 -3.016990732025e-02
   a3 9.205482406462e-03
                             a4 2.400266568315e-03
                                                       a5 -1.927122311323e-03
  a6 3.654750340106e-04
                             a7 -2.788866460622e-05
                                                       a8 7.422296363524e-07
 al0 -3.294589355000e+01
                            al1 -1.713112000000e-01
                                                      al2 0.000000000000e+00
  ar0 -5.787734011000E+01
                            ar1 7.671416829000E+00
                                                      ar2 -5.208376804000E-01
          0.10000E 00 eV
ELABMIN=
ELABMAX=
           5.00000E 05 eV
       Emin 1.00e-01
                                            smax 7.00e-15
                        s(Emin)
                                 7.00e-15
                                                             Error 2.25e-03
      Eth 0.0
      Mcross 1.0E+00
```

1.8.4 Reaction 3.1.8J2 $p + H(1s) \rightarrow H(1s) + p$

Janev cross-section for momentum exchange (= cx total cross-sections times 2), obtained by increasing absolute coefficients a_0 and al_0 by adding $\ln(2)$

```
a0 -3.204809074000e+01 a1 -8.916456579806e-02 a2 -3.016990732025e-02
a3 9.205482406462e-03 a4 2.400266568315e-03 a5 -1.927122311323e-03
a6 3.654750340106e-04 a7 -2.788866460622e-05 a8 7.422296363524e-07
a10 -3.225274637000e+01 a11 -1.713112000000e-01 a12 0.0000000000e+00
ELABMIN= 0.10000E 00 eV
Eth 0.0
```

1.8.5 Reaction 3.1.8R $p + H(1s) \rightarrow H(1s) + p$

Riviere cross-section formula for charge exchange ([3]), fitted into "Janev-Langer (polynomial) format" [2]

```
a0 -3.260293402651D+01 a1 -1.302091929244D-01 a2 -3.264584699247D-03
a3 -2.837612246121D-03 a4 2.259716141071D-04 a5 3.105542152111D-04
a6 -9.613308889191D-05 a7 1.043010252591D-05 a8 -3.944350620003D-07
Max. rel. Error: .7501 %
Mean rel. Error: .2304 %
Eth 0.0
```

1.8.6 Reaction 3.1.8ST $p + H(1s) \rightarrow H(1s) + p$

D.Schultz total cross-section for charge exchange fitted into "Janev format", left asympt. added.

```
a0 -3.296040048723D+01
                         a1 -9.877533792693D-02
                                                 a2
                                                    2.622855374688D-03
  a3 -3.210858385884D-03
                         a4 -2.175078820057D-04
                                                 a5
                                                    2.394562232339D-05
  a6 1.66586500000D-05
                         0.000000000000D+00
                                                 a8
                         all -1.71311200000D-01
                                                    0.000000000000e+00
 al0 -3.307949733000D+01
                                                al2
 ar0 -3.291743242047D+01
                         ar1 -1.35855100000D-01
                                                ar2
                                                    ELABMIN= 0.10000E 00 eV
ELABMAX= 2.00000E 01 eV
      Eth 0.0
```

1.8.7 Reaction 3.1.8ST2 $p + H(1s) \rightarrow H(1s) + p$

D.Schultz total cross-section for charge exchange *2 increase absolute coefficients a_0 and ar_0 by adding $\ln(2)$

```
a0 -3.226725330000D+01
                        a1 -9.877533792693D-02
                                             a2 2.622855374688D-03
  a3 -3.210858385884D-03
                        a4 -2.175078820057D-04
                                             a5 2.394562232339D-05
  a6 1.66586500000D-05
                        a8
 al0 -3.238635015000D+01
                       al1 -1.71311200000D-01
                                             al2 0.0000000000000e+00
 ar0 -3.222428522000D+01
                       ar1 -1.35855100000D-01
                                                 ar2
ELABMAX= 2.00000E 01 eV
     Eth 0.0
```

1.8.8 Reaction 3.1.8SD $p + H(1s) \rightarrow H(1s) + p$

D.Schultz "diffusion" cross-section for momentum exchange (elastic plus cx) fitted into "Janev format". Should be close to ST2, total cx cross-section times 2.

```
a0 -3.225844350904D+01 a1 -1.220948860470D-01 a2 7.214005848073D-03
a3 5.997760021277D-04 a4 -1.060316696581D-03 a5 -7.487092727391D-05
a6 3.82477300000D-05 a7 0.0000000000D+00 a8 0.000000000D+00
ar0 -3.221533966214D+01 ar1 -1.38600200000D-01 ar2 0.000000000D+00
ELABMAX= 2.00000E 01 eV
Eth 0.0
```


1.8.9 Reaction 3.1.8L $p + H(1s) \rightarrow H(1s) + p$

For testing purposes: Langevin cross-section: $\sigma(v) = A0 \times v^{-1}$, or, for hydrogen mass: $\sigma(E) = A \times E^{-1/2}$ such that the rate coefficient, $\langle \sigma \times v_{rel} \rangle = const = A0 = 2.0 \ 10^{-8} \ cm^3/s$ (Note: $\pi a_0^2 v_0 = 1.92310^{-8}$, the reference rate coefficient with a_0 : Bohr radius and $v_0 = e^2/\hbar$: unit velocity in atomic units) Here: A = A0/1.3891e06, when v is in cm/s and E in eV, a hydrogen energy.

1.9 He⁺ impact processes

1.9.1 Reaction 0.4T $He^+(1s) + He(1s^21S) \rightarrow He^+(1s) + He(1s^21S)$ total cross-section

a0 -3.336949020454D+01 a1 4.374909804779D+00 a2 -1.517973301721D+01 a3 2.345459194687D+01 a4 -1.969436659467D+01 a5 9.472303986781D+00 a6 -2.604153028956D+00 a7 3.801132783280D-01 a8 -2.282922057203D-02 a10 -3.291071330248D+01 al1 -2.416669402887D-01 al2 -9.821377921757D-03 ar0 -3.664691925424D+01 ar1 4.752719886448D-01 ar2 -8.280792916138D-02 ELABMIN= 1.21220E 00 eV ELABMAX= 6.46090E 01 eV Eth 0.0

1.9.2 Reaction 0.4D $He^+(1s) + He(1s^21S) \rightarrow He^+(1s) + He(1s^21S)$ diff. cross-section

a0 -3.332091557452D+01 a1 -3.823354679977D-01 a2 -2.666453887008D-01 a3 -8.177418933677D-02 a4 2.593188019755D-02 a5 8.320863897668D-03 a6 -1.649825718076D-03 a7 -2.491587647454D-04 a8 4.351897658362D-05 a10 -3.302935901459D+01 a11 -1.11506000000D-01 a12 0.0000000000D+00 ar0 -2.789589583796D+01 ar1 -2.0000000000D+00 ar2 0.000000000D+00 ELABMIN= 0.02000E 00 eV ELABMAX= 2.00000E 02 eV Eth 0.0

1.9.3 Reaction 0.4V $He^+(1s) + He(1s^21S) \rightarrow He^+(1s) + He(1s^21S)$ visc. cross-section

```
a0 -3.379346231200D+01 a1 -1.740525006979D-01 a2 -8.091712353563D-02
a3 -8.223847315134D-02 a4 -1.443276051210D-03 a5 6.530393601967D-03
a6 -5.593294441844D-05 a7 -1.742244159818D-04 a8 1.068285383642D-05
a10 -3.335648222384D+01 al1 -1.115060177785D-01 al2 0.0000000000D+00
ar0 -2.751718958486D+01 ar1 -2.000000000D+00 ar2 0.000000000D+00
ELABMIN= 0.02000E 00 eV
ELABMAX= 2.00000E 02 eV
Eth 0.0
```


2 H.2 : Fits for $\langle \sigma v \rangle(T)$

Some (single parameter) Maxwellian rate coefficients, obtained algebraically from corresponding Beam-Maxwellian fits, at the limit of low (\approx zero) beam energies. The suitable low beam energy limit of these 2-parameter fits was identified by independent integration of cross-sections which have proper low energy extrapolation.

2.1 Reaction 0.1T $p + H(1s) \rightarrow p + H(1s)$ total rate coef.

Maxwellian rate coefficient vs. T_p , with H(1s) at rest, obtained by taking the corresponding Beam-Maxw. rate coefficient at Eb=0.08 eV and verification by independent integration of cross-section

```
b0-1.833882000000E+01b12.36870500000E-01b2-1.469575000000E-02b3-1.13985000000E-02b46.37964400000E-04b53.16272400000E-04b6-6.681994000000E-05b73.812123000000E-06b88.652321000000E-09
```

2.2 Reaction 0.1D $p + H(1s) \rightarrow p + H(1s)$ diff. rate coef.

Maxwellian rate coefficient vs. T_p , with H(1s) at rest, obtained by taking the corresponding Beam-Maxw. rate coefficient at Eb=0.08 eV and verification by independent integration of cross-section

```
b0-1.937499000000E+01b11.06444300000E-01b2-5.83176800000E-02b3-2.768932000000E-02b41.018222000000E-02b51.253253000000E-03b6-1.245254000000E-03b72.110022000000E-04b8-1.121733000000E-05
```

2.3 Reaction 0.2T $p + He(1s^21S) \rightarrow p + He(1s^21S)$ total rate coef.

Maxwellian rate coefficient vs. T_p , with $He(1s^21S)$ at rest, obtained by taking the corresponding Beam-Maxw. rate coefficient at Eb=0.2 eV and verification by independent integration of cross-section

```
b0-1.940685000000E+01b11.70601500000E-01b25.518956000000E-03b3-1.073297000000E-02b4-1.744782000000E-02b51.271241000000E-03b61.541255000000E-03b7-3.211063000000E-04b81.805115000000E-05
```

2.4 Reaction 0.2D $p + He(1s^21S) \rightarrow p + He(1s^21S)$ diff. rate coef.

Maxwellian rate coefficient vs. T_p , with $He(1s^21S)$ at rest, obtained by taking the corresponding Beam-Maxw. rate coefficient at Eb=0.2 eV and verification by independent integration of cross-section

```
b0-2.030007000000E+01b1-3.09237900000E-01b2-1.701258000000E-01b31.495117000000E-02b41.340661000000E-02b5-1.869797000000E-03b6-6.819520000000E-04b71.622554000000E-04b8-9.363090000000E-06
```

2.5 Reaction 0.3T $p + H_2 \rightarrow p + H_2$ total rate coef.

Maxwellian rate coefficient vs. T_p , with H_2 at rest, obtained by taking the corresponding Beam-Maxw. rate coefficient at Eb=0.06 eV and verification by independent integration of cross-section

```
b0-1.857812000000E+01b12.41170800000E-01b21.04608800000E-02b3-1.20364900000E-02b4-3.67962600000E-03b52.89535800000E-04b61.354441000000E-04b7-2.71231700000E-06b8-1.356528000000E-06
```

2.6 Reaction 0.3D $p + H_2 \rightarrow p + H_2$ diff. rate coef.

Maxwellian rate coefficient vs. T_p , with H_2 at rest, obtained by taking the corresponding Beam-Maxw. rate coefficient at Eb=0.1 eV and verification by independent integration of cross-section

```
b0-1.914667000000E+01b17.511853000000E-03b2-1.408236000000E-01b3-7.208816000000E-03b41.464363000000E-02b55.237593000000E-05b6-9.787576000000E-04b71.491343000000E-04b8-6.478446000000E-06
```

2.7 Reaction 0.4T $He^+(1s) + He(1s^21S) \rightarrow He^+(1s) + He(1s^21S)$ total rate coef.

Maxwellian rate coefficient vs. T_{He^+} , with He at rest, obtained by taking the corresponding Beam-Maxw. rate coefficient at Eb=0.2 eV and verification by independent integration of cross-section

b0	-1.93895200000E+01	b1	1.284344000000E-01	b2	2.749434000000E-02
b3	1.321028000000E-02	b4	-1.21580500000E-02	b5	-1.77185800000E-03
b6	1.250552000000E-03	b7	-1.586374000000E-04	b8	6.000872000000E-06

2.8 Reaction 0.4D $He^+(1s) + He(1s^21S) \rightarrow He^+(1s) + He(1s^21S)$ diff. rate coef.

Maxwellian rate coefficient vs. T_{He^+} , with He at rest, obtained by taking the corresponding Beam-Maxw. rate coefficient at Eb=0.2 eV and verification by independent integration of cross-section

```
b0-2.002066000000E+01b1-8.17610900000E-02b2-1.43653600000E-01b3-1.52624800000E-02b41.23966500000E-02b53.66936600000E-04b6-7.044353000000E-04b79.12188800000E-05b8-3.35087300000E-06
```

2.9 Reaction 0.5T $p + Ne \rightarrow p + Ne$ total rate coef.

Maxwellian rate coefficient vs. T_p , with Ne at rest, obtained by taking the corresponding Beam-Maxw. rate coefficient at Eb=0.2 eV and verification by independent integration of cross-section

b0-1.919918000000E+01b12.302126000000E-01b2-6.51357000000E-03b3-2.01671900000E-02b4-1.221527000000E-02b52.24260300000E-03b69.298891000000E-04b7-2.398546000000E-04b81.462516000000E-05

2.10 Reaction 0.5D $p + Ne \rightarrow p + Ne$ diff. rate coef.

Maxwellian rate coefficient vs. T_p , with Ne at rest, obtained by taking the corresponding Beam-Maxw. rate coefficient at Eb=0.1 eV and verification by independent integration of cross-section

```
b0-2.002715000000E+01b1-2.621343000000E-01b2-1.469315000000E-01b32.687596000000E-02b41.266229000000E-02b5-2.448273000000E-03b6-6.258496000000E-04b71.654175000000E-04b8-9.716880000000E-06
```

2.11 Reaction 0.6T $p + Ar \rightarrow p + Ar$ total rate coef.

Maxwellian rate coefficient vs. T_p , with Ar at rest, obtained by taking the corresponding Beam-Maxw. rate coefficient at Eb=0.05 eV and verification by independent integration of crosssection

```
b0-1.840169000000E+01b12.39437600000E-01b2-2.36013200000E-02b36.595325000000E-03b4-8.34720300000E-03b5-1.73590600000E-03b61.204285000000E-03b7-1.65848000000E-04b86.963785000000E-06
```

2.12 Reaction 0.6D $p + Ar \rightarrow p + Ar$ diff. rate coef.

Maxwellian rate coefficient vs. T_p , with Ar at rest, obtained by taking the corresponding Beam-Maxw. rate coefficient at Eb=0.07 eV and verification by independent integration of cross-section

```
b0-1.906021000000E+01b1-4.674038000000E-02b2-1.962414000000E-01b3-7.174255000000E-03b42.020135000000E-02b5-8.507943000000E-04b6-1.210751000000E-03b72.196434000000E-04b8-1.117489000000E-05
```

2.13 Reaction 0.7T $p + Kr \rightarrow p + Kr$ total rate coef.

Maxwellian rate coefficient vs. T_p , with Ar at rest, obtained by taking the corresponding Beam-Maxw. rate coefficient at Eb=0.05 eV and verification by independent integration of crosssection

```
b0-1.803236000000E+01b11.992221000000E-01b2-3.227483000000E-03b31.395545000000E-02b4-1.344849000000E-02b5-1.615546000000E-03b61.484410000000E-03b7-2.152296000000E-04b89.514869000000E-06
```

2.14 Reaction 0.7D $p + Kr \rightarrow p + Kr$ diff. rate coef.

Maxwellian rate coefficient vs. T_p , with Kr at rest, obtained by taking the corresponding Beam-Maxw. rate coefficient at Eb=0.1 eV and verification by independent integration of cross-section

```
b0-1.865129000000E+01b1-1.06291600000E-01b2-1.82784600000E-01b3-2.368024000000E-03b41.711988000000E-02b5-6.251324000000E-04b6-1.097944000000E-03b71.970191000000E-04b8-9.968727000000E-06
```
2.15 Reaction 0.8T $p + Xe \rightarrow p + Xe$ total rate coef.

Maxwellian rate coefficient vs. T_p , with Xe at rest, obtained by taking the corresponding Beam-Maxw. rate coefficient at Eb=0.2 eV and verification by independent integration of cross-section

```
b0-1.850781000000E+01b12.709525000000E-01b24.983184000000E-03b3-5.736578000000E-03b41.424879000000E-03b5-6.005354000000E-04b6-2.027911000000E-04b78.186987000000E-05b8-6.300191000000E-06
```

2.16 Reaction 0.8D $p + Xe \rightarrow p + Xe$ diff. rate coef.

Maxwellian rate coefficient vs. T_p , with Xe at rest, obtained by taking the corresponding Beam-Maxw. rate coefficient at Eb=0.1 eV and verification by independent integration of cross-section

```
b0-1.903991000000E+01b12.089862000000E-01b2-7.784350000000E-02b3-1.756400000000E-02b45.522983000000E-03b59.448506000000E-04b6-2.428668000000E-04b7-5.632953000000E-08b81.296757000000E-06
```

This page is intentionally left blank

Data from Freeman and Jones [19], for comparison with old cases.

Note: Maxwellian rate coefficients are taken at neutral particle energy = 0.0 eV vs. temperature (electron or ion temp., resp.) of the Maxwellian f_{maxw} . I.e. :

 $\langle \sigma v \rangle = \int d^3 v_p \, \sigma(v_p) \cdot v_p \cdot f_{maxw}(v_p)$

The ion impact rates can be scaled to different isotopes and to finite neutral particle temperatures T_n by evaluating the fits at an effective temperature T_{eff} given by

 $T_{eff} = \frac{M}{M_1}T_1 + \frac{M}{M_2}T_2$ Here M is the mass of the ion as used in the Freeman/Jones rate coefficients, M_1 and M_2 are the masses of the two isotopes in the particular collision process considered, and T_1 and T_2 are the two temperatures.

2.17 Reaction 2.1.5FJ $e + H(1s) \rightarrow e + H^+ + e$

```
b0-0.317385000000e+02b10.114381800000e+02b2-0.383399800000e+01b30.704669200000e+00b4-0.743148620000e-01b50.415374900000e-02b6-0.948696700000e-04b70.00000000000e-00b80.00000000000e+00
```

2.18 Reaction **3.1.6FJ** $p + H(1s) \rightarrow p + p + e$

This fit seems to be completely corrupted. Probably misprints in original F.J. CLM-R-137 report. Checked also with old AURORA code (PPPL, ca. 1979) implementation. Identical fit used there. Recommendation: Use cross-section and HYDKIN online integration to rate coefficients.

```
b0-0.149086100000e+03b10.759257500000e+02b2-0.220928100000e+02b30.390970900000e+01b4-0.440216800000e+00b50.320904700000e-01b6-0.149340900000e-02b70.409415100000e-04b8-0.506977700000e-06
```

2.19 Reaction 3.1.8 $p + H(1s) \rightarrow H(1s) + p$

added by DR: single parameter Maxwellian rate coeff., vs. T_p , for neutral target at rest, obtained from corresponding fit for Beam-Maxwellian rate coeff. evaluated at $E_b = 0.1$ eV and then verified by independent integration of cross-section with proper low energy asymptotics.

```
b0-1.850280000000E+01b13.70840900000E-01b27.949876000000E-03b3-6.143769000000E-04b4-4.69896900000E-04b5-4.09680700000E-04b61.440382000000E-04b7-1.514243000000E-05b85.122435000000E-07
```

2.20 Reaction 3.1.8FJ $p + H(1s) \rightarrow H(1s) + p$

```
b0-0.184175600000e+02b10.528295000000e+00b2-0.220047700000e+00b30.975019200000e-01b4-0.174918300000e-01b50.495429800000e-03b60.217491000000e-03b7-0.253020600000e-04b80.823075100000e-06
```

This page is intentionally left blank

2.21 Reaction 2.2.5 org $e + H_2(X_g^+S) \to ... \to e + H(1s) + H(1s)$

Old fit as given in [2], probably based on incorrect cross-section data.

EIRENE uses, as default, the fit as given in preprint for [2], unless otherwise specified, for this dissociation process. This latter fit seems to be more plausible. Therefore, the (presumably more correct) preprint data are stored in file HYDHEL, whereas the original data from ref.[2] are given here in AMJUEL, for reference purposes only.

$$e + H_2(X_g^+S) \to e + H(b^3\Sigma_u^+, a^3\Sigma_g^+, c^3\Pi_u) \to e + H(1s) + H(1s)$$

```
b0-2.858072836568e+01b11.038543976082e+01b2-5.383825026583e+00b31.950636494405e+00b4-5.393666392407e-01b51.006916814453e-01b6-1.160758573972e-02b77.411623859122e-04b8-2.001369618807e-05Tmin1.26e+00<sv>(Tmin)3.25e-12<sv>max3.82e-09Error1.07e-06
```


Electron Temperature (eV)

2.22 Reaction 2.2.14 $e + H_2^+(v) \to H(1s) + H(n)(v = 0 \dots 9, n \ge 2)$

Fit as given in [2] but with all higher coefficients b2,b3,...b8 set to zero, for this dissociative recombination process. This latter fit seems to be more plausible. Therefore, the (presumably more correct) data are stored here, whereas the original data from ref.[2] are still given in HYDHEL, for reference purposes only.

```
b0 -1.670435653561e+01
                          b1 -6.035644995682e-01
                                                    b2
                                                        0.000000000000e+00
  0.000000000000e+00
                              0.000000000000e+00
                                                        0.000000000000e+00
b3
                          b4
                                                    b5
b6 0.00000000000e+00
                          b7
                              0.000000000000e+00
                                                    b8
                                                        0.000000000000e+00
 Tmin 1.00e-01
                <sv>(Tmin) 2.23e-07 <sv>max 2.23e-07
                                                          Error 3.30e-13
```

Reaction 2.2.17 $e + H_2 \rightarrow e + H_2(v) \rightarrow H + H^-$ 2.23

Effective dissociative attachment rate.

 $\langle \sigma v \rangle_{eff} = \langle \sigma v \rangle_{H_2(v=0)} + \sum_{v=1}^{14} \langle \sigma v \rangle_{H_2(v)} \cdot pH_2(v)$ Vibrational distribution $pH_2(v, T_e)$ (vs. T_e) taken into account. Only coupling to $H_2(v)$ electronic ground state. No population of $H_2(v)$ from electronically excited H_2^* , no radiative transitions between vibrational levels. Assume: incident H_2 particle with 0.1 eV (for the rate taken to be for H_2 at rest) and $T_i = T_e$, hence: density independent vibrational distribution and effective rate, as well as neutral molecule energy independent rate.

Competing processes: see ion conversion, below, and contribution to dissociation via vibrational states, i.e., enhanced transition into repulsive triplett ${}^{3}b$ state.

```
8.634828071751D-01 b2 -1.686619409809D+00
b0 -2.278396332892D+01 b1
b3 4.392288378207D-01
                       b4 -4.393128035945D-01 b5 2.640299048385D-01
b6 -6.748601049114D-02 b7
                          7.753368735736D-03 b8 -3.328288267126D-04
Max. rel. Error: 11.6159 %
Mean rel. Error:
                  5.8452 %
```

Reaction 2.2.17s $e + H_2 \rightarrow H + H + e$ (Diss via H^- , cold H_2) 2.24

Effective (intermediate H^- condensed) dissociation rate coefficient, via $H_2^- - - > H + H^$ channel.

Vibrational distribution $pH_2(v, T_e)$ (vs. T_e) taken into account. Only coupling to $H_2(v)$ electronic ground state. No population of $H_2(v)$ from electronically excited H_2^* , no radiative transitions between vibrational levels. Assume: incident H_2 particle with 0.1 eV (for the rate taken to be for H_2 at rest) and $T_i = T_e$, hence: density independent vibrational distribution and effective rate, as well as neutral molecule energy independent rate.

Competing processes: see H^- MAR, H^- MAD, below.

```
b0 -2.412637388641D+01
                       b1
                           2.933435541120D+00 b2 -3.070089133892D+00
b3 5.421534021185D-01
                       b4 -1.096901334427D-01 b5 5.895406094562D-02
b6 -1.454957631310D-02 b7
                           1.472799599671D-03 b8 -5.199158850052D-05
                  0.220E+02 %
Max. rel. Error:
Mean rel. Error:
                  0.113E+02 %
```

Reaction 3.1.8L $p + H(1s) \rightarrow H(1s) + p$ 2.25

Langevin rate coefficient, constant at 2e-8

b0	-1.772753356000D+01	b1	0.000000000000000000000000000000000000	b2	0.000000000000000000000000000000000000
b3	0.00000000000D+00	b4	0.000000000000000000000000000000000000	b5	0.000000000000000000000000000000000000
b6	0.00000000000D+00	b7	0.000000000000000000000000000000000000	b8	0.000000000000000000000000000000000000

Reaction 3.2.3 $p + H_2 \rightarrow H + H_2^+$ 2.26

Effective ion conversion rate (charge exchange on H_2) $\langle \sigma v \rangle_{eff} = \langle \sigma v \rangle_{H_2(v=0)} + \sum_{v=1}^{14} \langle \sigma v \rangle_{H_2(v)} \cdot pH_2(v)$ Same vibrational distribution (as function of T_e) as above. Therefore: single parameter fit vs. T_e , since vibrational distribution does not depend upon density, E_0 is fixed (0.1 eV) and $T_p = T_e = T.$

```
b0 -2.163099643422D+01 b1 3.206843053514D+00 b2 -3.369939911269D+00
b3 1.290238400703D+00 b4 -3.988189754178D-01 b5 1.462287796966D-01
b6 -3.524154596754D-02 b7 4.146324082808D-03 b8 -1.846022446828D-04
Max. rel. Error: 10.2031 %
Mean rel. Error: 6.3799 %
```

Competing process at low T: see above: dissociative electron attachment, process 2-2-17

2.27 Reaction 3.2.30 $p + H_2 \rightarrow H + H_2^+$

Effective ion conversion rate (charge exchange on H_2 (old version before 2004) $< \sigma v >_{eff} = < \sigma v >_{H_2(v=0)} + \sum_{v=1}^{14} < \sigma v >_{H_2(v)} \cdot pH_2(v)$

Same vibrational distribution (as function of T_e) as above. Therefore: single parameter fit vs. T_e , since vibrational distribution does not depend upon density, E_0 is fixed (0.37 eV) and $T_p = T_e = T$.

```
b0 -2.141025782776D+01 b1 2.159799627973D+00 b2 -2.275674008102D+00
b3 5.413573872835D-01 b4 -6.391621888218D-03 b5 1.566655266221D-02
b6 -1.068539042185D-02 b7 1.770824218105D-03 b8 -9.267718112477D-05
Max. rel. Error: 10.9657 %
Mean rel. Error: 6.2957 %
```

same as 3-2-3, above, previous reaction, but here evaluated with old default H_2 energy: E = 0.37 eV, rather than the current choice of E =0.1 eV. Old data are kept here only for backward compatibility. (The old rate coefficient is mostly used in ITER applications and SOLPS4.x in general). Strictly this rate coefficient should be evaluated for stationary H_2 (energy=0.0) to permit correct mass scaling in the Maxwellian averages.

Competing process at low T: see above: dissociative electron attachment, process 2-2-17

Next few reactions: rate coefficients, vs. Te, for a number of N_2 , N_2^+ corona dissociation and ionisation channels

2.28 Reaction 2.7.5 $e + N_2 \rightarrow e + N + N$

Dissociation from ground state N_2 , cross-section from [10], $\Delta E_{el} = 9.7527$ eV, KER: 0.95 eV (spectra with two peaks, at 0.8 and 1.1 eV resp.)

```
b0-3.093625000000E+01b11.09418000000E+01b2-2.87868600000E+00b3-2.524814000000E-01b43.96628300000E-01b5-1.20967000000E-01b61.849840000000E-02b7-1.461561000000E-03b84.74638000000E-05
```

2.29 Reaction 2.7.9 $e + N_2 \rightarrow e + N_2^+ + e$

ionisation cross-section: total: [12], I, DI separate [13] (branching ratio R(E)) Here: ionisation to N_2^+

 $\Delta E_{el} = 15.581 \; \mathrm{eV}$ KER=0.

b0 -3.4	55402000000E+01	b1	1.633449000000E+01	b2	-7.48095200000E+00
b3 2.3	34744000000E+00	b4 ·	-5.161607000000E-01	b5	7.90232000000E-02
b6 -7.9	19992000000E-03	b7	4.635395000000E-04	b8	-1.19171400000E-05

2.30 Reaction 2.7.10 $e + N_2 \rightarrow e + N + N^+ + e$

ionisation cross-section: total: [12], I, DI separate [13] (branching ratio R(E)) Here: dissociative ionisation to $N + N^+$

 $\Delta E_{el} = 24.34 \text{ eV}$, KER: 8 eV (estimated, not clearly specified in paper)

b0	-4.583945000000E+01	b1	2.487449000000E+01	b2	-1.169168000000E+01
b3	4.066783000000E+00	b4 ·	-1.070205000000E+00	b5	1.985772000000E-01
b6	-2.383370000000E-02	b7	1.636738000000E-03	b8	-4.84919500000E-05

2.31 Reaction 2.7.11 $e + N_2^+ \rightarrow e + 2N^+ + e$

Dissociative ionisation, cross-section: [11] $\Delta E_{el} = 31.2$ eV, KER: max: 11.8 eV

b0 -5.137074000000E+01	b1 3.135383000000E+01	b2 -1.560923000000E+01
b3 5.444979000000E+00	b4 -1.354319000000E+00	b5 2.264527000000E-01
b6 -2.359782000000E-02	b7 1.362664000000E-03	b8 -3.285464000000E-05

2.32 Reaction 2.7.12 $e + N_2^+ \rightarrow e + N + N^+$

Dissociative excitation, cross-section: [11] $\Delta E_{el} = 8.4$ eV, KER: max. of 6.4 eV at 120 eV, KER nearly = 0 near threshold (i.e. pre-dissociation via various channels).

b0	-2.695366000000E+01	b1	8.978136000000E+00	b2	-4.29607500000E+00
b3	1.392124000000E+00	b4	-3.24730200000E-01	b5	5.222337000000E-02
b6	-5.327033000000E-03	b7	3.023081000000E-04	b8	-7.10540500000E-06

2.33 Reaction **2.7.14** $e + N_2^+ \rightarrow N + N$

Dissociative recombination, cross-section: [15] ΔE_{el} can be taken from electron energy weighted rate coefficient. KER: 1.06 - 5.824 eV at zero electron impact energy, depending on vibrational state of N_2^+ and electronic state of products. Suggestion: KER = 3.5 eV

b0	-1.66824000000E+01	b1	-0.30000000000E+00	b2	0.00000000000E+00
b3	0.00000000000E+00	b4	0.00000000000E+00	b5	0.00000000000E+00
b6	0.00000000000E+00	b7	0.00000000000E+00	b8	0.00000000000E+00

2.34 Reaction 2.7.15 $e + N_2^+ \rightarrow e + N_2^{++} + e$

Single ionisation of N_2^+ , cross-section: [11] $\Delta E_{el} = 27.12 \text{ eV}$, KER=0.

b0	-4.67506700000E+01	b1	2.768681000000E+01	b2	-1.26087400000E+01
b3	3.402022000000E+00	b4	-5.302686000000E-01	b5	3.823736000000E-02
b6	6.310561000000E-04	b7	-2.79800900000E-04	b8	1.272992000000E-05

2.35 Reaction 2.2FJ $e + He(1s^21S) \rightarrow e + He^+(1s) + e$

Freeman and Jones rate coefficient for electron impact ionization of helium atoms [19].

b0	-0.445091700000e+02	b1	0.244298800000e+02	b2	-0.102571400000e+02
b3	0.247093100000e+01	b4	-0.342636620000e+00	b5	0.250510000000e-01
b6	-0.743867500000e-03	b7	0.000000000000e-00	b8	0.000000000000e+00

this page is intentionally left blank

Data from impurity transport code "STRAHL" (K. Behringer) [17] All reaction data with label ..aB0 or ..aB1 are taken from that reference. "a" is the nuclear charge number. aB0: ionisation of neutral atom. aB1: ionisation of singly charged ion. Ionization Rate for neutral Helium Atoms

2.36 Reaction 2.2B0 $e + He(1s^21S) \rightarrow e + He^+(1s) + e$

```
b0-4.445750823378D+01b12.505856927901D+01b2-1.196552488672D+01b33.715887422949D+00b4-7.729722462758D-01b51.055704673374D-01b6-9.047513943647D-03b74.403714187787D-04b8-9.276447001487D-06
```

```
Max. rel. Error: 0.4138 %
Mean rel. Error: 0.1636 %
```

Ionization Rate for single charged Helium Ions

2.37 Reaction 2.2B1 $e + He^+(1s) \rightarrow e + He^{++} + e$

b0 -7.559669902889 b3 8.159073714053	9D+01 b1 3D+00 b4	5.464529470916D+01 -1.694080618046D+00	b2 -2.644507121426D+01 b5 2.348225872648D-01
b6 -2.073277438993	LD-02 b7	1.049056816265D-03	b8 -2.305310731172D-05
Max. rel. Error:	0.9472 %		

Mean rel. Error: 0.5457 %

Electron Temperature (eV)

2.38 Reaction **2.4B0** $e + Be \rightarrow e + Be^+ + e$

```
      b0 -2.701191641765D+01
      b1 9.882275334399D+00
      b2 -4.581384174259D+00

      b3 1.463446005529D+00
      b4 -3.282155444497D-01
      b5 4.895458945839D-02

      b6 -4.558103660501D-03
      b7 2.382205094374D-04
      b8 -5.319547065990D-06

      Max. rel. Error:
      .1411 %

      Mean rel. Error:
      .0582 %
```

Ionization Rates for single charged Beryllium Ions

2.39 Reaction **2.4B1** $e + Be^+ \rightarrow e + Be^{++} + e$

b0	-3.677989427190D+	01 b1	1.855869089956D+01	b2 -8.84	13053626300D+00
b3	2.708167857179D+	00 b4	-5.651333671979D-01	b5 7.94	17570447499D-02
b6	-7.160867067297D-	03 b7	3.705422825861D-04	b8 -8.32	22700230771D-06
$M \sim s$	rol Frror.	3962 2			

Max. rel. Error: .3962 % Mean rel. Error: .2225 %

Electron Temperature (eV)

2.40 Reaction **2.5B0** $e + B \rightarrow e + B^+ + e$

Ionization Rates for neutral Boron Atoms

b0	-2.652112807432D+01	b1	8.818502481012D+00	b2	-3.832208851779D+00
b3	1.206778920817D+00	b4	-2.766330884306D-01	b5	4.255759023412D-02
b6	-4.078840883672D-03	b7	2.185455019432D-04	b8	-4.985646766233D-06

2.41 Reaction **2.5B1** $e + B^+ \rightarrow e + B^{++} + e$

Ionization Rates for single charged Boron Ions

b0 -4.4205681	25967D+01	b1	2.558429301929D+01	b2	-1.226766585830D+01
b3 3.790617 ⁻	724445D+00	b4 -	-7.898969090461D-01	b5	1.094004163863D-01
b6 -9.6021795	535698D-03	b7	4.812751663763D-04	b8	-1.045722639512D-05

This page is intentionally left blank

2.42 Reaction 2.6B0 $e + C \rightarrow e + C^+ + e$

Ionization rate for neutral Carbon Atoms $\langle sigma * vrel \rangle (Te)(cm * *3/s), C - - > C^+$

```
b0 -2.955122753053D+01 b1 1.180604026361D+01 b2 -5.438799573749D+00
b3 1.750648117869D+00 b4 -3.946542606866D-01 b5 5.887749368990D-02
b6 -5.469027807326D-03 b7 2.850693136991D-04 b8 -6.354758903485D-06
Max. rel. Error: .3712 %
Mean rel. Error: .1458 %
```

2.43 Reaction 2.6B1 $e + C^+ \rightarrow e + C^{++} + e$

Ionization rate for Carbon Ions

```
b0 -4.406752926798D+01 b1 2.464907506907D+01 b2 -1.157330396759D+01
b3 3.619195611010D+00 b4 -7.853469883899D-01 b5 1.149856668829D-01
b6 -1.070995852675D-02 b7 5.681198605329D-04 b8 -1.299242985961D-05
Max. rel. Error: .9478 %
Mean rel. Error: .4820 %
```

This page is intentionally left blank

2.44 Reaction 2.7B0 $e + N \rightarrow e + N^+ + e$

Ionization rate coefficient for neutral Nitrogen Atoms (Bell et al., CLM-R216) [8] $\langle sigma * vrel \rangle (Te)(cm * *3/s), N - - > N^+$

```
b0-3.267927139870D+01b11.487745850177D+01b2-7.393982038208D+00b32.552657836634D+00b4-6.031414732283D-01b59.299608313666D-02b6-8.862541230616D-03b74.718778196780D-04b8-1.071093371002D-05
```

2.45 Reaction 2.7 $e + N \rightarrow e + N^+ + e$

cross-section data from Brook, [14] for $e + N - > N^+ + 2e$, same cross-section data source was used for the Bell rate coefficient. (Checked, Oct.2013: original Bell report and Brook cross-sections are identical)

 $\Delta E_{el} = 14.5$

b0	-3.218851E+01	b1	1.430745E+01	b2	-6.932106E+00
b3	2.271990E+00	b4	-4.951687E-01	b5	6.792600E-02
b6	-5.419575E-03	b7	2.123706E-04	b8	-2.405294E-06

Electron Temperature (eV)

2.46 Reaction **2.8B0** $e + O \rightarrow e + O^+ + e$

Ionization rate for neutral Oxygen Atoms $\langle sigma * vrel \rangle (Te)(cm * *3/s), O - - > O^+$

```
b0-3.193820900000D+01b13.246161040000D+01b2-3.545538700000D+01b32.559678950000D+01b4-1.215735520000D+01b53.673666600000D+00b6-6.763574930000D-01b76.905007430000D-02b8-2.994628570000D-03
```

2.47 Reaction 2.8B1 $e + O^+ \rightarrow e + O^{++} + e$

Ionization rate for singly charged Oxygen Ions

```
b0-5.489947730000D+01b18.105703120000D+01b2-8.7719154800000D+01b36.043339780000D+01b4-2.753028360000D+01b58.163500270000D+00b6-1.505562720000D+00b71.5615477900000D-01b8-6.9385679400000D-03
```

Ionization Rate for neutral Neon Atoms

```
2.48 Reaction 2.10B0 e + Ne \rightarrow e + Ne^+ + e
```

```
b0-4.164979646286D+01b12.217184105146D+01b2-1.042613793789D+01b33.175650981066D+00b4-6.293446783142D-01b57.941711930007D-02b6-6.140370720421D-03b72.651559926489D-04b8-4.900429196295D-06
```

Max. rel. Error: .0200 % Mean rel. Error: .0103 %

Ionization Rate for single charged Neon Ions

2.49 Reaction 2.10B1 $e + Ne^+ \rightarrow e + Ne^{++} + e$

```
b0 -6.100121276752D+01 b1 4.015006828838D+01 b2 -1.879440280294D+01
b3 5.630907545903D+00 b4 -1.119573454119D+00 b5 1.458082247661D-01
b6 -1.192136518944D-02 b7 5.544020624369D-04 b8 -1.117943418062D-05
Max. rel. Error: .1916 %
Mean rel. Error: .0814 %
```


Electron Temperature (eV)

2.50 Reaction **2.18B0** $e + Ar \rightarrow e + Ar^+ + e$

Ionization Rate for neutral Argon Atoms

```
b0 -3.330347417325D+01 b1 1.627861918393D+01 b2 -7.765170847889D+00
b3 2.446384994382D+00 b4 -5.186581624286D-01 b5 7.184868450814D-02
b6 -6.200405891186D-03 b7 3.018464732517D-04 b8 -6.325074170944D-06
Max. rel. Error: .1093 %
Mean rel. Error: .0503 %
```

2.51 Reaction **2.18B1** $e + Ar^+ \rightarrow e + Ar^{++} + e$

Ionization Rate for single charged Argon Ions

```
b0 -4.577132769437D+01 b1 2.796761945871D+01 b2 -1.347073209993D+01
b3 4.188634468306D+00 b4 -8.778893409977D-01 b5 1.220883796618D-01
b6 -1.073976899816D-02 b7 5.386460788345D-04 b8 -1.169793339733D-05
Max. rel. Error: .3659 %
Mean rel. Error: .2214 %
```


Electron Temperature (eV)

2.52 Reaction **2.26B0** $e + Fe \rightarrow e + Fe^+ + e$

Ionization Rate for neutral Iron Atoms

```
b0 -2.457959373433D+01 b1 8.433391049230D+00 b2 -3.846892092374D+00
b3 1.185976759143D+00 b4 -2.459329335625D-01 b5 3.266162856106D-02
b6 -2.642594731066D-03 b7 1.182305727446D-04 b8 -2.237621366618D-06
Max. rel. Error: .0907 %
Mean rel. Error: .0450 %
```

2.53 Reaction **2.26B1** $e + Fe^+ \rightarrow e + Fe^{++} + e$

Ionization Rate for single charged Iron Ions

b0 -3.437574762141D+01 b1 1.685181764677D+01 b2 -7.911217139035D+00 b3 2.442620345655D+00 b4 -5.072788444089D-01 b5 6.899131935535D-02 b6 -5.866292819569D-03 b7 2.825378750379D-04 b8 -5.881378739141D-06 Max. rel. Error: .2106 % Mean rel. Error: .1105 %

2.54 Reaction 3.1 $W + e \rightarrow W^+ + 2e$

```
%tungsten coef. rate
b0 -23.7963000000D+00 b1 8.52230000000D+00 b2 -4.02710000000D+00
b3 1.3390000000D+00 b4 -0.33980000000D+00 b5 0.06380000000D+00
b6 -0.00820000000D+00 b7 0.0006000000D+00 b8 0.0000000000D+00
```


<sigma*vrel>(Te,ne) (cm**3/s), Fe+--> Fe++

3 H.3 : Fits for $\langle \sigma v \rangle (E, T)$

3.1 Reaction 0.1T $p + H(1s) \rightarrow p + H(1s)$, elastic, $I_{0,0}$

E	E-Index:	0	1	2
T-Index:	:			
(-1.82347	2394862D+01	1.043929094352D-01	3.385021298310D-02
1	1.21886	9427323D-01	-8.071776515805D-02	-6.163024588310D-03
2	2.18314	4859635D-02	6.947238019788D-03	-1.029753867911D-02
	-8.14441	4285471D-03	7.950619428888D-03	1.480212482573D-03
4	4 -2.41415	8185489D-03	-1.610515523206D-03	1.147576632073D-03
[5 4.04233	5482230D-04	-3.333068266837D-04	-2.109287055048D-04
6	6.68461	0364551D-05	1.395481729149D-04	-3.872093410396D-05
	7 -1.81482	6813629D-05	-1.589238118662D-05	1.137141330233D-05
8	3 1.04999	3252610D-06	6.124957529757D-07	-6.966443729323D-07
E	E-Index:	3	4	5
T-Index:	:			
(-2.04805	9867515D-03	-4.577324303045D-03	5.174052650323D-05
1	8.40477	6509987D-03	5.448141329729D-04	-6.017991251450D-04
2	2 -1.66013	7737426D-03	1.687354957150D-03	1.123876140912D-05
	3 -1.90781	4505083D-03	2.558232467687D-05	1.587671168547D-04
4	4 5.801892	2116713D-04	-2.945348864215D-04	-2.556467005779D-05
[5 8.05314	4974289D-05	2.875034864587D-05	-9.746625582656D-06
6	6 -5.04329	0334814D-05	1.493675458929D-05	3.216371174204D-06
-	6.79887	0422148D-06	-3.269371275613D-06	-3.202325463122D-07
8	-3.00673	0549005D-07	1.854263211106D-07	1.033863743276D-08
E	E-Index:	6	7	8
T-Index:	:			
(2.67320	1510283D-04	-4.451268371503D-05	2.199498285047D-06
1	1 3.53693	7592691D-05	9.054714466075D-06	-8.596768109209D-07
2	2 -1.22442	3097417D-04	2.126181472934D-05	-1.100195177512D-06
	3 -2.85812	0151811D-05	1.112919746718D-06	4.374805864224D-08
L.	4 2.74784	6551451D-05	-4.380086290415D-06	2.202510674285D-07
[-6.36074	8557750D-07	3.783870577323D-07	-2.732689440408D-08
6	6 -1.73843	6960565D-06	2.363371059212D-07	-1.072861195261D-08
-	3.15649	0387804D-07	-5.006550452098D-08	2.526895478569D-09
8	-1.65573	5806555D-08	2.801053970232D-09	-1.467609659450D-10

Max.	rel.	Error:	0.5284	00
Mean	rel.	Error:	0.0853	00

3.2 Reaction 0.1D $p + H(1s) \rightarrow p + H(1s)$, elastic, $I_{1,0}$

E	Index:	0	1	2
T-Index:				
C	-1.934778	3779385D+01	2.193162842747D-02	-5.787610534513D-04
1	8.400121	1290584D-04	-5.025758478606D-02	9.405606314808D-03
2	-1.072570)686950D-02	1.258217951174D-02	-7.629292880371D-03
3	-7.329656	6452946D-03	1.017355462044D-02	-2.212101744320D-03
4	-1.548110)966373D-03	-4.141816249813D-03	1.623377903131D-03
5	8.780715	5214347D-05	-5.483013774324D-04	1.371503461028D-04
6	6.351915	5617491D-05	4.711920962053D-04	-1.702351291260D-04
7	-1.071915	5622348D-05	-7.653900655552D-05	2.828377077442D-05
8	5.468789	9447600D-07	3.989227802803D-06	-1.457895095025D-06
E	-Index:	3	4	5
T-Index:				
C	-9.555854	1995025D-03	-3.071069026823D-03	5.668304238739D-04
1	1.213464	4571187D-02	-3.615417883123D-03	-8.289738887452D-04
2	-3.222678	3509228D-03	2.181349883244D-03	1.491076548317D-04
3	-4.530314	1087059D-03	1.707627243838D-03	3.285319171515D-04
4	1.894095	5127078D-03	-8.173359548467D-04	-1.268607651578D-04
5	2.806873	3100807D-04	-1.147859100868D-04	-2.036026302326D-05
6	-2.386998	3803904D-04	9.947217842552D-05	1.676927171418D-05
7	3.936468	3195914D-05	-1.609704117822D-05	-2.801579443731D-06
8	-2.077060	0263537D-06	8.298532548793D-07	1.504259503231D-07
E	-Index:	6	7	8
T-Index:				
C	1.023499	9873278D-04	-4.375997865613D-05	3.554762032992D-06
1	4.794896	6057762D-04	-7.011568552117D-05	3.413857855011D-06
2	-2.352460)376261D-04	4.210499686989D-05	-2.314387560956D-06
3	-2.365796	6504952D-04	3.759133611684D-05	-1.934588738006D-06
4	1.083092	2577128D-04	-1.817871861306D-05	9.758474990215D-07
5	1.584828	3965214D-05	-2.554030249359D-06	1.314431146313D-07
6	-1.358040	6593907D-05	2.254690862488D-06	-1.202340694084D-07
7	2.216782	1743757D-06	-3.678764178035D-07	1.970465840287D-08
8	-1.154459	9633382D-07	1.906633038081D-08	-1.021379321893D-09

Max. rel. Error: 2.5240 Mean rel. Error: 0.4077

3.3 Reaction 0.2T $p + He(1s^21S) \rightarrow p + He(1s^21S)$, elastic, $I_{0,0}$

E-	-Index:	0	1	2
T-Index:				
0	-1.934	393021918D+01	6.563446707236D-02	2 -1.132533853318D-01
1	1.301	350106064D-01	-4.071555273225D-02	2 2.016906859537D-02
2	1.828	664127573D-02	1.460635793653D-02	6.745665311224D-03
3	-1.572	566883649D-02	-3.953675178715D-03	3 1.747850519967D-03
4	-1.651	243630315D-02	-2.847284094044D-04	4 -1.016420463987D-03
5	1.536	731193440D-03	5.204625005620D-04	4 -1.110404741405D-04
6	1.407	936221176D-03	-1.273303544933D-04	4 7.874267771795D-05
7	-3.024	575206489D-04	1.258652128299D-05	5 -9.943699290077D-06
8	1.717	075379788D-05	-4.489657191575D-0	7 3.942435517534D-07
E-	Index:	3	4	5
T-Index:				
0	-2.108	203840264D-02	5.126981927132D-02	-3.332060792240D-03
1	4.145	056754712D-03	-1.207683748654D-02	2 9.777916409735D-04
2	-2.343	836845279D-03	-2.643817205066D-03	4.122233549648D-04
3	1.316	616725294D-03	-3.328603688720D-04	4 -1.025202074732D-04
4	2.115	185323595D-04	3.305924890461D-04	4 -4.422649148500D-05
5	-2.096	646478748D-04	4.907753719257D-05	5 1.750257851569D-05
6	3.694	523090258D-05	-3.137559296212D-05	-2.054573401396D-06
7	-2.076	330117601D-06	3.934064976552D-00	5 7.117080375326D-08
8	5.837	947019108D-09	-1.543181228289D-0	7 1.142825149606D-09
E-	-Index:	6	7	8
T-Index:				
0	-5.396	242466413D-03	1.236276138019D-03	-7.628885182442D-05
1	1.273	531852240D-03	-3.057392495993D-04	1.949879233267D-05
2	2.238	463116916D-04	-5.822708605029D-05	5 3.713522343609D-06
3	3.644	852940119D-05	-2.948705115200D-00	5 2.772902778994D-08
4	-2.296	832307757D-05	5.703124977270D-00	-3.560603032570D-07
5	-7.404	629231556D-06	8.730873892378D-0	7 -3.238131969596D-08
6	3.004	305767140D-06	-4.823864866020D-0	7 2.370653749977D-08
7	-3.116	821151336D-07	4.985170981511D-08	-2.366645009836D-09
8	9.670	471248063D-09	-1.366953072466D-09	9 5.308492125136D-11
Max. rel.	Error:	43.0372 %		

Mean rel. Error: 3.6615 %

3.4 Reaction 0.2D $p + He(1s^21S) \rightarrow p + He(1s^21S)$, elastic, $I_{1,0}$

E	-Index:	0	1	2
T-Index:				
С	-2.038	078616420D+01	-4.993496998398D-02	2.460551521383D-02
1	-3.301	657139332D-01	-3.084287321372D-02	1.554461839749D-02
2	-1.250	516030333D-01	3.495799299565D-02	-1.424614705786D-02
3	6.328	424290736D-03	-3.821208294684D-03	-1.623627120526D-03
4	1.127	524699096D-02	-2.410962290755D-03	1.757598241612D-03
5	-1.287	708708939D-03	4.847023005705D-04	9.455808977270D-05
E	-6.368	309748535D-04	4.413818051866D-05	-1.552922023412D-04
7	1.421	859797928D-04	-1.659744792044D-05	2.551798508100D-05
8	-8.055	939868827D-06	1.038460845033D-06	-1.289836231544D-06
E	-Index:	3	4	5
T-Index:				
С	-1.517	017165274D-02	-2.397648448576D-02	3.029365163804D-03
1	3.040	700264374D-02	-2.593835985009D-03	-3.146176415388D-03
2	-9.657	174093701D-03	7.433666067399D-03	4.191585645845D-04
3	-2.321	909525809D-03	7.614727149051D-04	2.681001889717D-04
4	1.188	908537635D-03	-1.115315269461D-03	-4.859218322237D-05
5	3.089	582619996D-05	7.699187722499D-06	-8.863762072239D-06
6	-6.629	197652130D-05	8.154996921696D-05	1.796356820001D-06
7	9.800	954064911D-06	-1.473582389149D-05	6.040382986474D-08
8	-4.465	334549154D-07	7.821310450330D-07	-1.548297648690D-08
E	-Index:	6	7	8
T-Index:				
С	2.120	043324652D-03	-5.206063712236D-04	3.229462400161D-05
1	6.652	125688558D-04	-2.834612166641D-05	-1.127219264426D-06
2	-8.556	829101842D-04	1.582340533265D-04	-8.789744795492D-06
3	-1.226	460004470D-04	1.517380199975D-05	-6.070841562603D-07
4	1.341	954089088D-04	-2.572769659598D-05	1.459166812937D-06
5	-8.619	326544178D-07	6.166331772717D-07	-5.093661426041D-08
6	-9.360	612397745D-06	1.830066731050D-06	-1.043424396036D-07
7	1.676	084936402D-06	-3.453407619810D-07	2.029350887316D-08
8	-8.843	599781403D-08	1.879251002731D-08	-1.123059892608D-09

Max. rel. Error: 4.5211 Mean rel. Error: 1.0118

3.5 Reaction 0.3T $p + H_2 \rightarrow p + H_2$, elastic, $I_{0,0}$

	E-I	ndex:	0		L	2	2
T-Inc	dex:						
	0	-1.8506	58754996D+01	7.2110822	264457D-02	2.881570	478725D-02
	1	2.0201	69165482D-01	-6.3821358	300278D-02	-1.628749	501583D-02
	2	2.5980	24510290D-02	1.3309397	790463D-02	-3.589374	170071D-03
	3	-1.6784	47543630D-02	1.9696802	248144D-03	2.420309	504140D-03
	4	-3.8050	13471382D-03	-8.5383666	588716D-04	1.219958	125509D-04
	5	5.8328	75302941D-04	1.4041051	L42335D-05	-1.373999	872185D-04
	6	1.1832	72287480D-04	1.7540037	746153D-05	4.5752142	200943D-06
	7	-9.0137	68167130D-06	-1.5931448	365711D-06	2.703806	954321D-06
	8	-7.2378	39929582D-07	1.8562073	389335D-08	-2.288152	742189D-07
	E-I	ndex:	3	2	1		5
T-Inc	dex:						
	0	2.8246	70772476D-03	-1.9254594	117470D-03	-3.785321	033027D-04
	1	3.6096	81973946D-03	2.4305555	593258D-03	-5.689585	982541D-04
	2	-2.9737	17962634D-03	-2.9835305	508154D-05	4.140245	564780D-04
	3	1.1646	30658778D-04	-3.3340411	L65620D-04	-1.688850	581453D-05
	4	2.4487	27242148D-04	3.6159343	391216D-06	-2.9491123	340307D-05
	5	-3.6627	63983152D-05	2.2535196	645066D-05	4.135548	971992D-06
	6	-4.3329	49346678D-06	-1.2782900)14948D-06	5.039287	664347D-07
	7	1.1857	17497396D-06	-5.0942744	160491D-07	-1.239318	519727D-07
	8	-6.2647	32541905D-08	4.9208940	579796D-08	5.881467	421248D-09
	E-I	ndex:	6	-	7	:	3
T-Inc	dex:						
	0	1.3645	68368798D-04	1.549425	706176D-05	-6.618501	118923D-06
	1	-1.3938	18486289D-04	6.3262712	239195D-05	-6.695217	940204D-06
	2	-9.8856	14172244D-06	-3.2542176	522645D-05	4.703412	615895D-06
	3	1.8999	33955654D-05	-1.3958587	712371D-06	6.819987	383210D-08
	4	1.5151	03150938D-06	1.9892129	957512D-06	-3.032181	942708D-07
	5	-1.5272	39138118D-06	-2.8168638	364732D-08	1.345210	099656D-08
	6	3.1820	07050723D-08	-4.3984235	525407D-08	6.503053	760354D-09
	7	3.9524	72363950D-08	8.3509796	568461D-10	-3.926411	713518D-10
	8	-3.3795	72792986D-09	3.1415923	395102D-10	-2.459493	010474D-11
Max	rel	Error.	3 4420 %				

Max. rel. Error: 3.4420 % Mean rel. Error: 1.2045 % Ti: 0.01---1000, EB: 0.1---100

3.6 Reaction 0.3D $p + H_2 \rightarrow p + H_2$, elastic, $I_{1,0}$

E	-Index:	0	1		:	2
T-Index:						
0	-1.91927	5366997D+01	-1.86523834	6305D-02	4.682617	815803D-02
1	-5.94778	0482087D-02	-5.97138272	6967D-02	5.854568	958623D-03
2	-9.00407	7564531D-02	3.22570937	1997D-02	-6.402554	946956D-03
3	-1.87045	9871354D-02	-1.43803821	8134D-03	2.1907783	358004D-03
4	1.49137	6597764D-02	-1.61413394	8666D-03	-1.009422	051586D-03
5	9.56312	6960467D-04	3.70788048	8168D-04	-7.731975	035804D-05
6	-1.33007	7285945D-03	-5.35396272	5785D-05	1.351235	395106D-04
7	2.020583	3687196D-04	6.84992302	4482D-06	-2.550615	695507D-05
8	-9.27785	1726161D-06	-4.08242935	0941D-07	1.441579	661485D-06
E	-Index:	3	4			5
T-Index:						
0	-8.93226	6130300D-03	-2.90388275	2834D-02	3.477806	471368D-03
1	1.63719	4804434D-02	-3.29145960	4645D-04	-1.492225	099738D-03
2	-1.308998	8760658D-03	2.36784953	6658D-03	-2.633913	429665D-04
3	-2.82829	9306442D-04	-4.68689020	3582D-07	4.818941	917867D-05
4	-5.32650	5552258D-04	1.67330361	3736D-04	6.564947	466483D-05
5	2.493242	1008729D-05	-2.43456281	9338D-05	-5.585591	947606D-06
6	6.59594	6297185D-05	-2.50963080	6820D-05	-5.474903	148493D-06
7	-1.42094	5572125D-05	6.29086930	8799D-06	1.207885	423899D-06
8	8.43166	1832790D-07	-4.00225737	8192D-07	-7.135379	893415D-08
E	-Index:	6	7		:	8
T-Index:						
0	2.79021	8940150D-03	-6.90843842	7090D-04	4.338681	573230D-05
1	1.44337	0523034D-04	2.40985010	6077D-05	-2.849926	680503D-06
2	-1.712112	2384677D-04	4.23361996	1041D-05	-2.665571	098691D-06
3	-1.90227	4102571D-05	2.44642603	5585D-06	-9.693955	463859D-08
4	-2.84761	6427622D-05	3.57892772	3952D-06	-1.517016	799547D-07
5	4.66943	8326556D-06	-7.60117024	8698D-07	3.823110	747713D-08
6	3.257943	3960303D-06	-4.77590892	0414D-07	2.342435	491722D-08
7	-8.36157	4596535D-07	1.29052244	8864D-07	-6.505820	743915D-09
8	5.318078	8186713D-08	-8.38572108	9159D-09	4.277930	018700D-10

Max. rel. Error: 5.2866 Mean rel. Error: 1.2591

3.7 Reaction 0.4T $He^+(1s) + He(1s^21S) \rightarrow He^+(1s) + He(1s^21S)$, elastic, $I_{0,0}$

E	-Index:	0	1	2
T-Index:				
0	-1.9322	87393135D+01	-6.254173654177D-02	2 7.946623543420D-02
1	7.4204	52433663D-02	-1.124812231885D-02	2 -2.699799758379D-02
2	4.5782	46117879D-02	5.807748349427D-03	3 -6.767337797049D-03
3	9.3765	19610500D-03	3.743869063612D-03	3 1.935668442071D-03
4	-1.2323	63387636D-02	-1.100675144650D-03	3 3.439916049619D-04
5	-1.3070	54294818D-03	-8.910211076373D-0	5 -1.851109052007D-04
6	1.1185	62583548D-03	5.617956521495D-0	5 4.722943119535D-05
7	-1.4340	31268233D-04	-6.365356860650D-0	6 -7.103013883339D-06
8	5.3589	89072610D-06	2.334269507353D-0	7 4.090109024266D-07
E	-Index:	3	4	5
T-Index:				
0	8.8385	05558116D-02	-2.793201134092D-02	2 -9.954061526499D-03
1	-1.8845	65424365D-02	1.123857510199D-02	2 1.596841699378D-03
2	-2.4950	42935023D-03	1.439511185350D-04	4 2.861967025267D-04
3	-2.0470	50990056D-03	-1.947991019023D-04	4 2.018359028340D-04
4	7.4349	76678383D-04	-4.730384293613D-0	5 -6.250784297096D-05
5	1.1171	68152610D-04	3.115251093953D-0	5 -1.325389437604D-05
6	-5.8817	39628460D-05	-1.308533305864D-0	5 6.051250040246D-06
7	6.6669	55388827D-06	2.380955160803D-0	6 -7.094040977952D-07
8	-2.3674	98282831D-07	-1.427503775556D-0	7 2.786934787376D-08
E	-Index:	6	7	8
T-Index:				
0	3.7644	03463819D-03	-3.408466490224D-04	4 6.412518246520D-06
1	-1.3896	44457539D-03	2.161107270253D-04	4 -1.049187773127D-05
2	-4.1715	91875990D-06	-1.196874977368D-0	5 1.094079145119D-06
3	-1.5988	05546650D-05	-2.311078550298D-0	6 2.483893468689D-07
4	1.2807	02702425D-05	-7.877322455546D-0	7 9.482501133602D-09
5	-2.1313	89375108D-07	3.650222503579D-0	7 -2.688165319879D-08
6	1.6030	31094261D-07	-1.683294115673D-0	7 1.140269704662D-08
7	-1.0564	86811884D-07	3.540020523528D-08	3 -2.124298972987D-09
8	9.1411	32772747D-09	-2.324505150923D-0	9 1.328831955405D-10

Max.	rel.	Error:	45.6817
Mean	rel.	Error:	5.1917

3.8 Reaction 0.4D $He^+(1s) + He(1s^21S) \rightarrow He^+(1s) + He(1s^21S)$, elastic, $I_{1,0}$

E-	-Index:	0	1	2
T-Index:				
0	-2.00585	6706409D+01	-2.416298567134D-02	2 -1.290643907647D-01
1	-1.72303	3466633D-01	-2.876974997211D-02	6.358697996829D-02
2	-8.48054	0790141D-02	2.121102722373D-02	1.060648053441D-03
3	-1.58377	2608067D-02	2.831738365425D-04	a 3.604228124024D-04
4	7.14191	8601934D-03	-2.712847139884D-03	-1.390046088713D-03
5	1.05041	5524504D-03	3.514199969505D-04	-1.430457735837D-04
6	-5.60974	3409859D-04	1.114910501595D-04	1.776137463792D-04
7	5.52877	5780351D-05	-2.849479698839D-05	-2.957402039735D-05
8	-1.29848	7796038D-06	1.744141312203D-00	5 1.511018855995D-06
E-	-Index:	3	4	5
T-Index:				
0	-7.60937	4902789D-02	2.051842775759D-02	6.700343984959D-03
1	1.48417	3774740D-02	-1.259800535085D-02	-3.314345389346D-04
2	7.43779	6246116D-03	-1.933320600619D-03	-8.197110013265D-04
3	5.72200	3993817D-04	1.577284882295D-04	l -1.165904265498D-04
4	-7.83612	0750894D-04	5.279763008829D-04	7.329216329788D-05
5	-8.87142	4676206D-05	1.610771935311D-06	5 9.934442032629D-06
6	6.40139	6318081D-05	-5.184619145829D-05	-4.985193070868D-06
7	-7.53921	0289621D-06	9.524059409052D-06	4.297672500003D-07
8	2.52939	2826633D-07	-5.084304524420D-07	-5.932611004947D-09
E-	-Index:	6	7	8
T-Index:				
0	-2.46682	7019035D-03	2.195450363238D-04	-4.275624910534D-06
1	9.94333	8501590D-04	-1.676144873446D-04	8.508217370560D-06
2	3.61088	4437671D-04	-4.659019201525D-05	5 2.019277552554D-06
3	1.13436	0853468D-05	9.293505569914D-07	-1.249357290876D-07
4	-6.84473	0630933D-05	1.119496625366D-05	5 -5.759041144367D-07
5	-1.29880	1064099D-06	-4.988842872544D-08	9.924160039487D-09
6	6.07415	0104979D-06	-1.029965177536D-06	5.399132209393D-08
7	-1.04837	5199655D-06	1.905679254148D-07	-1.033208843896D-08
8	5.35799	1449124D-08	-1.021819231976D-08	5.659599344410D-10

Max.	rel.	Error:	4.6006
Mean	rel.	Error:	1.4030

3.9 Reaction 0.5T $p + Ne \rightarrow p + Ne$, elastic, $I_{0,0}$

	E-Ind	lex:	0		1			2	
T-Index	x :								
	0 –	1.92075	9314942D+01	-5	.203892840	321D-02	6.	2567387	40832D-02
	1	2.30117	4650324D-01	4	.598103585	536D-02	-4.	5290615	00977D-02
	2 -	2.84480	9537536D-03	-2	.458775402	853D-03	5.	1936635	54519D-03
	3 –	2.05781	8892403D-02	-7	.174444135	106D-03	1.	0074386	82679D-03
	4 –	1.24772	5873726D-02	1	.478687710	859D-03	3.	9531831	88726D-04
	5	2.15743	6023407D-03	3	.355091844	482D-04	-8.	1128804	98847D-05
	6	9.99207	8785249D-04	-1	.437802559	650D-04	-5.	0157982	25079D-05
	7 –	2.51929	0342081D-04	1	.679868230	149D-05	1.	3136395	35025D-05
	8	1.52881	9949488D-05	-6	.582462835	809D-07	-8.	4205384	26381D-07
	E-Ind	lex:	3		4			5	
T-Index	:								
	0	3.57038	4214557D-02	-2	.599370622	275D-02	-1.	3077888	28471D-03
	1 -	-3.36190	4573721D-02	1	.857018937	894D-02	1.	9605028	72244D-03
	2	4.60505	4021354D-03	-1	.471661007	966D-03	-3.	9788197	29213D-04
	3	3.29816	8445875D-03	-9	.406952560	414D-04	-2.	8317877	75281D-04
	4 -	-7.25175	0861538D-04	-7	.779131291	367D-05	8.	9794749	17231D-05
	5 -	1.83287	3740518D-04	7	.101665930	610D-05	1.	5189227	75711D-05
	6	7.43158	7797692D-05	4	.751928717	840D-06	-9.	2880056	71637D-06
	7 –	-8.35528	8839969D-06	-3	.287000259	239D-06	1.	3089889	35499D-06
	8	3.12386	6169547D-07	2	.487732705	021D-07	-6.	1063532	69941D-08
	E-Inc	lex:	6		7			8	
T-Index	:								
	0	3.07972	1700396D-03	-5	.958055457	558D-04	3.	4135263	44209D-05
	1 -	2.29491	2090837D-03	4	.037290717	482D-04	-2.	1987221	38819D-05
	2	1.76997	2448752D-04	-2	.083969105	626D-05	8.	3330413	68586D-07
	3	1.50710	7647921D-04	-2	.125246166	296D-05	9.	8471996	59415D-07
	4 –	7.89805	4427499D-07	-3	.134863355	412D-06	2.	7373180	21218D-07
	5 -	-1.08830	2678431D-05	1	.723721432	651D-06	-8.	7135928	46203D-08
	6	7.41145	6169336D-07	1	.836531987	751D-07	-2.	0210652	90807D-08
	7	2.06760	6837134D-07	-9	.097454398	809D-08	6.	7304015	23292D-09

8 -2.086750507882D-08 6.592902645608D-09 -4.544772018004D-10

91

3.10 Reaction 0.5D $p + Ne \rightarrow p + Ne$, elastic, $I_{1,0}$

E	L-Index:	0	1			2
T-Index:						
С	-2.002574	4827025D+01	-9.48620550)6769D-03	-1.91628	6734818D-02
1	-2.53790	6409600D-01	1.22058950)6641D-02	-4.40541	1696435D-03
2	-1.49285	5002501D-01	2.31995409	90051D-04	1.26392	9021478D-02
3	2.277262	2949762D-02	-4.83018845	56031D-03	-2.75045	2234840D-03
4	1.45456	5132881D-02	1.63482923	33387D-03	-7.31559	4083272D-04
5	-2.45910	6378105D-03	3.60008974	47182D-05	2.67154	1616531D-04
6	-7.40444	9444601D-04	-9.64173519	94704D-05	-7.55282	4895881D-06
7	1.85917	4611798D-04	1.57191262	22960D-05	-4.09137	7459615D-06
8	-1.080632	2769187D-05	-7.91770226	55677D-07	3.29523	5267228D-07
E	-Index:	3	4			5
T-Index:						
С	3.064150	0950343D-04	5.77056507	72378D-03	-1.28801	2249760D-03
1	-9.350962	1151995D-03	2.04678352	21289D-03	1.26369	9863822D-03
2	5.58755	5734861D-03	-3.89247569	94794D-03	-2.56757	5758703D-04
3	3.929098	8223217D-04	4.31236638	36482D-04	-1.03882	0514086D-04
4	-7.648388	8450741D-04	3.69475242	29370D-04	4.45431	1674256D-05
5	9.309623	3048752D-05	-7.25269668	36113D-05	-1.55298	3373470D-06
6	2.29151	5177534D-05	-9.05480619	93408D-06	-1.49673	8021147D-06
7	-5.643860)949550D-06	3.07056500)6104D-06	2.49431	7965158D-07
8	3.263260	0078468D-07	-1.92441240)5804D-07	-1.20627	4348614D-08
E	-Index:	6	7			8
T-Index:						
С	-6.056764	4332700D-04	1.84153315	50445D-04	-1.26808	1106690D-05
1	-3.065943	3896812D-04	6.45045081	L9580D-06	1.42706	6945930D-06
2	4.41553	9725039D-04	-8.03760535	53389D-05	4.42652	9308029D-06
3	-2.150818	8421027D-05	8.16683634	19571D-06	-6.03852	0579569D-07
4	-5.06617	4985198D-05	9.12200215	51237D-06	-5.05708	6230537D-07
5	7.66082	5723624D-06	-1.56171689	94668D-06	9.41199	2094619D-08
6	1.67080	9775312D-06	-3.12227767	77479D-07	1.75585	8285560D-08
7	-4.493868	8279400D-07	8.90792342	24961D-08	-5.23753	3360927D-09

8 2.688180498679D-08 -5.445051092452D-09 3.250534258748D-10

3.11 Reaction 0.6T $p + Ar \rightarrow p + Ar$, elastic, $I_{0,0}$

E	-Index:	0	1	2
T-Index:				
0	-1.83989	7580907D+01	4.030184662143D-03	1.802460470789D-03
1	2.03706	0320748D-01	-5.396105402336D-03	-7.769954287934D-04
2	1.24839	1636263D-02	2.603532176725D-03	-3.227588765414D-04
3	7.21981	1509122D-03	-4.061565358391D-04	-3.750257185540D-04
4	-1.47082	7813902D-02	2.065674500382D-05	3.333229773836D-04
5	-8.48084	2849852D-04	-4.796563627170D-05	-5.309221423582D-05
6	1.47584	3994216D-03	2.151994248608D-05	-7.098388544357D-06
7	-2.36973	3723824D-04	-3.291364962627D-06	2.359507987294D-06
8	1.13463	4185229D-05	1.702489707640D-07	-1.506817496256D-07
E	-Index:	3	4	5
T-Index:				
0	3.29480	0134968D-04	1.465250143471D-04	8.663294112725D-05
1	-6.03752	0883955D-05	-7.833105742017D-04	-7.893554189454D-05
2	2.80021	0419328D-04	7.133616427016D-04	-7.316301877565D-05
3	-3.94449	7369254D-04	1.428880614656D-07	6.395999790794D-05
4	1.03548	4083951D-04	-1.259450451777D-04	-6.254483715556D-06
5	2.61441	0225361D-05	2.546750118822D-05	-5.673820883686D-06
6	-1.53963	7991363D-05	2.130859838243D-06	1.919659151259D-06
7	2.33318	7328954D-06	-9.290655798117D-07	-2.320465866922D-07
8	-1.17404	6627783D-07	6.235484198986D-08	1.001839767228D-08
E	-Index:	6	7	8
T-Index:				
0	6.68522	5434320D-07	-4.106232974060D-06	2.723608800669D-07
1	7.18337	6311050D-05	-7.472067446331D-06	1.322655803936D-07
2	-7.13807	7909744D-05	1.620936024346D-05	-9.673898950970D-07
3	-1.77062	1609979D-06	-2.727090501391D-06	2.643852072903D-07
4	1.30503	7799181D-05	-2.175685933563D-06	1.088658237035D-07
5	-2.13848	3570591D-06	6.604985427235D-07	-4.569211762479D-08
6	-4.04103	1701627D-07	-3.355268537350D-09	2.937036162249D-09
7	1.21358	2669967D-07	-1.417846453379D-08	4.992956309007D-10

8 -7.672622548871D-09 1.110090107209D-09 -5.119220753399D-11

95

3.12 Reaction 0.6D $p + Ar \rightarrow p + Ar$, elastic, $I_{1,0}$

	E-Index:	0	1	2
T-Inde>	Κ:			
	0 -1.902	2636300376D+01	3.001140234133D-03	-5.268608243610D-03
	1 -1.190)527528568D-01	-9.553336489669D-03	8.838025019236D-03
	2 -1.730)087103659D-01	4.587817497859D-03	-1.385574331019D-03
	3 -1.555	5030094420D-04	-6.909759775226D-05	-2.299454149526D-03
	4 1.652	2235885356D-02	-2.381913347984D-04	8.373956786709D-04
	5 -8.324	4171609940D-04	-2.293808078785D-05	5.460206572452D-05
	6 -1.029	9303844386D-03	2.488294466911D-05	-6.512005353386D-05
	7 1.900	6300286920D-04	-3.895517435876D-06	1.038339787073D-05
	8 -9.78	7840807784D-06	1.909716194883D-07	-5.237600871611D-07
	E-Index:	3	4	5
T-Inde>	ζ:			
	0 -3.745	5428185818D-03	1.799497927500D-03	3.198330217071D-04
	1 3.20	7879804088D-03	-4.594149568994D-03	3.457996925194D-06
	2 7.51	7190218616D-04	1.585823173330D-03	-2.165980750364D-04
	3 -1.230	6341581941D-03	6.255302087543D-04	7.892735992329D-05
	4 2.230)976227599D-04	-3.347480301314D-04	5.331115058296D-06
	5 7.233	3602681294D-05	-4.639425388458D-06	-6.590740254953D-06
	6 -3.100)626413849D-05	2.210113950523D-05	1.029508831544D-06
	7 3.988	3838107824D-06	-3.769212293593D-06	-4.076159591930D-08
	8 -1.769	9431052019D-07	1.950084020747D-07	-1.116568059624D-09
	E-Index:	6	7	8
T-Inde>	κ:			
	0 -2.403	3744917992D-04	2.279983724758D-05	-1.931788624409D-08
	1 4.912	2047383164D-04	-9.410833593792D-05	5.088836276642D-06
	2 -1.484	4255933008D-04	3.868365832252D-05	-2.534300688720D-06
	3 -6.764	4773601651D-05	1.041550065999D-05	-5.033712296102D-07
	4 3.232	1656107374D-05	-6.733195279376D-06	4.029898146395D-07
	5 9.314	4900214037D-07	5.580215548355D-08	-1.063413052225D-08
	6 -2.175	5492032074D-06	4.036437533899D-07	-2.288971303250D-08
	7 3.569	9143181296D-07	-7.087085127829D-08	4.174797773877D-09

8 -1.803893978156D-08 3.691585310844D-09 -2.208748178924D-10

3.13 Reaction 0.7T $p + Kr \rightarrow p + Kr$, elastic, $I_{0,0}$

E	2-Index:	0	1			2
T-Index:						
C	-1.804373	3557904D+01	1.55932183	1821D-03	1.404133	353439D-03
1	2.03177	7449493D-01	-2.59216080	4293D-03	-1.467585	847319D-03
2	9.686882	2765703D-03	1.51669653	5508D-03	3.516527	725030D-05
3	8 8.64316	9704852D-03	-2.29387260	2067D-04	2.022613	761542D-04
4	-1.424299	9843875D-02	-3.46761080	3097D-05	2.405799	623813D-05
5	5 -1.04813	7401376D-03	-1.16353342	3390D-05	-4.664386	608096D-05
6	1.43060	9919337D-03	1.09149712	3198D-05	1.254896	476704D-05
7	-2.19425	9131788D-04	-1.95548247	1322D-06	-1.369663	518077D-06
8	1.00938	9168927D-05	1.08687970	2977D-07	5.472917	240108D-08
E	-Index:	3	4			5
T-Index:						
0	3.12087	7691343D-04	-1.81751287	9035D-04	4.117059	852657D-05
1	1.24287	7797139D-04	9.11237650	3933D-05	-1.233416	285351D-04
2	-1.57387	6413696D-04	2.56389543	3480D-04	4.138546	015912D-05
3	-1.42095	6386480D-04	-1.52825379	8614D-04	2.912014	736234D-05
4	9.59059	4342402D-05	5.64509247	7734D-07	-1.535634	290988D-05
5	-6.14265	6580682D-06	1.59691248	7433D-05	1.203913	423509D-07
6	-5.14152	5041188D-06	-4.04427272	6929D-06	9.881486	025146D-07
7	1.08491	4594786D-06	3.91501172	2907D-07	-1.811507	168253D-07
8	-6.255863	3642133D-08	-1.33387624	5529D-08	9.821435	035614D-09
E	-Index:	6	7			8
T-Index:						
C	2.83990	5184310D-05	-6.37845887	3924D-06	3.184713	992614D-07
1	-1.27993	5281113D-05	8.61472329	8861D-06	-6.786954	072347D-07
2	-2.60069	9325895D-05	2.20067832	7510D-06	-2.925585	047627D-09
3	1.312098	8730964D-05	-3.45411592	8930D-06	2.098391	843619D-07
4	9.21951	6369433D-07	4.84704559	0986D-07	-4.845129	241580D-08
5	-1.422113	3360703D-06	2.35178070	8953D-07	-1.060289	207166D-08
6	2.60291	6257409D-07	-8.19727935	0456D-08	5.265588	912826D-09
7	-1.502708	8544211D-08	9.28715641	7397D-09	-6.890608	304608D-10

8 4.565464331790D-11 -3.636906385821D-10 3.037183480051D-11

3.14 Reaction 0.7D $p + Kr \rightarrow p + Kr$, elastic, $I_{1,0}$

E	E-Index:	0	1		2)
T-Index:	:					
C	-1.86554	5505448D+01	-2.2246538916	670D-03	3.5125102	48126D-03
1	-1.067068	8862517D-01	-2.3726077710	064D-03	-2.5280112	93662D-03
2	-1.793062	2289927D-01	3.4112444429	908D-03	-5.7575283	843672D-04
3	3 -3.94931	6377716D-03	-9.1223238251	167D-04	7.3327215	62736D-04
4	1.720673	3370392D-02	-8.3767970698	854D-05	-5.9239527	68477D-05
5	5 -5.29220	5338392D-04	5.1715881055	599D-05	-6.9985168	81937D-05
6	-1.12358	5474018D-03	-1.1234898681	132D-06	2.2093566	88942D-05
7	1.995670	0109878D-04	-1.0621240144	473D-06	-2.5422591	89383D-06
8	-1.005942	2932112D-05	8.7449760368	870D-08	1.0471525	45942D-07
E	E-Index:	3	4		E	
T-Index:	:					
C	5.20816	6935036D-04	-1.718161556	721D-03	1.5927091	84582D-04
1	4.34266	9746539D-04	6.2053724919	923D-04	-2.5121442	46616D-04
2	-6.54856	1119095D-04	7.5578928191	154D-04	8.6558809	93873D-05
3	3 -1.17072	7706000D-06	-4.5880748441	111D-04	3.6171884	69585D-05
4	1.14878	5626919D-04	2.681963226	773D-05	-2.2043007	78275D-05
5	5 -1.734332	2538201D-05	3.4277491544	446D-05	3.7005196	576902D-07
6	-4.518652	2819335D-06	-9.6608927859	904D-06	1.4102440	55501D-06
7	1.24351	9343884D-06	1.0114934402	280D-06	-2.6462197	50940D-07
8	3 -7.777508	8674647D-08	-3.8008583812	217D-08	1.4523953	43502D-08
E	E-Index:	6	7		8	}
T-Index:	:					
С	1.760192	2998914D-04	-4.8231810124	443D-05	3.2836952	69304D-06
1	-5.953843	3658876D-05	2.7464738559	990D-05	-2.2121695	38346D-06
2	-8.109653	3911492D-05	1.1048686974	474D-05	-4.1814418	20322D-07
3	4.53702	5011410D-05	-1.0358936524	496D-05	6.3332575	56842D-07
4	-1.52564	5889670D-06	1.2617253584	435D-06	-1.0567140	78118D-07
5	-3.44063	9370908D-06	6.3385486619	992D-07	-3.3910927	03214D-08
6	6 8.55185	7146979D-07	-2.1881095564	451D-07	1.3993250	47660D-08
7	7 -7.89457	6610417D-08	2.5455935950	077D-08	-1.7633125	08912D-09
8	3 2.520442	1766028D-09	-1.0468766122	281D-09	7.7191962	37445D-11

3.15 Reaction 0.8T $p + Xe \rightarrow p + Xe$, elastic, $I_{0,0}$

	E-Index:	0	1	2
T-Index	:			
	0 -1.8370)22175444D+01	1.966234873272D-	01 -8.045525227882D-02
	1 1.8059	905055691D-01	-9.802945396045D-	02 3.544388629813D-03
	2 3.0470)12359914D-02	6.128643067258D-	03 -4.012918398972D-03
	3 -6.9234	116688779D-03	5.221800119943D-	03 4.204812055154D-03
	4 -3.1950)25138086D-04	-1.316526854062D-	03 6.034285640091D-04
	5 -1.935	784557781D-04	-7.420136378842D-	05 -4.344482793235D-04
	6 -1.9330)96968862D-04	9.094117569189D-	05 5.180202859895D-06
	7 7.1758	336632929D-05	-1.543061104752D-	05 1.174663734921D-05
	8 -5.5685	595272341D-06	8.358080592792D-	07 -9.761323315864D-07
	E-Index:	3	4	5
T-Index	:			
	0 -4.8486	631362553D-02	4.750879899677D-	02 5.610953213302D-04
	1 1.6124	199614172D-02	-5.523987597225D-	03 -9.460219395869D-04
	2 6.7940)95254509D-04	-9.895305035946D-	04 -2.861258121115D-05
	3 -1.1501	L10473980D-03	-7.631572145165D-	04 1.776787179903D-04
	4 3.981	780177076D-04	-1.483284811460D-	04 -3.107860031349D-05
	5 6.8911	L89917320D-06	1.027084520227D-	04 -1.030852624977D-05
	6 -3.9510)29440916D-05	7.160419132800D-	06 4.694154796307D-06
	7 8.0334	192283600D-06	-4.946108320253D-	06 -6.642328462598D-07
	8 -4.7616	690151100D-07	3.755070632999D-	07 3.283487948208D-08
	E-Index:	6	7	8
T-Index	:			
	0 -5.4132	232395756D-03	1.094586062581D-	03 -6.392041039556D-05
	1 7.755	701996850D-04	-1.315661918085D-	04 7.128051226064D-06
	2 1.6454	131285623D-04	-3.499826315853D-	05 2.119997135712D-06
	3 3.4109	974410072D-05	-1.133727004658D-	05 7.517805454064D-07
	4 1.7826	549548441D-05	-2.411600549323D-	06 1.058674617194D-07
	5 -7.0658	340257206D-06	1.628340574934D-	06 -9.783727086764D-08
	6 -1.8304	471247020D-06	2.273687191682D-	07 -9.553571528267D-09
	7 6.4073	304183785D-07	-1.061766307764D-	07 5.519134501912D-09
	8 -4.4478	305281256D-08	7.735214914952D-	09 -4.130970468715D-10

3.16 Reaction 0.8D $p + Xe \rightarrow p + Xe$, elastic, $I_{1,0}$

	E-Inc	dex:	0		1			2
T-Index	х:							
	0 -	-1.89742	4529930D+01	6.	759221376448D	0-02	2.8316	56966128D-02
	1	7.88056	8783648D-02	-1.	013433977091D	0-01	-4.8035	01715713D-04
	2 -	-2.21100	4195406D-02	2.	780616010153D	0-02	-9.8030	26089070D-03
	3 -	-1.88172	0757004D-02	7.	288240524563D	0-03	3.6223	52023952D-03
	4	1.88162	6843867D-03	-3.	506478495212D	0-03	1.0388	374766045D-04
	5	1.55572	3381321D-03	-6.	488785021639D	0-05	-3.6296	68747278D-04
	6 -	-2.15556	3511636D-04	1.	904734853680D	0-04	9.2637	91323244D-05
	7 -	-1.30921	2493163D-05	-2.	940905387089D	0-05	-9.7352	47959278D-06
	8	2.08508	8015611D-06	1.	405276321600D	0-06	3.7848	816393936D-07
	E-Inc	dex:	3		4			5
T-Index	x:							
	0 -	-1.13273	9367386D-02	-1.	136836207882D	0-02	1.6441	51842499D-03
	1	1.61659	5589060D-02	-6.	630385050040D	0-04	-1.2616	547418326D-03
	2 -	-3.46648	6887128D-03	2.	154814681750D	0-03	6.9299	92653084D-05
	3 -	-1.46986	4494259D-03	-3.2	263588910597D	0-04	1.6190	07714736D-04
	4	5.65540	9965690D-04	-6.	761053529597D	0-05	-3.5427	60579601D-05
	5	7.81205	4156187D-06	5.	307617978533D	0-05	-6.5846	83292245D-06
	6 -	-2.69620	0061727D-05	-1.	593650897407D	0-05	3.2727	32707082D-06
	7	4.09715	3412890D-06	2.	165559988365D	0-06	-4.2267	32919171D-07
	8 -	-1.94195	1920917D-07	-1.	068579438469D	0-07	1.8569	75994299D-08
	E-Inc	dex:	6		7			8
T-Index	x:							
	0	9.34776	4278165D-04	-2.2	260015561966D	0-04	1.3497	78327834D-05
	1	2.18444	9544252D-04	-4.	870473229076D	0-06	-6.5856	579719393D-07
	2 -	-1.76854	7787859D-04	3.	062903702294D	0-05	-1.6067	26635371D-06
	3 -	-5.38373	4875328D-06	-3.2	242779246901D	0-06	2.8875	63512048D-07
	4	8.89839	0092703D-06	-5.	828977975784D	0-07	2.5148	67221936D-09
	5 -	-2.66841	7682123D-06	6.	656669113253D	0-07	-4.1189	06229906D-08
	6	9.46702	5678674D-07	-2.	778964165257D	0-07	1.8107	97219300D-08
	7 -	-1.60392	3367792D-07	4.	412968572947D	0-08	-2.8235	52915243D-09

8 9.066091691589D-09 -2.353837415803D-09 1.478176477260D-10

3.17 Reaction 2.1.5 $e + H \rightarrow 2e + H^+$,

Valid for $700 < E_H < 1.0 E5$ and $T_e < 1000$ eV. Needed for beam penetration across cold electron (edge) plasma.

E-I	ndex:	0	1	2
T-Index:				
0	-3.2508	86702080D+02	2.690772962219D+02	-9.333762356936D+01
1	-6.6673	33547390D+01	7.233538183560D+01	-2.570910666822D+01
2	-4.9834	34468076D+01	2.412479733168D+01	-3.884870450118D+00
3	2.6705	50884979D+00	-1.723167957478D+00	5.587782905216D-01
4	6.6749	48903612D-01	-4.124756061678D-01	1.712842277416D-02
5	6.8089	76023219D-02	2.688754230792D-03	6.611670857544D-03
6	-1.4389	15473788D-02	-1.901194630463D-04	7.298416521085D-05
7	1.0989	89211142D-03	2.219783796362D-05	-3.960365474618D-05
8	-6.7118	66174955D-05	2.280924070357D-05	-4.884031598541D-06
E-I	ndex:	3	4	5
T-Index:				
0	1.4241	50846209D+01	-4.467268971241D-01	-1.584732741666D-01
1	4.3809	76345270D+00	-3.009427651758D-01	-8.501949526254D-03
2	-3.3989	32408165D-02	4.907514406262D-02	2.703730871097D-05
3	-3.3510	01372815D-02	-6.702807790436D-03	7.244114949870D-04
4	5.6977	17251645D-03	-2.395062750188D-04	-2.620114677424D-06
5	-1.6991	39379366D-03	5.177635368277D-05	6.870966611037D-06
6	2.3244	32128978D-05	5.858353012396D-06	-1.366593951118D-06
7	5.3553	53697737D-06	-6.855890659797D-07	9.381430540897D-08
8	7.8382	37578617D-07	-9.827043958796D-08	9.095791108734D-09
E-I	ndex:	6	7	8
T-Index:				
0	2.3614	60417677D-02	-1.345770476010D-03	2.864129137742D-05
1	2.3580	18185463D-03	-1.102091465927D-04	1.382211119292D-06
2	-5.6086	36378890D-04	3.536474507865D-05	-5.535259754631D-07
3	-8.6509	70561566D-06	6.995157343181D-08	-5.266956839472D-08
4	-3.7177	02510307D-06	2.369570100312D-07	5.319224060533D-10
5	1.0194	88700190D-07	-4.942023555843D-08	1.311808222738D-09
6	8.2017	53350995D-08	-2.693263792508D-09	8.430296741463D-11
7	-1.1451	96074924D-08	9.355510173137D-10	-3.109161125504D-11
8	-3.9771	95669572D-10	-6.688281017183D-12	7.995091233984D-13
Max. rel.	Error:	22.9827 %		
Mean rel.	Error:	1.3423 %		

3.18 Reaction 2.3.9 $e + He(1s^21S) \rightarrow 2e + He^+(1s)$,

Valid for $700 < E_{He} < 1.0 E5$ and $T_e < 1000$ eV. Needed for beam penetration across cold electron (edge) plasma.

	E-Ir	ndex:	0	1	2
T-Ind	ex:				
	0	1.31003	4245752D+03	-8.508771372056D+0	2 2.066760366749D+02
	1	-2.50835	3150675D+02	1.015419189021D+0	2 -1.581037633890D+01
	2	9.41745	1507809D+01	-1.778751771269D+0	1 -2.824530306780D+00
	3	-3.00905	0226462D+01	6.654788597405D+0	0 2.915588715563D-01
	4	4.38566	0180646D+00	-1.117837142443D+0	0 -1.511745757585D-02
	5	-4.44301	9677779D-02	4.662788141049D-0	2 -5.658517658565D-04
	6	-5.38355	7897871D-02	3.946435769665D-0	3 1.039284516303D-03
	7	5.93173	1041041D-03	-7.716369089119D-0	4 -2.018331102194D-05
	8	-1.67771	8659922D-04	1.297692472884D-0	5 1.627194163577D-06
	E-Ir	ndex:	3	4	5
T-Ind	ex:				
	0	-2.02151	7461823D+01	-6.037177234072D-0	1 3.448434382624D-01
	1	2.16087	4670018D+00	-3.181962238105D-0	1 3.285332322121D-02
	2	6.74144	7605303D-01	-3.148060740119D-0	2 7.078822091135D-04
	3	-8.28801	1998601D-02	-1.758799128561D-0	3 -1.384555059849D-04
	4	1.16764	8389744D-02	-1.409170634544D-0	4 9.546658161713D-05
	5	-6.51568	1704203D-04	-4.715250869462D-0	5 9.071842143868D-06
	6	-1.53479	9377103D-05	-1.066216257020D-0	5 -4.208681902142D-07
	7	-1.52884	3582156D-05	2.822659922448D-0	6 1.096321036847D-07
	8	1.00991	1437330D-06	-2.105689698877D-0	7 4.570730739908D-09
	E-Ir	ndex:	6	7	8
T-Ind	ex:				
	0	-3.43631	7750271D-02	1.530379719746D-0	3 -2.666449302822D-05
	1	-2.28189	6275305D-03	1.104943101710D-0	4 -2.667926304328D-06
	2	-1.62434	6097258D-05	-1.339087397064D-0	5 8.519546024053D-07
	3	5.89069	5384015D-05	1.457482299662D-0	6 -2.463663989543D-07
	4	-1.45940	1479449D-05	-8.971022779692D-0	8 3.962468074256D-08
	5	3.12397	6730622D-08	-1.013694223158D-0	8 -7.468250327850D-10
	6	2.41903	6579858D-09	1.458105491288D-0	8 -7.464201861260D-10
	7	-2.45777	0000492D-08	-9.361060954216D-1	1 5.503065552145D-11
	8	8.00403	0822610D-10	-1.580695841260D-1	1 -1.314359641034D-12
Max.	rel.	Error:	7.5847 %		

Mean rel. Error: 0.8667 %

Reaction 3.1.8 $p + H(1s) \rightarrow H(1s) + p$ 3.19

Charge exchange between protons and hydrogen atoms. Cross-section: 3.1.8, improved fit. (Identically in: HYDHEL.tex)

 $\langle sigma * vrel \rangle$ (Ti,Ebeam) (cm**3/s)

E-	Index: 0	1	2
T-Index:			
0	-1.831670498376D+01	1.650239332070D-01	5.025740610454D-02
1	2.143624996483D-01	-1.067658289373D-01	-5.304993033743D-03
2	5.139117192662D-02	9.536923957409D-03	-1.306075129405D-02
3	-9.896180369559D-04	6.315097684976D-03	2.655464630308D-03
4	-2.495327546080D-03	-1.265503371044D-03	7.569269700468D-04
5	-2.417046684097D-05	-6.945512319613D-05	-2.956984088728D-04
6	1.177406072793D-04	3.698501620365D-05	3.424317896619D-05
7	-1.483036457978D-05	-3.348172574417D-06	-1.527018819072D-06
8	5.351909441226D-07	9.728230870242D-08	1.676354786072D-08
E-	Index: 3	4	5
T-Index:			
0	5.288358515136D-03	-2.437122342843D-03	-4.461891214720D-04
1	8.289383645942D-03	-9.698773663345D-05	-4.470180279338D-04
2	-1.033166370333D-03	1.280464204775D-03	-8.453294908907D-05
3	-1.365781346175D-03	-1.859939123743D-04	1.237942304972D-04
4	2.756946036257D-04	-1.107375149384D-04	-7.217379426085D-06
5	2.318277483195D-05	3.704494397140D-05	-6.066558692480D-06
6	-9.815693511794D-06	-4.285719813022D-06	1.169257650609D-06
7	8.362050692462D-07	2.058392726953D-07	-7.463594884928D-08
8	-2.237567830699D-08	-3.081685803820D-09	1.450862501121D-09
E-	Index: 6	7	8
T-Index:			
0	1.731631548110D-04	-1.588434781959D-05	4.482291414386D-07
1	7.944326905066D-05	-5.303688417551D-06	1.235167254501D-07
2	-3.040874906105D-05	4.747888095498D-06	-1.923953750574D-07
3	-1.588253432932D-05	6.603560345800D-07	-1.970606344918D-09
4	5.769971321188D-06	-6.717311113584D-07	2.440961351104D-08
5	-4.951573401626D-07	1.437520597154D-07	-6.998724470004D-09
6	-4.968953461875D-10	-1.618948982477D-08	9.440094842562D-10
7	5.924370389093D-10	1.078208689229D-09	-6.619767848464D-11
8	4.434231893204D-11	-3.324377862622D-11	1.935019679501D-12
Max. rel.	Error: 1.1026 %		

Mean	rel.	Error:	0.3105	8
3.20 Reaction 0.13p $p + Be \rightarrow p + Be$, elastic

Integral 0.5*I(1,0) for cross-sections from [P. Krstic, D. Schultz, PP, vol. 16 (2009), p. 053503]

E-	Index:	0	1	2
T-Index:				
0	-2.0140)45187283e+01	-2.345625000690e-02	3.305320330967e-03
1	1.6332	235466137e-02	9.980449030332e-03	-7.067639616596e-03
2	-3.3024	190936436e-02	-6.598307698802e-03	-1.473079734140e-04
3	-2.6905	595407156e-02	5.590562085972e-03	1.477424631936e-03
4	2.5539	977796175e-03	-1.198166632910e-03	-1.524065320318e-04
5	1.1722	235136758e-03	-1.627408163499e-04	-1.042267671149e-04
6	-3.2669	982332705e-04	8.416159467290e-05	2.904236972264e-05
7	3.1492	289760802e-05	-9.814022851618e-06	-2.783408339643e-06
8	-1.0764	486147594e-06	3.734238744568e-07	9.357156799975e-08
E-	Index:	3	4	5
T-Index:				
0	1.6220	540980311e-02	-2.885998551391e-03	-1.852231865164e-03
1	-8.6214	17251817e-03	1.995454066090e-03	7.882913154204e-04
2	3.4385	592757542e-04	1.915119499255e-04	3.167930363372e-05
3	-6.4219	972752548e-04	-1.406068934136e-04	6.824350317931e-05
4	3.2479	948234786e-04	-4.440977842360e-05	-3.426686939963e-05
5	1.2591	107326962e-05	1.754218150033e-05	-2.903525712509e-06
6	-2.000	702118557e-05	-1.316461187594e-06	2.530910339762e-06
7	2.7500	657732561e-06	-4.943105315783e-08	-3.306763428407e-07
8	-1.1373	313391413e-07	6.118327388870e-09	1.336258126385e-08
E-	Index:	6	7	8
T-Index:				
0	5.4218	300944799e-04	-5.322004264036e-05	1.832505454673e-06
1	-2.9978	346142138e-04	3.377208808135e-05	-1.279370584937e-06
2	-2.736	718480233e-05	3.730502557681e-06	-1.525714105067e-07
3	-2.3236	654071260e-06	-1.001562341663e-06	7.501383504538e-08
4	1.1108	370800408e-05	-1.161197671721e-06	4.065284401394e-08
5	-8.5301	135081745e-07	2.096419478952e-07	-1.142479721401e-08
6	-4.4122	259984447e-07	2.047224411741e-08	1.657880705324e-10
7	7.6760	685086250e-08	-5.969845881133e-09	1.375019627044e-10
8	-3.4638	328351937e-09	3.040257273837e-10	-8.604737523486e-12
E2MIN=1.00	0000e-01	eV		
E2MAX=1.00	0000e+04	eV		
T1MIN=1.00	0000e-01	eV		
T1MAX=1.00	0000e+04	eV		

MAXERR=5.469149e+00 \% MIDERR=7.773394e-01 \%

3.21 Reaction 0.13d $d + Be \rightarrow d + Be$, elastic

Integral 0.5*I(1,0) for the cross-section from [P. Krstic, D. Schultz, PP, vol. 16 (2009), p. 053503]

E-	-Index:	0	1	2
T-Index:				
0	-2.044	307298348e+01	-1.435241859928e-0	3 1.536041365683e-02
1	2.282	279489380e-02	-1.083413843840e-0	2 -1.474843156363e-02
2	-3.170	234700651e-02	-8.490883393848e-0	3 2.079688557536e-03
3	-2.416	047263489e-02	9.432119244308e-0	3 2.845241397793e-04
4	1.612	944406737e-03	-1.129269279296e-0	3 1.052724354051e-04
5	1.205	969880650e-03	-5.902894606367e-0	4 -6.217142758003e-05
6	-3.042	059744854e-04	1.796859651710e-0	4 8.003975381593e-06
7	2.824	343373145e-05	-1.807466354009e-0	5 -3.081218221035e-07
8	-9.440	508892226e-07	6.302872079617e-0	7 -1.339799374312e-09
E-	-Index:	3	4	5
T-Index:				
0	5.278	833185608e-03	-4.469538509276e-0	3 -6.491235580500e-04
1	8.841	283319500e-04	1.826216287017e-0	3 -2.939210322706e-04
2	7.657	158765681e-04	-1.946476894373e-0	5 1.867693028736e-05
3	-2.207	552889630e-03	3.239632365588e-0	4 2.103141514803e-04
4	2.762	713059735e-04	-9.265776869906e-0	5 -2.429517900194e-05
5	2.007	011160713e-04	-2.487759075076e-0	5 -2.147229167781e-05
6	-6.121	399958981e-05	1.092764172317e-0	5 6.327259228592e-06
7	6.243	585391457e-06	-1.262789392490e-0	6 -6.350894325811e-07
8	-2.197	691313245e-07	4.791605625816e-0	8 2.208688569691e-08
E-	Index:	6	7	8
T-Index:				
0	3.450	099986899e-04	-3.955146569842e-0	5 1.483280922015e-06
1	-2.313	493476983e-05	7.116368703341e-0	6 -3.656772740674e-07
2	-2.058	020487807e-05	3.396561608698e-0	6 -1.601568020599e-07
3	-6.822	453223473e-05	7.105361952178e-0	6 -2.495941974516e-07
4	1.283	283500423e-05	-1.653037734175e-0	6 6.795382247769e-08
5	6.650	188435941e-06	-6.799250049849e-0	7 2.350487416086e-08
6	-2.280	587373535e-06	2.549634635361e-0	7 -9.522348114958e-09
7	2.442	175006227e-07	-2.824182688477e-0	8 1.083669713484e-09
8	-8.866	460450561e-09	1.047525061112e-0	9 -4.087338886486e-11
E2MIN=1.00	00000e-01	eV		
E2MAX=1.00	00000e+04	eV		
T1MIN=1.00	00000e-01	eV		
T1MAX=1.00	00000e+04	eV		
MAXERR=6.5	574404e+0	0 \%		
MIDERR=8.4	64843e-0	1 \%		

3.22 Reaction 0.13t $t + Be \rightarrow t + Be$, elastic

Integral 0.5*I(1,0) for the cross-section from [P. Krstic, D. Schultz, PP, vol. 16 (2009), p. 053503]

E-I	Index:	0	1	2
T-Index:				
0	-2.129	504307011e+01	1.773225057252e-0	2 1.880909643601e-02
1	2.546	933381457e-02	-2.324877220081e-0	2 -1.682441670552e-02
2	-2.981	010432291e-02	-9.794461284777e-0	3 3.725523265517e-03
3	-2.203	655582429e-02	9.891081092090e-0	3 -7.870974350538e-04
4	9.964	028273375e-04	-6.435065292429e-0	4 2.019639487327e-04
5	1.172	605871159e-03	-7.189019182284e-0	4 1.838780642892e-05
6	-2.758	762887050e-04	1.835500405043e-0	4 -1.518921596258e-05
7	2.485	043659547e-05	-1.689818645796e-0	5 2.005438908327e-06
8	-8.151	836846467e-07	5.511097601102e-0	7 -8.189837190188e-08
E-	-Index:	3	4	5
T-Index:				
0	-5.132	900735360e-03	-4.421925566607e-0	3 3.914099368416e-04
1	6.590	793034811e-03	1.268075388723e-0	3 -8.863334795471e-04
2	1.288	530049780e-03	-2.754660024957e-0	4 -3.072806984273e-05
3	-2.235	933725670e-03	5.344193391390e-0	4 2.000597752829e-04
4	3.631	519990032e-05	-7.422560675901e-0	5 2.446011993064e-06
5	2.349	882452429e-04	-4.838038543847e-0	5 -2.356761071496e-05
6	-5.519	654333492e-05	1.507441074875e-0	5 5.230990882083e-06
7	4.849	741630919e-06	-1.539910716377e-0	6 -4.401471679875e-07
8	-1.511	215532691e-07	5.397860122684e-0	8 1.312783790155e-08
E-	-Index:	6	7	8
T-Index:				
0	9.754	804763614e-05	-1.653532824608e-0	5 7.049898523652e-07
1	1.579	820086189e-04	-1.220944882003e-0	5 3.527637498767e-07
2	5.755	383129853e-06	2.384782937003e-0	7 -3.938740456374e-08
3	-8.253	882854736e-05	9.685611260827e-0	6 -3.750354024418e-07
4	5.655	895591655e-06	-9.924327352819e-0	7 4.744625742485e-08
5	9.018	349071660e-06	-1.037798443713e-0	6 3.976147439343e-08
6	-2.385	966333490e-06	2.959527372233e-0	7 -1.195770882126e-08
7	2.250	364369523e-07	-2.909177070852e-0	8 1.208277625427e-09
8	-7.428	846811499e-09	9.919713207429e-1	0 -4.206437314661e-11
E2MIN=1.00)0000e-01	eV		
E2MAX=1.00	00000e+04	eV		
T1MIN=1.00)0000e-01	eV		
T1MAX=1.00	0000e+04	eV		
MAXERR=6.8	352958e+0	0 \%		
MIDERR=9.2	227778e-0	1 \%		

3.23 Reaction 0.14p $p + C \rightarrow p + C$, elastic

Integral 0.5*I(1,0) the cross-section from [P. Krstic, D. Schultz, PP, vol. 13 (2006), p. 053501]

E-	Index:	0	1	2
T-Index:				
0	-2.070	325937875e+01	-1.606842198142e-02	8.714205649382e-03
1	-1.649	258379129e-01	-1.370586397944e-02	-8.610928985264e-03
2	-8.228	323037947e-02	1.042893658701e-02	2.920352519091e-03
3	1.291	744053436e-02	-4.056102000351e-05	-4.279330275042e-04
4	4.972	022465187e-03	-1.142479600302e-03	-1.823021533207e-05
5	-1.658	137593639e-03	3.005724020801e-04	2.552407020562e-05
6	1.313	758641539e-04	-3.251665906188e-05	-5.645220513458e-06
7	5.599	391312349e-07	1.536984797877e-06	5.394244202523e-07
8	-2.939	698517936e-07	-2.321423842233e-08	-1.912639278713e-08
E-	Index:	3	4	5
T-Index:				
0	4.463	808489764e-03	-5.048490029821e-03	-5.485971584014e-04
1	5.941	389343177e-03	1.591030489357e-03	-6.724348380444e-04
2	-2.167	804845149e-03	2.090440852555e-04	2.551690026771e-04
3	-7.729	931321856e-04	9.617898796550e-06	7.887372433086e-05
4	3.057	086385239e-04	-5.118348604852e-05	-3.010408438357e-05
5	8.168	255647779e-06	7.542836997958e-06	-2.112912729057e-06
6	-1.289	999822011e-05	5.408322650236e-07	1.620261227354e-06
7	1.614	389314707e-06	-1.609136480749e-07	-1.933340387247e-07
8	-6.208	603824932e-08	7.883780259005e-09	7.301712180137e-09
E-	Index:	6	7	8
T-Index:				
0	4.753	915903398e-04	-6.407354904082e-05	2.631638764433e-06
1	4.244	975247061e-05	3.663120971952e-06	-3.285624239340e-07
2	-8.069	104998325e-05	8.696126832052e-06	-3.209550762837e-07
3	-1.424	206928869e-05	7.815274543195e-07	-7.191976670581e-09
4	1.013	975911159e-05	-1.079636710772e-06	3.886976338792e-08
5	-2.792	752786643e-07	9.100460959963e-08	-5.111179984264e-09
6	-3.490	894641470e-07	2.449855146898e-08	-4.889613885858e-10
7	5.016	256863184e-08	-4.331776839658e-09	1.234776996758e-10
8	-2.052	868727602e-09	1.896731767020e-10	-5.862153355385e-12
ELABMIN=1.	000000e-	01 eV		
ELABMAX=1.	000000e+	04 eV		
TMIN=1.000	000e-01	eV		
TMAX=1.000	000e+04	eV		

MAXERR=4.502810e+00 \%

MIDERR=6.356092e-01 \%

3.24 Reaction 0.14d $d + C \rightarrow d + C$, elastic

Integral 0.5*I(1,0) the cross-section from [P. Krstic, D. Schultz, PP, vol. 13 (2006), p. 053501]

E	-Index:	0	1	2
T-Index:				
0	-2.1018	13469909e+01	6.489171371708e-03	4.901025644886e-03
1	-1.5168	89520308e-01	-2.470762179054e-02	-1.463167664648e-03
2	-7.4539	76358810e-02	1.017233018332e-02	1.214375528209e-03
3	7.6187	04589773e-03	-9.301827218280e-05	-9.984709341439e-04
4	4.7870	96833727e-03	-7.691694929083e-04	2.180371997435e-04
5	-1.0613	71660357e-03	1.971538044810e-04	1.333591660518e-05
6	-2.6111	97691070e-06	-2.228824297723e-05	-9.942256019663e-06
7	1.2448	16787057e-05	1.224609831860e-06	1.170723630532e-06
8	-6.7699	10487661e-07	-2.666403772875e-08	-4.404252434081e-08
E-	Index:	3	4	5
T-Index:				
0	-1.4553	39394665e-02	-3.081622015142e-03	1.402095087223e-03
1	1.3509	47310121e-02	-4.798802447621e-04	-1.349325857828e-03
2	-6.9507	48629568e-04	2.872915794277e-04	4.662582695229e-05
3	-1.2143	97303373e-03	2.233321486915e-04	1.275394051016e-04
4	7.5997	44499071e-05	-6.336940059363e-05	-2.985716810841e-06
5	9.5466	89677128e-05	-9.724010172447e-06	-1.185798104005e-05
6	-2.3585	26693542e-05	4.777607503632e-06	2.759385297831e-06
7	2.1312	49678191e-06	-5.428934065172e-07	-2.441680332756e-07
8	-6.8778	86538867e-08	2.018352694021e-08	7.786080358510e-09
E-	Index:	6	7	8
T-Index:				
0	-6.6309	31867974e-05	-1.282323960899e-05	9.612329327013e-07
1	3.2030	78193087e-04	-2.808404180189e-05	8.728428841695e-07
2	-3.4372	25083080e-05	4.758395513068e-06	-2.029214764132e-07
3	-4.1139	10109706e-05	4.190543564938e-06	-1.444698458017e-07
4	4.7390	36860771e-06	-6.721181446886e-07	2.826795931179e-08
5	3.3158	17743830e-06	-3.169812151056e-07	1.038065294736e-08
6	-9.4988	84071161e-07	1.013104127800e-07	-3.620554915035e-09
7	9.3109	44420933e-08	-1.038636437355e-08	3.832761193363e-10
8	-3.1930	93520991e-09	3.667768696803e-10	-1.381157363749e-11
E2MIN=1.00	0000e-01	eV		
E2MAX=1.00	0000e+04	eV		
T1MIN=1.00	0000e-01	eV		

T1MAX=1.000000e+04 eV MAXERR=4.812259e+00 %

MIDERR=6.856970e-01 %

3.25 Reaction 0.14t $t + C \rightarrow t + C$, elastic

Integral 0.5*I(1,0) the cross-section from [P. Krstic, D. Schultz, PP, vol. 13 (2006), p. 053501]

E-	Index:	0	1	2
T-Index:				
0	-2.188	182287316e+01	1.454179492997e-02	-2.384032349700e-03
1	-1.354	699933152e-01	-2.467760316153e-02	4.334653134039e-03
2	-7.060	750858774e-02	9.399641668674e-03	8 8.481034134188e-04
3	2.864	022450514e-03	-5.997943672361e-04	-1.380612802836e-03
4	4.981	251211249e-03	-5.556527566954e-04	2.241298739717e-04
5	-6.269	621444826e-04	1.920636450763e-04	4.700039868950e-05
6	-1.106	351233133e-04	-2.866120650169e-05	-1.720762234455e-05
7	2.242	128826376e-05	2.112462685008e-06	1.768524963647e-06
8	-1.005	706263641e-06	-6.234864792351e-08	-6.175770363502e-08
E-	Index:	3	4	5
T-Index:				
0	-2.397	323674331e-02	-1.240783245409e-03	2.302905154607e-03
1	1.387	587499142e-02	-1.507728991767e-03	-1.294765807979e-03
2	4.651	760567797e-04	1.680622109107e-04	-9.233250740936e-05
3	-9.635	680205527e-04	3.061725227014e-04	9.789384481491e-05
4	-8.260	913884022e-05	-4.654027458768e-05	1.346465972623e-05
5	9.503	215133225e-05	-2.034050613835e-05	-1.108666689667e-05
6	-1.687	203771025e-05	6.428514127795e-06	1.879502286805e-06
7	1.223	944073583e-06	-6.489118024901e-07	-1.325772816947e-07
8	-3.237	088551006e-08	2.257395302166e-08	3.416404221018e-09
E-	Index:	6	7	8
T-Index:				
0	-3.707	252919630e-04	1.872349911606e-05	-1.381007109570e-07
1	3.668	635462607e-04	-3.575440980571e-05	1.214465065926e-06
2	7.098	045828556e-06	5.013656731141e-07	-5.200474146650e-08
3	-4.091	586513333e-05	4.654803151256e-06	-1.739935848177e-07
4	6.912	225143953e-08	-2.203785010051e-07	1.320720305232e-08
5	3.905	694982934e-06	-4.228074741734e-07	1.534216866201e-08
6	-8.828	000916527e-07	1.061224417073e-07	-4.120856941484e-09
7	7.736	267322509e-08	-9.874970633391e-09	3.973883678734e-10
8	-2.453	765580729e-09	3.278998627368e-10	-1.354402027084e-11
E2MIN=1.00	0000e-01	eV		
E2MAX=1.00	0000e+04	eV		
T1MIN=1.00	0000e-01	eV		
T1MAX=1.00	0000e+04	eV		

118

MAXERR=4.267937e+00 \% MIDERR=6.880224e-01 \%

3.26 Reaction 3.1.8 org $p + H(1s) \rightarrow H(1s) + p$

original fit from Janev's springer book 1987 in HYDHEL.tex. Now there is the improved fit (see above), leading to better energy balance with tracklength estimators and the energy weighted rate (below)

т	E Index	0	1	2
Ŧ	0	-1.829079581680e+01	1.640252721210e-01	3.364564509137e-02
	1	2.169137615703e-01	-1.106722014459e-01	-1.382158680424e-03
	2	4.307131243894e-02	8.948693624917e-03	-1.209480567154e-02
	3	-5.754895093075e-04	6.062141761233e-03	1.075907881928e-03
	4	-1.552077120204e-03	-1.210431587568e-03	8.297212635856e-04
	5	-1.876800283030e-04	-4.052878751584e-05	-1.907025662962e-04
	6	1.125490270962e-04	2.875900435895e-05	1.338839628570e-05
	7	-1.238982763007e-05	-2.616998139678e-06	-1.171762874107e-07
	8	4.163596197181e-07	7.558092849125e-08	-1.328404104165e-08
	E Index	3	4	5
Т	Index			
	0	9.530225559189e-03	-8.519413589968e-04	-1.247583860943e-03
	1	7.348786286628e-03	-6.343059502294e-04	-1.919569450380e-04
	2	-3.675019470470e-04	1.039643390686e-03	-1.553840717902e-04
	3	-8.119301728339e-04	8.911036876068e-06	3.175388949811e-05
	4	1.361661816974e-04	-1.008928628425e-04	1.080693990468e-05
	5	1.141663041636e-05	1.775681984457e-05	-3.149286923815e-06
	6	-4.340802793033e-06	-7.003521917385e-07	2.318308730487e-07
	7	3.517971869029e-07	-4.928692832866e-08	1.756388998863e-10
	8	-9.170850253981e-09	3.208853883734e-09	-3.952740758950e-10
	E Index	6	7	8
Т	Index			
	0	3.014307545716e-04	-2.499323170044e-05	6.932627237765e-07
	l	4.0/5019351/38e-05	-2.850044983009e-06	6.966822400446e-08
	2	2.6/082/2492/2e-06	7.695300597935e-07	-3./83302281524e-08
	3	-4.515123641/55e-06	2.18/439283954e-0/	-2.911233951880e-09
	4	5.106059413591e-07	-1.2992/5586093e-0/	5.11/133050290e-09
	5	3.105491554749e-08	2.2/439408901/e-08	-1.130988250912e-09
	6 7	-0.U3U98353828UE-U9	-1./559449262/4e-09	1.00210910/2/96-10
	/	-1.446/56/95654e-10	/.143183138281e-11	-3.989884105603e-12
	ð	2./393384/5/82e-11	-1.09304020892/e-12	0.30021993010/e-14

Error 8.88e-04 (B)

This page is intentionally left blank

3.27 Reaction 3.1.8L $p + H(1s) \rightarrow H(1s) + p$

Langevin approximation: sigma v = const = 2e-8

E-	Index:	0	1			2
T-Index:						
0	-1.772753	356000D+01	0.000000	00000D+00	0.00000)000000D+00
1	0.00000	000000D+00	0.000000	00000D+00	0.00000)000000D+00
2	0.00000	000000D+00	0.000000	00000D+00	0.00000)000000D+00
3	0.00000	000000D+00	0.000000	00000D+00	0.00000)000000D+00
4	0.00000	000000D+00	0.000000	00000D+00	0.00000)000000D+00
5	0.00000	000000D+00	0.000000	00000D+00	0.00000)000000D+00
6	0.00000	000000D+00	0.000000	00000D+00	0.00000)000000D+00
7	0.00000	000000D+00	0.000000	00000D+00	0.00000)000000D+00
8	0.00000	00000D+00	0.000000	00000D+00	0.00000)000000D+00
E-	Index:	3	4			5
T-Index:						
0	0.00000	000000D+00	0.000000	00000D+00	0.00000)000000D+00
1	0.00000	000000D+00	0.000000	00000D+00	0.00000)000000D+00
2	0.00000	000000D+00	0.000000	00000D+00	0.00000)000000D+00
3	0.00000	000000D+00	0.000000	00000D+00	0.00000)000000D+00
4	0.00000	000000D+00	0.000000	00000D+00	0.00000)000000D+00
5	0.00000	000000D+00	0.000000	00000D+00	0.00000)000000D+00
6	0.00000	000000D+00	0.000000	00000D+00	0.00000)000000D+00
7	0.00000	000000D+00	0.000000	00000D+00	0.00000)000000D+00
8	0.00000	000000D+00	0.000000	00000D+00	0.00000	000000D+00
E-	Index:	6	7			8
T-Index:						
0	0.00000	000000D+00	0.000000	00000D+00	0.00000)000000D+00
1	0.00000	000000D+00	0.000000	00000D+00	0.00000)000000D+00
2	0.00000	000000D+00	0.000000	00000D+00	0.00000)000000D+00
3	0.00000	000000D+00	0.000000	00000D+00	0.00000)000000D+00
4	0.00000	000000D+00	0.000000	00000D+00	0.00000)000000D+00
5	0.00000	000000D+00	0.000000	00000D+00	0.00000)000000D+00
6	0.00000	000000D+00	0.000000	00000D+00	0.00000)000000D+00
7	0.00000	000000D+00	0.000000	00000D+00	0.00000)000000D+00
8	0.00000	000000D+00	0.000000	00000D+00	0.00000	000000D+00

Max.	rel.	Error:	0.0000	00
Mean	rel.	Error:	0.0000	00

This page is intentionally left blank

3.28 Reaction **3.2.3** $p + H_2(v) \rightarrow H + H_2^+$

Effective ion conversion (Charge exchange on H_2) as function of T_p (from Janev,[2]). vibrational distribution $H_2(v)$ is density independent, assume: $T_e = T_p = T$ hence: function of $E_{beam} = E_{H2}$ and T

E-	Index:	0	1	2
T-Index:				
0	-2.133	104980000E+01	2.961905900000E-01	-2.876892150000E-02
1	2.308	461720000E+00	-1.064800460000E+00	2.310120950000E-01
2	-2.026	151710000E+00	1.142806740000E+00	-2.621943460000E-01
3	1.6480	000330000E-01	-4.675786500000E-01	1.242261910000E-01
4	1.651	993580000E-01	5.766584690000E-02	-3.659922760000E-02
5	-2.598	458070000E-02	1.349144350000E-02	8.871659800000E-03
6	-4.330	453510000E-03	-5.246404340000E-03	-1.636107180000E-03
7	1.187	405610000E-03	6.281964210000E-04	1.740000360000E-04
8	-6.897	815380000E-05	-2.667160440000E-05	-7.528040300000E-06
E-	Index:	3	4	5
T-Index:				
0	-3.3232	271590000E-02	7.234558340000E-03	3 2.940230100000E-04
1	6.8093	382980000E-02	-4.241210420000E-02	2 8.271152020000E-03
2	-6.877	694430000E-02	4.012716970000E-02	-6.143307540000E-03
3	1.7742	294860000E-02	-1.157658350000E-02	2 1.311061300000E-03
4	7.0833	346120000E-03	3.403537010000E-04	4 -2.752152790000E-04
5	-5.231	162040000E-03	3.324241650000E-04	1.985585660000E-04
6	1.2420	023150000E-03	-4.524774630000E-05	5 -6.369415730000E-05
7	-1.3378	353740000E-04	6.784609160000E-0	7 8.284840740000E-06
8	5.516	687380000E-06	1.140207820000E-0	7 -3.837975410000E-07
E-	Index:	6	7	8
T-Index:				
0	-8.005)31610000E-05	0.00000000000E+00) 0.00000000000E+00
1	-6.275	988100000E-04	0.00000000000E+00) 0.00000000000E+00
2	3.233	352920000E-04	0.00000000000E+00) 0.00000000000E+00
3	-1.125	957730000E-05	0.00000000000E+00) 0.00000000000E+00
4	2.225	165850000E-05	0.00000000000E+00) 0.00000000000E+00
5	-2.813	630850000E-05	0.00000000000E+00) 0.00000000000E+00
6	8.6792	231940000E-06	0.00000000000E+00) 0.00000000000E+00
7	-1.075	372230000E-06	0.00000000000E+00) 0.00000000000E+00
8	4.793	572020000E-08	U.000000000000E+00) 0.00000000000E+00
Max. rel.	Error:	16.7 %		

Mean rel. Error: 5.09 %

3.29 Reaction 3.3.1 $p + He(1s^21S) \rightarrow H + He^+(1s)$

E	-Index:	0	1		2
T-Index:					
0	-3.777393	3171216D+01	1.034570822224	D+00 5.50065	9259212D-01
1	9.354555	5314272D+00	-1.691165109278	D+00 -7.45005	2207738D-01
2	-4.23589	7398162D+00	1.383244831625	D+00 3.39673	4449323D-01
3	1.350058	3534401D+00	-6.6400093226441	D-01 -2.56230	1717488D-02
4	-2.418149	9537330D-01	1.946040141373	D-01 -2.71220	2677247D-02
5	1.74761	7790690D-02	-3.507141422752	D-02 9.84068	6949146D-03
6	7.868843	3917720D-04	3.7824195352601	D-03 -1.47003	4129542D-03
7	-1.857520	0833749D-04	-2.234371833506	D-04 1.04966	8682077D-04
8	7.419442	2223475D-06	5.549545840266	D-06 -2.94163	1374324D-06
E	-Index:	3	4		5
T-Index:					
0	4.27170	7093128D-02	-5.858821491798	D-02 1.39266	6257426D-02
1	1.174092	2828553D-02	1.114511012703	D-01 -2.95483	1571871D-02
2	-6.307600)501935D-02	-6.111443567710	D-02 2.19817	5535806D-02
3	3.966559	9773589D-02	9.7703530954671	D-03 -6.71272	3502770D-03
4	-1.17223	1175354D-02	2.197390583445	D-03 6.39949	7506338D-04
5	1.999302	2843269D-03	-1.106397155875	D-03 9.89471	0667600D-05
6	-2.070618	8270598D-04	1.765303992000	D-04 -2.88991	5777541D-05
7	1.226009	9237337D-05	-1.292057629192	D-05 2.49340	1272590D-06
8	-3.182522	2175779D-07	3.665898328329	D-07 -7.53598	0089596D-08
E	-Index:	6	7		8
T-Index:					
0	-1.826013	3734833D-03	1.338360116582	D-04 -4.09479	3119826D-06
1	3.22194	7627445D-03	-1.596959700477	D-04 2.85193	7035822D-06
2	-2.95946	5078436D-03	1.811254083073	D-04 -4.18887	1522474D-06
3	1.199132	2836096D-03	-9.257540264113	D-05 2.68506	3664954D-06
4	-2.155848	8545229D-04	2.170199383545	D-05 -7.48043	0374938D-07
5	1.197400	6032871D-05	-2.356790229752	D-06 1.01462	2773664D-07
6	1.233468	8768851D-06	8.575083472581	D-08 -6.54864	1344013D-09
7	-1.868672	2214120D-07	3.144081097677	D-09 1.51868	0425956D-10
8	6.598419	9439525D-09	-2.255951200310	D-10 7.16545	5179223D-13

Max.	rel.	Error:	28.3918	00
Mean	rel.	Error:	1.3778	00

This page is intentionally left blank

3.30 Reaction 3.3.6a $p + He^*(1s^12s^11S) \rightarrow H^*(2s) + He^+(1s)$

E	-Index:	0	1		2
T-Index:					
0	-2.54745	4346557D+01	4.12864032193	38D-01	1.681364689904D-01
1	2.92515	9193919D+00	-4.48253990658	82D-01 -1	1.510618145526D-01
2	-2.63237	4609849D-01	1.49824364666	61D-01 4	4.224863000625D-02
3	-3.66534	7937696D-02	-4.03059236627	79D-03 -	6.024374907107D-03
4	1.18662	4566602D-02	-7.26445463002	20D-03	1.759741131185D-03
5	-7.74309	8120973D-04	1.54956602375	54D-03 -	5.251712659531D-04
6	-6.04803	2854477D-05	-1.30313825650)7D-04	7.489465754264D-05
7	9.56784	5819569D-06	4.49154538543	36D-06 -4	4.865196018372D-06
8	-3.24099	7611305D-07	-3.79172098896	61D-08	1.182380927243D-07
E	-Index:	3	4		5
T-Index:					
0	4.77079	9895182D-02	-4.58982019832	21D-03 -3	3.381658191835D-03
1	5.78283	3798276D-04	1.06296690510	09D-02 -1	1.000814684417D-03
2	-1.37942	4993966D-02	-4.79994775528	85D-03	2.003286792299D-03
3	3.86155	1147569D-03	8.42841370831	10D-04 -	6.216316421045D-04
4	-5.41828	6557573D-04	-2.94221745424	45D-05	7.238789629847D-05
5	1.07482	8795860D-04	-1.69309503449	92D-05 -1	1.682620078098D-06
6	-1.90514	6446763D-05	3.62785176204	42D-06 -3	3.555921820186D-07
7	1.60161	8148499D-06	-3.02160278220)5D-07	3.224220197809D-08
8	-4.83261	1082122D-08	9.16338636826	69D-09 -8	8.754524349299D-10
E	-Index:	6	7		8
T-Index:					
0	7.21646	7750187D-04	-5.36735434152	27D-05	1.404882131093D-06
1	-1.02621	1922836D-04	1.75394342275	56D-05 -	6.292768990258D-07
2	-2.60406	0260416D-04	1.47350672780	08D-05 -3	3.094165446584D-07
3	1.07472	3588583D-04	-7.72178809079	96D-06 2	2.030369344275D-07
4	-1.61131	2475612D-05	1.36947822073	38D-06 -4	4.100428990113D-08
5	1.00929	3380060D-06	-1.14904391804	48D-07	4.074816429488D-09
6	-1.51278	7587046D-08	5.06636942228	37D-09 -2	2.328387385602D-10
7	-7.87856	9805292D-10	-1.44594010384	49D-10 8	8.580766309466D-12
8	2.04414	0116707D-11	3.04455046001	11D-12 -1	1.768485828956D-13

Max.	rel.	Error:	7.6526	00
Mean	rel.	Error:	1.0667	00

This page is intentionally left blank

3.31 Reaction 3.3.6b $p + He^*(1s^12s^13S) \rightarrow H^*(2s) + He^+(1s)$

E-	-Index:	0	1			2
T-Index:						
0	-3.14396	5131590D+01	6.2136510	65042D-01	1.9025	30458816D-01
1	5.05204	1699363D+00	-7.1482847	65635D-01	-1.2375	88528705D-01
2	-1.12351	0624616D+00	5.4326139	21547D-01	8.7827	64771787D-02
3	5.34860	0593230D-01	-2.9750386	94390D-01	-7.4806	57433556D-02
4	-2.13598	6381612D-01	1.0054630	96676D-01	3.2178	45093386D-02
5	4.69049	1969254D-02	-1.9843652	78750D-02	-6.9302	72101671D-03
6	-5.58218	7291915D-03	2.2242719	72399D-03	7.8068	01953220D-04
7	3.41497	4814001D-04	-1.3110037	95110D-04	-4.3986	45721299D-05
8	-8.43884	3692321D-06	3.1533434	12371D-06	9.7471	01004706D-07
E-	-Index:	3	4	ι.		5
T-Index:						
0	6.90509	4039815D-02	2.0311445	50828D-03	-5.2169	59360609D-03
1	-3.73369	7369694D-02	-4.2848149	88611D-04	8.3937	28104870D-03
2	-6.50859	1153825D-02	1.0881274	33701D-02	-1.7419	96511515D-03
3	6.98913	0699630D-02	-1.0528052	12797D-02	-1.0836	66162584D-03
4	-2.71425	3969913D-02	4.2585593	41854D-03	4.0829	88867720D-04
5	5.29827	5385423D-03	-9.1983854	08429D-04	-1.4814	08240559D-05
6	-5.52605	1789225D-04	1.1119953	16138D-04	-9.7330	79909866D-06
7	2.92344	9260993D-05	-7.0851394	65779D-06	1.3685	41840554D-06
8	-6.12019	9563565D-07	1.8495802	38681D-07	-5.3786	97856092D-08
E-	-Index:	6	7	,		8
T-Index:						
0	6.87050	8923626D-04	-2.6532927	31940D-05	1.2084	74130385D-08
1	-1.98936	4522591D-03	1.7537924	11592D-04	-5.4779	52397515D-06
2	3.43147	3662601D-04	-3.5926405	13827D-05	1.3357	01974095D-06
3	4.31629	0417315D-04	-4.0611699	44387D-05	1.2818	04690424D-06
4	-1.79023	2068370D-04	1.7715684	91253D-05	-5.8431	04467181D-07
5	2.11707	6885890D-05	-2.2564415	86648D-06	7.6222	51547211D-08
6	2.95684	9458181D-07	6.7541908	95102D-09	-4.4120	84334419D-10
7	-2.05434	9022277D-07	1.7123075	54998D-08	-5.5676	94760593D-10
8	9.85962	0416969D-09	-8.7100882	26618D-10	2.8718	02269066D-11

Max.	rel.	Error:	34.6091	00
Mean	rel.	Error:	1.4428	00

129

This page is intentionally left blank

4 H.4 : Fits for $\langle \sigma v \rangle (n_e, T)$

4.1 Reaction 2.1.5JH $H + e \rightarrow H^+ + 2e$

Effective hydrogenic ionization rate. Data: L.C.Johnson

E	-Index:	0	1	2
T-Index	:			
0	-3.292	647100524D+01	1.293481375348D-	02 5.517562508468D-03
1	1.423	977672396D+01	-1.173143955186D-	02 1.063440108279D-03
2	-6.519	438729039D+00	-7.189825749516D-	03 9.247377414923D-04
3	2.009	996151806D+00	1.275979740638D-	02 -4.693479616874D-03
4	-4.289	594424073D-01	-5.340866322754D-	03 2.324582357388D-03
5	6.047	834607038D-02	9.624900593359D-	04 -4.182981184259D-04
6	-5.304	737965836D-03	-7.854872454067D-	05 2.735823803201D-05
7	2.606	946949696D-04	2.317442253442D-	06 5.148890779990D-08
8	-5.467	903073834D-06	6.077380038450D-	09 -4.712893073569D-08
E	-Index:	3	4	5
T-Index	:			
0	-7.853	816321645D-04	1.436128501544D-	04 -3.883750282085D-07
1	-1.600	053527730D-03	1.136554639958D-	05 5.177662275946D-05
2	2.037	026745547D-03	-3.668717204076D-	04 5.368630315837D-06
3	-2.389	224140310D-05	1.358069915666D-	04 -1.454897555460D-05
4	-3.217	228075879D-04	6.660581406632D-	06 2.396531874534D-06
5	7.957	230182146D-05	-7.447042563915D-	06 1.849155263575D-07
6	-5.915	348564130D-06	8.666302868477D-	07 -6.115514821045D-08
7	-7.144	182523188D-09	-2.540194754187D-	08 4.097857835689D-09
8	1.086	858755070D-08	-3.448417246175D-	10 -8.714183216468D-11
E	-Index:	6	7	8
T-Index	:			
0	-1.489	774355194D-06	1.416361431167D-	07 -3.890932078762D-09
1	-7.947	999902838D-06	4.508505683240D-	07 -8.952614093357D-09
2	3.713	958914062D-06	-3.125764373429D-	07 7.451213220623D-09
3	4.212	031496989D-08	5.506044670830D-	08 -1.852677638893D-09
4	-1.785	208321244D-07	6.095649574151D-	10 1.470204228549D-10
5	1.618	233640838D-08	-8.182928298434D-	10 4.835789623340D-12
6	1.075	473174260D-09	4.118000674849D-	11 -1.089323091222D-12
7	-2.048	657335774D-10	3.027916374251D-	12 1.155854020410D-14
8	8.023	660696154D-12	-2.396518500447D-	13 2.173645280354D-15
N2MIN =	1.0000D	08 1/CM3		
N2MAX =	1.00000D	16 1/CM3		
Max re	l Error•	8487 %		

Electron Temperature (eV)

4.2 Reaction 2.1.50 $H + e \rightarrow H^+ + 2e$, Ly-opaque

Effective hydrogenic ionization rate. Data: L.C.Johnson, Ly-opaque

E-Index: 0	1	2
T-Index:		
0 -2.842625123610D+01	3.816926440645D-02	-2.093090374769D-02
1 1.212167851020D+01	-8.864661558973D-02	2.578404580790D-02
2 -6.815821411657D+00	1.136458676986D-01	-3.209328253150D-02
3 2.625844925126D+00	-7.176672848153D-02	2.221528694064D-02
4 -6.666700835468D-01	2.362874407172D-02	-7.539637780701D-03
5 1.063576010855D-01	-4.303004854934D-03	1.340877575599D-03
6 -1.019791186281D-02	4.388098086177D-04	-1.289968813905D-04
7 5.357498344762D-04	-2.353712235761D-05	6.392439908462D-06
8 -1.183601163067D-05	5.183054638931D-07	-1.286865471654D-07
E-Index: 3	4	5
T-Index:		
0 1.173278205549D-02	-3.195307082806D-03	4.891090254225D-04
1 -1.125027025423D-02	3.132061119992D-03	-5.478419611750D-04
2 7.428129132200D-03	-1.359196323415D-03	2.455552537690D-04
3 -3.813499462891D-03	3.488231091499D-04	-5.136595197719D-05
4 1.139599698461D-03	-5.231484976569D-05	3.851106631395D-06
5 -1.830544200085D-04	3.418266263749D-06	2.695420674804D-07
6 1.595087521180D-05	-5.244682697928D-08	-4.069155577999D-08
7 -7.334538727835D-07	7.314879444968D-09	-1.321258886395D-09
8 1.468328421917D-08	-8.136369296580D-10	2.036456697308D-10
E-Index: 6	7	8
T-Index:		
0 -3.972967626237D-05	1.591035727928D-06	-2.476205052687D-08
1 4.881508340119D-05	-2.055128753437D-06	3.275823973472D-08
2 -2.356276122712D-05	1.024674585628D-06	-1.635599873170D-08
3 5.236557713321D-06	-2.300633304095D-07	3.500516071428D-09
4 -4.712865883416D-07	2.015344675266D-08	-2.228472576727D-10
5 -1.533579453796D-09	2.312045651251D-10	-2.651886075183D-11
6 6.001489992879D-10	-5.139558636314D-11	3.525452470540D-12
7 3.249620872276D-10	-1.169248684183D-11	1.979747513777D-14
8 -2.321096956876D-11	9.053581287584D-13	-1.015243451999D-14
N2MIN = 1.00000D 08 1/CM3		
N2MAX = 1.00000D 16 1/CM3		
Max. rel. Error: 1.6436 %		

			1.0100	•
Mean	rel.	Error:	.4360	%

Electron Temperature (eV)

4.3 Reaction **2.1.5** $H + e \rightarrow H^+ + 2e$

Effective hydrogenic ionization rate Data: K. Sawada/T. Fujimoto (redone: 2016, extend Te range of fit validity from 0.1 - 1e3 to 0.1 - 2e4 eV) [7]

E	-Index:	0	1	2
T-Index	:			
0	-3.248	025330340D+01	-5.440669186583D-02	9.048888225109D-02
1	1.425	332391510D+01	-3.594347160760D-02	-2.014729121556D-02
2	-6.632	235026785D+00	9.255558353174D-02	-5.580210154625D-03
3	2.059	544135448D+00	-7.562462086943D-02	1.519595967433D-02
4	-4.425	370331410D-01	2.882634019199D-02	-7.285771485050D-03
5	6.309	381861496D-02	-5.788686535780D-03	1.507382955250D-03
6	-5.620	091829261D-03	6.329105568040D-04	-1.527777697951D-04
7	2.812	016578355D-04	-3.564132950345D-05	7.222726811078D-06
8	-6.011	143453374D-06	8.089651265488D-07	-1.186212683668D-07
E	-Index:	3	4	5
T-Index	:			
0	-4.054	078993576D-02	8.976513750477D-03	-1.060334011186D-03
1	1.039	773615730D-02	-1.771792153042D-03	1.237467264294D-04
2	-5.902	218748238D-03	1.295609806553D-03	-1.056721622588D-04
3	5.803	498098354D-04	-3.527285012725D-04	3.201533740322D-05
4	4.643	389885987D-04	1.145700685235D-06	8.493662724988D-07
5	-1.201	550548662D-04	6.574487543511D-06	-9.678782818849D-07
6	8.270	124691336D-06	3.224101773605D-08	4.377402649057D-08
7	1.433	018694347D-07	-1.097431215601D-07	7.789031791949D-09
8	-2.381	080756307D-08	6.271173694534D-09	-5.483010244930D-10
E	-Index:	6	7	8
T-Index	:			
0	6.846	238436472D-05	-2.242955329604D-06	2.890437688072D-08
1	-3.130	184159149D-06	-3.051994601527D-08	1.888148175469D-09
2	4.646	310029498D-06	-1.479612391848D-07	2.852251258320D-09
3	-1.835	196889733D-06	9.474014343303D-08	-2.342505583774D-09
4	-1.001	032516512D-08	-1.476839184318D-08	6.047700368169D-10
5	5.176	265845225D-08	1.291551676860D-09	-9.685157340473D-11
6	-2.622	921686955D-09	-2.259663431436D-10	1.161438990709D-11
7	-4.197	728680251D-10	3.032260338723D-11	-8.911076930014D-13
8	3.064	611702159D-11	-1.355903284487D-12	2.935080031599D-14
T1MIN =	0.100000	00 EV		
T1MAX =	2.00000	04 EV		
N2MIN =	1.000000	08 1/CM3		
N2MAX =	1.00000	16 1/CM3		
Max. re	l. Error:	1.98 %		
Mean re	l. Error:	0.479 %		

4.4 Reaction 2.1.8JH $H^+ + e \rightarrow H(1s)$

Effective hydrogenic recombination rate Data: L.C.Johnson, radiative + three-body contribution

E-I	Index:	0	1	2
T-Index:				
0	-2.8557	28479302D+01	3.488563234375D-0	02 -2.799644392058D-02
1	-7.6640	42607917D-01	-3.583233366133D-0)3 -7.452514292790D-03
2	-4.9304	24003280D-03	-3.620245352252D-0	03 6.958711963182D-03
3	-5.3868	30982777D-03	-9.532840484460D-0	4.631753807534D-04
4	-1.6260	39237665D-04	1.888048628708D-0	1.288577690147D-04
5	6.0809	07650243D-06	-1.014890683861D-0)5 -1.145028889459D-04
6	2.1011	02051942D-05	2.245676563601D-0)5 -2.245624273814D-06
7	-2.7707	17597683D-06	-4.695982369246D-0)6 3.250878872873D-06
8	1.0382	35939800D-07	2.523166611507D-0	07 -2.145390398476D-07
E-I	Index:	3	4	5
T-Index:				
0	1.2095	45317879D-02	-2.436630799820D-0	2.837893719800D-04
1	2.7092	99760454D-03	-7.745129766167D-0	1.142444698207D-04
2	-2.1392	57298118D-03	4.603883706734D-0)4 -5.991636837395D-05
3	-5.3711	79699661D-04	1.543350502150D-0)4 -2.257565836876D-05
4	-1.6345	80516353D-05	-9.601036952725D-0	06 3.425262385387D-06
5	5.9421	93980802D-05	-1.211851723717D-0	05 1.118965496365D-06
6	-2.9448	73763540D-06	1.002105099354D-0	06 -1.291320799814D-07
7	-9.3872	90785993D-07	1.392391630459D-0)7 -1.139093288575D-08
8	7.3814	35237585D-08	-1.299713684966D-0	1.265189576423D-09
E-1	Index:	6	7	8
T-Index:				
0	-1.8865	11169084D-05	6.752155602894D-0)7 -1.005893858779D-08
1	-9.3827	83518064D-06	3.902800099653D-0)7 -6.387411585521D-09
2	4.7292	62545726D-06	-1.993485395689D-0)7 3.352589865190D-09
3	1.7307	82954588D-06	-6.618240780594D-0	08 1.013364275013D-09
4	-4.0770	19941998D-07	2.042041097083D-0)8 -3.707977721109D-10
5	-4.2753	21573501D-08	3.708616111085D-1	0 7.068450112690D-12
6	7.7861	55463269D-09	-2.441127783437D-1	0 3.773208484020D-12
7	5.1785	05597480D-10	-9.452402157390D-1	2 -4.672724022059D-14
8	-6.8542	03970018D-11	1.836615031798D-1	2 -1.640492364811D-14
N2MIN =	1.00000D	08 1/CM3		
N2MAX =	1.00000D	16 1/CM3		
Max. rel	. Error:	6.8962 %		
Mean rel	. Error:	.5559 %		

4.5 Reaction 2.1.80 $H^+ + e \rightarrow H(1s)$ Ly-opaque

Effective hydrogenic recombination rate Data: L.C.Johnson, radiative + three-body contribution all Lyman lines opaque, i.e. no radiative transition to ground state.

E-1	Index: 0	1	2
T-Index:			
0	-2.959696621207D+01	-2.370057688281D-01	2.485234780243D-01
1	-2.261509350573D+00	-3.916834765592D-01	4.175284638738D-01
2	-4.674937331875D-01	-5.569001933269D-03	1.424684098594D-02
3	2.507869795516D-01	2.497608379269D-02	-3.407068292654D-02
4	2.069706780864D-02	-6.227904899439D-03	7.567752788769D-03
5	-2.504106136665D-02	5.231970346733D-03	-4.961906824405D-03
6	4.740060719354D-03	-1.583429487117D-03	1.485117205295D-03
7	-3.716199599046D-04	1.790096302797D-04	-1.687816759412D-04
8	1.078074419507D-05	-6.889626133438D-06	6.523611088216D-06
E-I	Index: 3	4	5
T-Index:			
0	-9.938245216461D-02	1.980881578608D-02	-2.122222479009D-03
1	-1.818480115491D-01	3.961587768727D-02	-4.770502751429D-03
2	-7.573368055249D-03	2.345252431484D-03	-3.903412960562D-04
3	1.848151065349D-02	-4.874151697039D-03	6.859699832287D-04
4	-3.519012590703D-03	7.900468003264D-04	-9.404610318098D-05
5	1.530766046402D-03	-1.980846746944D-04	7.679462128899D-06
6	-4.566472727887D-04	6.072295908223D-05	-2.912042904116D-06
7	5.315093984335D-05	-7.528931894689D-06	4.568686753692D-07
8	-2.087698447004D-06	3.070917297414D-07	-2.078805542480D-08
E-1	Index: 6	7	8
T-Index:			
0	1.218203616198D-04	-3.464708585003D-06	3.763195232065D-08
1	3.183363649173D-04	-1.099361683574D-05	1.532076900830D-07
2	3.495619343912D-05	-1.549589929805D-06	2.649470795327D-08
3	-5.207997134901D-05	2.003342466410D-06	-3.056485646618D-08
4	5.971364301743D-06	-1.910514915873D-07	2.423960414424D-09
5	5.127742944183D-07	-5.042762997588D-08	1.117985320964D-09
6	-6.966012349475D-08	1.046266371637D-08	-2.448127591728D-10
7	-4.197741084618D-09	-6.390754230254D-10	1.836925499320D-11
8	4.554850332229D-10	1.165730429588D-11	-4.891755053806D-13
N2MIN =	1.00000D 08 1/CM3		
N2MAX = 2	1.00000D 16 1/CM3		
Max. rel.	. Error: 21.7976 %		

Mean rel. Error: 8.2471 %

4.6 Reaction 2.1.8 $H^+ + e \rightarrow H(1s)$

Effective hydrogenic recombination rate Data: K. Sawada, T.Fujimoto, radiative + three-body contribution, [7] June 17: Fit range extended from 0.1 - 1e3 to 0.1 - 2e4

E	-Index:	0	1	2
T-Index	:			
0	-2.858	3858570847D+01	2.068671746773D-02	-7.868331504755D-03
1	-7.676	5413320499D-01	1.278006032590D-02	2 -1.870326896978D-02
2	2.823	3851790251D-03	-1.907812518731D-03	3 1.121251125171D-02
3	-1.062	2884273731D-02	-1.010719783828D-02	4.208412930611D-03
4	1.582	2701550903D-03	2.794099401979D-03	-2.024796037098D-03
5	-1.938	3012790522D-04	2.148453735781D-04	a.393285358049D-05
6	6.041	794354114D-06	-1.421502819671D-04	6.143879076080D-05
7	1.742	2316850715D-06	1.595051038326D-05	-7.858419208668D-06
8	-1.384	1927774988D-07	-5.664673433879D-07	2.886857762387D-07
E	-Index:	3	4	5
T-Index	:			
0	3.843	3362133859D-03	-7.411492158905D-04	9.273687892997D-05
1	3.828	3555048890D-03	-3.627770385335D-04	4.401007253801D-07
2	-3.711	L328186517D-03	6.617485083301D-04	-6.860774445002D-05
3	-1.005	5744410540D-03	1.013652422369D-04	-2.044691594727D-06
4	6.250)304936976D-04	-9.224891301052D-05	5 7.546853961575D-06
5	-3.746	5423753955D-05	7.509176112468D-06	-8.688365258514D-07
6	-1.232	2549226121D-05	1.394562183496D-06	-6.434833988001D-08
7	1.774	1935420144D-06	-2.187584251561D-07	1.327090702659D-08
8	-6.591	1743182569D-08	8.008790343319D-09	-4.805837071646D-10
E	-Index:	6	7	8
T-Index	:			
0	-7.063	3529824805D-06	3.026539277057D-07	-5.373940838104D-09
1	1.932	2701779173D-06	-1.176872895577D-07	2.215851843121D-09
2	4.508	3046989099D-06	-1.723423509284D-07	2.805361431741D-09
3	-4.431	181498017D-07	3.457903389784D-08	-7.374639775683D-10
4	-3.682	2709551169D-07	1.035928615391D-08	-1.325312585168D-10
5	7.144	1767938783D-08	-3.367897014044D-09	6.250111099227D-11
6	-2.746	5804724917D-09	3.564291012995D-10	-8.551708197610D-12
7	-1.386	5720240985D-10	-1.946206688519D-11	5.745422385081D-13
8	6.459	9706573699D-12	5.510729582791D-13	-1.680871303639D-14
T1MIN =	0.10000	00 EV		
T1MAX =	2.00000	04 EV		
N2MIN =	1.00000	08 1/CM3		
N2MAX =	1.00000) 16 1/CM3		
Max. re	l. Error:	0.931E+01 %		
Mean re	l. Error:	: 0.745E+00 %		

4.7 Reaction 2.1.8a $H^+ + e \rightarrow H(1s) + hv$

Effective hydrogenic recombination rate coefficient, cm^3/s Data: L.C.Johnson, radiative contribution only

E-Index: 0	1	2
T-Index:		
0 -2.861779556590D+01	-1.786166918005D-02	6.391553337864D-04
1 -7.251997071478D-01	3.210966054964D-03	4.550251497787D-03
2 -1.735023322687D-02	-3.112517426840D-03	1.077863345492D-03
3 -3.557752804131D-03	1.558966107388D-03	-1.037331531958D-03
4 -2.777882255016D-04	-9.329932857673D-05	1.096331766957D-04
5 2.060295404466D-05	-1.283711654633D-04	7.312311894769D-05
6 1.593238392469D-05	3.705503401064D-05	-2.407235857913D-05
7 -2.116580756634D-06	-3.854172456142D-06	2.662392026941D-06
8 7.665990100168D-08	1.400789118322D-07	-1.008951470934D-07
E-Index: 3	4	5
T-Index:		
0 -4.509415260040D-04	7.095459017274D-05	-5.660309928918D-06
1 -1.882306456891D-03	3.983133042462D-04	-4.851835293564D-05
2 -2.616958968739D-04	5.459332810644D-05	-8.635308675130D-06
3 2.817237174744D-04	-4.407815167942D-05	4.646017350681D-06
4 -4.567488387292D-05	8.495787235165D-06	-7.261076273040D-07
5 -1.064805149480D-05	-1.498776433806D-07	1.199087596048D-07
6 4.915213917257D-06	-3.346609397503D-07	-4.912753691671D-09
7 -6.120846201882D-07	5.663728215333D-08	-1.474221162308D-09
8 2.495214914834D-08	-2.678484130657D-09	1.170138331019D-10
E-Index: 6	7	8
T-Index:		
0 1.160186631232D-07	7.564986067995D-09	-2.969815025786D-10
1 3.404834497087D-06	-1.280839994482D-07	1.982839967575D-09
2 8.383106368091D-07	-4.133352004945D-08	7.872491728981D-10
3 -3.365654551356D-07	1.428350791171D-08	-2.522153346435D-10
4 2.326992940046D-08	2.208089550616D-10	-1.989979386039D-11
5 -5.668079133507D-09	-1.018554043516D-10	7.766578964142D-12
6 1.302393677822D-09	-3.169013613822D-11	-1.783762758524D-13
7 -7.373095178045D-11	4.314457229158D-12	-4.791677504810D-14
8 -1.588254701759D-13	-1.226345218681D-13	2.329402447113D-15
N2MIN = 1.00000D 08 1/CM3		
N2MAX = 1.00000D 16 1/CM3		
Max. rel. Error: 2.5215 %		

4.8 Reaction **2.1.8b** $H^+ + e + e \rightarrow H(1s) + e$

Effective hydrogenic recombination rate coefficient, cm^3/s , i.e. one of the two electron density factors is already included.

Data: L.C.Johnson, three-body contribution only

E-	Index: 0	1	2
T-Index:			
0	-3.138669506796D+01	2.558074094965D-01	7.547564538159D-02
1	-1.417925704352D+00	-1.066708008069D-01	8.912699543671D-02
2	-3.966595205668D-02	1.064506076088D-01	-9.185507688379D-02
3	-2.739310162323D-03	1.071195586887D-02	-1.158499493255D-02
4	1.342474842019D-03	-1.404239147230D-02	1.282799910712D-02
5	-3.784959334108D-05	2.130406018949D-03	-1.795433974878D-03
6	-2.481473746256D-05	-2.906534460063D-05	4.381082887635D-07
7	3.022022778586D-06	-1.227016198396D-05	1.250237920569D-05
8	-1.059584647842D-07	5.895982135096D-07	-5.420516699864D-07
E-	Index: 3	4	5
T-Index:			
0	-3.195165302392D-02	5.993840007093D-03	-6.049665420516D-04
1	-3.076861794558D-02	5.170778601878D-03	-4.681886539105D-04
2	3.233942643372D-02	-5.730070151158D-03	5.639470554955D-04
3	4.028223463613D-03	-6.775275129877D-04	5.927342203251D-05
4	-4.343906483582D-03	7.330672175437D-04	-6.737562862785D-05
5	5.739582951694D-04	-9.301568592793D-05	8.339289670874D-06
6	4.646781534504D-06	-9.443082582766D-07	4.567269449835D-08
7	-4.231117608526D-06	6.309570737001D-07	-4.235798707450D-08
8	1.668808712577D-07	-2.180052385585D-08	1.047870711900D-09
E-	Index: 6	7	8
T-Index:			
0	3.390872601321D-05	-9.817548467947D-07	1.135964925849D-08
1	2.260490762610D-05	-5.312960958760D-07	4.417913806532D-09
2	-3.105931750375D-05	8.954284624235D-07	-1.053605286933D-08
3	-2.695731962799D-06	5.604944938198D-08	-3.081951853519D-10
4	3.406464134420D-06	-8.840559993869D-08	9.088416616843D-10
5	-4.195355464733D-07	1.130977058144D-08	-1.314879735454D-10
6	3.574490849965D-09	-4.342693823216D-10	1.186584611296D-11
7	7.775072659869D-10	4.164660123508D-11	-1.575223043337D-12
8	2.251635634963D-11	-3.743444984134D-12	9.336979510479D-14
N2MIN =	1.00000D 08 1/CM3		
N2MAX =	1.00000D 16 1/CM3		
Max. rel.	Error: 6.0738 %		

4.9 Reaction 2.2.5 $e + H_2 \rightarrow e + H + H$

H2 multi-step model Data: K. Sawada/Fujimoto ,[7] coupling to reservoir of H(1), H_2 , H_2^+ , H^+ ("transported" species) H_2 is in vibrational ground state v = 0, and the electronic levels in the molecules as discussed in [7] are taken into account.

E	-Index: 0	1	2
T-Index:			
0	-2.748251723699D+01	5.245554722385D-04	-2.978103958861D-04
1	1.032713102402D+01	-4.288853521030D-04	-4.899568733097D-04
2	-5.042872981718D+00	2.836621770958D-03	-3.043912367565D-03
3	1.608638174175D+00	-1.261120000328D-03	1.887422712154D-03
4	-4.314430346833D-01	-8.545622758573D-04	7.288308305238D-04
5	9.436567726730D-02	3.330555462733D-04	-3.941114594575D-04
6	-1.384992697339D-02	5.154637596963D-06	2.704571960637D-05
7	1.132016190295D-03	-1.288164830284D-05	7.769128981290D-06
8	-3.842014088368D-05	1.171737695451D-06	-9.017007769431D-07
E	-Index: 3	4	5
T-Index:			
0	-2.360275829176D-07	2.352410977770D-05	-4.997866180134D-06
1	4.986004995584D-04	-1.488915435909D-04	2.064670043755D-05
2	1.292894496252D-03	-2.905449411133D-04	3.788502709678D-05
3	-9.327238099803D-04	2.128634474527D-04	-2.509788157193D-05
4	-2.484715070595D-04	4.842155320136D-05	-6.186008058267D-06
5	1.711527657525D-04	-3.637820737985D-05	4.163286478680D-06
6	-2.084393307530D-05	5.401855723043D-06	-6.247464789742D-07
7	-1.221455182210D-06	-3.231445161484D-09	9.993216378891D-09
8	2.476534052706D-07	-3.367686347533D-08	2.869160964443D-09
E	-Index: 6	7	8
T-Index:			
0	4.276219304407D-07	-1.656742885479D-08	2.414039859152D-10
1	-1.483657661440D-06	5.231689914639D-08	-7.056262049968D-10
2	-2.892758625724D-06	1.174418148176D-07	-1.927933996765D-09
3	1.553010173585D-06	-4.703323705313D-08	5.371568383284D-10
4	5.102144895277D-07	-2.321199392340D-08	4.255457918971D-10
5	-2.597547413556D-07	8.256194712004D-09	-1.040875802194D-10
6	3.214084295485D-08	-5.485492350310D-10	-2.766340477990D-12
7	1.346287938920D-10	-7.497501425175D-11	2.502198014796D-12
8	-1.931319268617D-10	9.102276313210D-12	-1.872646131609D-13
N2MIN =	1.00000D 08 1/CM3		
N2MAX =	1.00000D 16 1/CM3		

Electron Temperature (eV)
4.10 Reaction 2.2.5g $e + H_2 \rightarrow e + H + H$

H2 multi-step model, data: Sawada/Fujimoto/Greenland. $H(1), H_2, H_2^+, H^+$ transported (slow species). The $H_2(v)$ are in vibrational equilibrium (depends only upon T_e), and the electronic levels in the molecules as discussed in [7] are taken into account. CX losses from vibr. distribution are computed assuming $T_e = T_i, n_e = n_p$, and an energy of H_2 -Beam = 0.1 eV.

E	-Index:	0	1	2
T-Index	:			
0	-2.702	372540584D+01	-3.152103191633D-0	3 5.990692171729D-03
1	1.081	756417479D+01	-1.487216964825D-0	2 1.417396532101D-02
2	-5.368	872027676D+00	5.419787589654D-0	3 -1.747268613395D-02
3	1.340	684229143D+00	1.058157580038D-0	2 -3.446019122786D-03
4	-1.561	644923145D-01	-3.847438570333D-0	3 3.571477356851D-03
5	-1.444	731533894D-04	-3.194532513126D-0	4 -2.987368098475D-04
6	2.117	693926546D-03	2.679309814780D-0	4 -1.037559373832D-04
7	-2.143	738340207D-04	-3.539232757385D-0	5 1.909399233821D-05
8	6.979	740947331D-06	1.462031952352D-0	6 -8.858634506391D-07
E	-Index:	3	4	5
T-Index	:			
0	-3.151	252835426D-03	7.457309144890D-0	4 -9.238664007853D-05
1	-4.689	911797083D-03	7.180338663163D-0	4 -5.502798587526D-05
2	9.532	963297450D-03	-2.196705622859D-0	3 2.611447288152D-04
3	-7.032	769815599D-04	4.427959286553D-0	4 -7.370484189164D-05
4	-1.103	305795473D-03	1.476712517858D-0	4 -8.461162952132D-06
5	2.092	094838648D-04	-4.339352509941D-0	5 4.009328699469D-06
6	7.297	053580368D-06	1.454171585421D-0	6 -2.251616910293D-07
7	-3.819	368125069D-06	3.754063159414D-0	7 -2.441872829462D-08
8	2.099	830142707D-07	-2.606862169776D-0	8 2.039813579349D-09
E	-Index:	6	7	8
T-Index	:			
0	6.222	557542845D-06	-2.160024578659D-0	7 3.028755759836D-09
1	1.983	066081752D-06	-2.207639762507D-0	8 -2.116339335271D-10
2	-1.695	536960581D-05	5.737375510694D-0	7 -7.940900078995D-09
3	5.746	786010618D-06	-2.182085196303D-0	7 3.264045809897D-09
4	9.757	111870171D-08	8.130014050833D-0	9 -2.234996157750D-10
5	-1.762	651912129D-07	3.357860444624D-0	9 -1.857322587267D-11
6	9.191	700327811D-09	-2.052366968228D-1	1 -3.567738654108D-12
7	1.437	490161488D-09	-6.172308568891D-1	1 1.104905484620D-12
8	-1.113	483084607D-10	3.859777100010D-1	2 -5.909099891913D-14
T1MIN =	0.1000D	00 EV		
T1MAX =	1.0000D	03 EV		
N2MIN =	1.0000D	08 1/CM3		
N2MAX =	1.000000	16 1/CM3		
Max. re	l. Error:	11.6439 %		
Mean re	l. Error:	2.6169 %		

Electron Temperature (eV)

4.11 Reaction 2.2.9 $e + H_2 \rightarrow 2e + H_2^+$

Mean rel. Error: .4740 %

E-I	Index:	0	1			2
T-Index:						
0	-3.574773	783577D+01	3.47024704	9909D-01	-9.683166	540937D-02
1	1.769208	985507D+01	-1.31116984	1222D+00	4.700486	215943D-01
2	-8.291764	008409D+00	1.59170152	5694D+00	-5.814996	025336D-01
3	2.555712	347240D+00	-8.62526858	4825D-01	2.612076	696684D-01
4	-5.370404	654062D-01	2.37581699	6323D-01	-4.165908	778170D-02
5	7.443307	905391D-02	-3.322214182	2214D-02	-2.351235	556666D-03
6	-6.391785	721973D-03	1.86255427	8190D-03	1.540632	467396D-03
7	3.001729	098239D-04	3.49720225	9366D-05	-1.742029	226138D-04
8	-5.607182	991432D-06	-5.779550092	2391D-06	6.495742	927455D-06
E-I	Index:	3	4			5
T-Index:						
0	1.959576	276250D-03	2.47936111	9190D-03	-1.196632	952666D-04
1	-5.521175	478827D-02	-2.68965161	6933D-03	7.308915	874002D-04
2	9.160898	084105D-02	-4.77078963	1868D-03	1.994775	632224D-05
3	-3.686525	285376D-02	1.94548060	8139D-03	-3.690918	356665D-05
4	1.732469	114063D-03	3.693513203	3529D-04	-4.931268	184607D-05
5	1.723053	881691D-03	-2.09662592	5098D-04	1.358575	558294D-05
6	-3.547150	770477D-04	1.39215705	5273D-05	1.047463	944093D-06
7	2.296551	698214D-05	2.357520372	2192D-06	-5.306085	513950D-07
8	-3.040011	333889D-07	-2.36154256	5281D-07	3.655056	080262D-08
E-1	Index:	6	7			8
T-Index:						
0	-1.862956	119592D-05	1.66986715	8509D-06	-3.673736	278200D-08
1	-2.920560	755694D-05	-3.14883124	0316D-07	2.514856	386324D-08
2	-7.511552	245648D-06	1.08968967	6313D-06	-2.920863	498031D-08
3	4.836340	453567D-06	-4.16574866	6929D-07	9.265898	224345D-09
4	2.727501	534044D-06	-1.08102738	4449D-07	2.420509	440644D-09
5	-1.041586	202167D-06	6.92857433	0531D-08	-1.746656	185835D-09
6	1.513510	667993D-08	-9.91549970	8242D-09	3.298173	891188D-10
7	2.223137	028418D-08	3.34016930	9800D-10	-2.560542	889504D-11
8	-1.771478	792301D-09	1.33461526	0635D-11	6.831564	719957D-13
N2MIN =	1.00000D 08	1/CM3				
N2MAX = 2	1.00000D 16	1/CM3				
Max. rel	. Error:	3.1001 %				

Electron Temperature (eV)

4.12 Reaction 2.2.10 $e + H_2 \rightarrow 2e + H + H^+$

E-	-Index:	0	1	2
T-Index	:			
0	-3.793	749300315D+01	-3.333162972531D-01	1.849601203843D-01
1	1.280	249398154D+01	1.028969438485D+00	-3.271855492638D-01
2	-3.778	148553140D+00	-1.415561059533D+00	2.928509524911D-01
3	2.499	987501522D-01	1.032922656537D+00) -1.580288004759D-01
4	2.480	574522949D-01	-4.372934216955D-01	6.448433196301D-02
5	-9.960	628182831D-02	1.092652428162D-01	-1.782307798975D-02
6	1.709	129400742D-02	-1.574889001363D-02	2 2.865310743302D-03
7	-1.435	304503973D-03	1.203823111704D-03	-2.350465388313D-04
8	4.808	639828229D-05	-3.761591649539D-05	5 7.490531472388D-06
E-	-Index:	3	4	5
T-Index	:			
0	-8.803	945197107D-02	2.205180180735D-02	-2.852568161901D-03
1	1.305	597441611D-01	-3.408439821910D-02	4.591924060066D-03
2	-7.425	165688158D-02	2.028424685287D-02	-3.042376564749D-03
3	9.934	702707539D-03	-2.450845732158D-03	5.716646876513D-04
4	1.229	222932630D-03	-9.281410519553D-04	4 5.946235618034D-05
5	1.192	181214757D-04	2.310636556641D-04	4 -2.492990725967D-05
6	-1.700	396064727D-04	-1.502644504654D-00	3.297869416435D-07
7	2.507	288189894D-05	-3.077975735212D-00	5 3.748299687254D-07
8	-1.077	314971617D-06	1.950247963978D-0 [°]	7 -2.569729600929D-08
E-	-Index:	6	7	8
T-Index	:			
0	1.942	314738448D-04	-6.597388255594D-00	5 8.798544848606D-08
1	-3.167	471002157D-04	1.070920193931D-0	5 -1.408139742113D-07
2	2.279	124955373D-04	-8.197224564797D-0	5 1.130682076163D-07
3	-5.339	115778704D-05	2.135848413694D-00	-3.072223247387D-08
4	-8.758	032156912D-08	-7.270955072707D-08	3 1.100087131523D-09
5	1.217	600444191D-06	-3.624263301602D-08	6.139167092128D-10
6	6.572	135289627D-10	4.269190108005D-10	-3.666090917669D-11
7	-2.613	600078122D-08	8.263175463927D-10	-8.509179497022D-12
8	1.804	377780165D-09	-6.031847199601D-11	7.416020205748D-13
T1MIN =	0.05000D	00 EV		
T1MAX =	1.0000D	03 EV		
N2MIN =	1.0000D	08 1/CM3		
N2MAX =	1.00000D	16 1/CM3		
Max. rel	l. Error:	1.2041 %		
Mean rei	l. Error:	.4804 %		

Electron Temperature (eV)

4.13 Reaction 2.2.11 $e + H_2^+ \rightarrow 2e + H^+ + H^+$

E-	-Index:	0	1	2
T-Index:				
0	-3.7088	303769397D+01	9.784233987341D-	02 -7.200361272130D-03
1	1.561	780529774D+01	-1.673256230592D-	02 2.743322772895D-02
2	-6.8744	406034117D+00	-7.782929961315D-	03 -6.888773684846D-03
3	2.0105	540060675D+00	-3.226785148562D-	03 -6.181192193854D-03
4	-3.6147	768906120D-01	3.710098881765D-	03 2.045814599796D-03
5	2.9568	361321735D-02	-5.524443504504D-	04 -2.457951062112D-05
6	9.6624	190252868D-04	-1.548556801431D-	04 1.417215042439D-05
7	-3.5435	571865464D-04	4.662969089421D-	05 -1.471117766355D-05
8	1.8271	L09843671D-05	-3.179895716088D-	06 1.432429412413D-06
E-	-Index:	3	4	5
T-Index:				
0	6.4968	843022778D-03	-1.420590818760D-	03 1.703620321164D-04
1	-1.0269	956102747D-02	1.999561527383D-	03 -2.043607814503D-04
2	2.3061	L07197863D-03	-4.029222834436D-	04 3.932152471491D-05
3	2.3881	L46990238D-03	-5.018901320009D-	04 5.520233512352D-05
4	-8.5239	935993991D-04	1.751295192861D-	04 -1.944203941844D-05
5	3.4331	179945503D-05	-1.450208898992D-	06 -2.447566480782D-07
6	-6.4448	363591678D-06	-1.566028729499D-	06 4.152486680818D-07
7	5.2355	585096328D-06	-5.779667826854D-	07 2.139729421817D-08
8	-5.1410	065080107D-07	7.734387173369D-	08 -6.163336831045D-09
E-	-Index:	6	7	8
T-Index:				
0	-1.160	738946400D-05	4.148222302162D-	07 -6.007853385325D-09
1	1.0841	L77127603D-05	-2.671800995803D-	07 2.093182411476D-09
2	-2.0949	907364150D-06	5.682907060010D-	08 -6.320752545610D-10
3	-3.080	798536641D-06	7.864770315002D-	08 -6.357395371638D-10
4	1.1388	388354831D-06	-3.256303793266D-	08 3.501794038444D-10
5	1.3750	579100044D-08	4.863880510459D-	10 -3.004374374556D-11
6	-2.8550)68942744D-08	6.081804811000D-	10 9.512865901179D-13
7	-3.6560)48425230D-10	3.759866326965D-	11 -1.486151370215D-12
8	3.1283	313515842D-10	-1.061842444216D-	11 1.771099769640D-13
N2MIN =	1.0000D	08 1/CM3		
N2MAX =	1.0000D	16 1/CM3		
Max. rel.	Error:	1.0209 8		

Mean	rel.	Error:	0.3164	00
110 0111			0.0101	· ·

Electron Temperature (eV)

4.14 Reaction 2.2.12 $e + H_2^+ \rightarrow e + H + H^+$

Effective dissociative excitation of H_2^+ to H and H⁺, including the component $e + H_2^+ \rightarrow H + H^* \rightarrow H + H^+$ from dissociative recombination of H_2^+ with excited products.

E-	-Index:	0	1	2
T-Index:				
0	-1.793	443274600D+01	-4.932783688604D-0	02 1.039088280849D-01
1	2.236	108757681D+00	-2.545406018621D-0	D2 -1.160421006835D-01
2	-3.620	018994703D-01	6.721527680150D-0	02 1.564387124002D-02
3	-4.353	922258965D-01	-3.051033606589D-0	02 3.512861172521D-02
4	1.580	381801957D-01	2.493654957203D-0	03 -1.601970998119D-02
5	1.697	880687685D-02	2.106675963900D-0	03 4.521983358170D-04
6	-1.521	914651109D-02	-7.527862162788D-0	04 9.095551479381D-04
7	2.406	276368070D-03	9.971361856278D-0	05 -1.760978402353D-04
8	-1.219	469579955D-04	-4.785505675232D-0	06 9.858840337511D-06
E	-Index:	3	4	5
T-Index:				
0	-4.375	935166008D-02	9.196691651936D-0	03 -1.043378648769D-03
1	4.407	846563362D-02	-8.192521304984D-0	03 8.200277386433D-04
2	-4.939	045440424D-03	4.263195867947D-0	04 1.034216805418D-05
3	-1.179	504564265D-02	2.091772760029D-0	D3 -1.991100044575D-04
4	5.346	709597939D-03	-8.711870134835D-0	04 7.542066727545D-05
5	-3.017	151690655D-04	6.209239389357D-0	D5 -7.598119096817D-06
6	-2.372	576223034D-04	3.018561480848D-0	D5 -1.365255868731D-06
7	4.877	659148871D-05	-6.477358351729D-0	06 3.541106430252D-07
8	-2.779	210878533D-06	3.720379996058D-0	D7 -2.110289928486D-08
E-	-Index:	6	7	8
T-Index:				
0	6.600	342421838D-05	-2.198466460165D-0	06 3.004145701249D-08
1	-4.508	284363534D-05	1.282824614809D-0	06 -1.474719350236D-08
2	-3.975	028601900D-06	2.322116289258D-0	07 -4.381217154470D-09
3	1.018	080238045D-05	-2.597941866088D-0	07 2.524118386011D-09
4	-3.410	778344979D-06	7.120460603822D-0	08 -4.412295474522D-10
5	5.523	273241689D-07	-2.130508249251D-0	08 3.319099650589D-10
6	-4.604	769733903D-08	5.867910270430D-0	09 -1.357779142836D-10
7	1.309	772899670D-09	-8.072907334230D-3	10 2.074669430611D-11
8	3.753	875073646D-11	4.024906665497D-3	11 -1.075990572574D-12
N2MIN =	1.0000D	08 1/CM3		
N2MAX =	1.00000D	16 1/CM3		
Max. rel	. Error:	15.8263 %		

Mean	rel.	Error:	3.9031	00

4.15 Reaction 2.2.14 $e + H_2^+ \to H + H$

Effective dissociative recombination of H_2^+ to H and H, subtracting the ionising component $e + H_2^+ \rightarrow H + H^* \rightarrow H + H^+$ from dissociative recombination of H_2^+ with excited products.

E	-Index:	0	1		2	
T-Index:						
0	-1.66433	5253647D+01	8.95378095363	1D-02 -	-1.05641103	30518D-01
1	-6.00544	4031657D-01	4.06393399272	6D-02 -	-4.75394784	46841D-02
2	4.49481	2032769D-04	7.88450861659	5D-05	3.6880075	52485D-04
3	1.63289	4866655D-04	3.10811617761	7D-04 -	-3.52155258	30917D-04
4	-7.23414	2549752D-05	-1.31631132026	2D-03	1.64350932	28764D-03
5	-1.50408	5050039D-05	1.31586597023	7D-04 -	-1.0256537	73999D-04
6	1.11392	3667684D-05	2.71141152539	2D-05 -	-8.4959223	63727D-05
7	-1.84392	6162250D-06	-1.66367453749	9D-06	1.30806992	26896D-05
8	9.86417	3150662D-08	-2.21226170846	8D-07 -	-4.43174950	01051D-07
E	-Index:	3	4		5	
T-Index:						
0	4.47700	0808690D-02	-9.72994543435	7D-03	1.17445688	32002D-03
1	2.18830	4031377D-02	-5.20108560679	1D-03	6.86634039	94051D-04
2	-4.65925	5785539D-04	1.90711598040	0D-04 -	-3.43432473	L0145D-05
3	-2.23316	9775063D-04	1.86941523603	7D-04 -	-4.32999123	L1511D-05
4	-6.41276	4282779D-04	1.04889105376	5D-04 -	-7.0185551	73322D-06
5	5.31032	4781249D-05	-1.83188804803	9D-05	3.4237553	73077D-06
6	4.02648	7801017D-05	-6.28932447424	0D-06	1.91144703	36702D-07
7	-7.32402	1449032D-06	1.43173986818	7D-06 -	-1.0856447	79665D-07
8	3.27053	0731011D-07	-7.28208552117	7D-08	6.57825350	67957D-09
E	-Index:	6	7		8	
T-Index:						
0	-7.98774	3820637D-05	2.84295789276	8D-06 -	-4.10450860)8435D-08
1	-5.05994	0013116D-05	1.93021388220	5D-06 -	-2.96396682	22809D-08
2	3.06765	1560323D-06	-1.32568946559	0D-07	2.2124930	73620D-09
3	4.46525	6901322D-06	-2.13629616756	4D-07	3.87308530	58404D-09
4	4.77621	3235854D-08	1.38053734397	4D-08 -	-4.19939784	46492D-10
5	-3.30338	4352061D-07	1.55162709770	0D-08 -	-2.80939183	L9541D-10
6	3.63819	8230235D-08	-3.23554060639	4D-09	7.60544205	50634D-11
7	1.14316	4983367D-09	2.15159500397	1D-10 -	-7.05256222	20005D-12
8	-1.92525	8267827D-10	-4.21747416751	9D-12	2.36475402	29318D-13
N2MIN =	1.00000D 0	8 1/CM3				
N2MAX =	1.00000D 1	6 1/CM3				
Max. rel	. Error:	3.3331 %				

Mean	rel.	Error:	0.3010	%

4.16 Reaction 2.3.9a $e + He(1s^21S) \rightarrow e + He^+(1s) + e$

Helium multi-step model, here ionization, Eth=24.56 eV Fujimoto Formulation II, meta-stable unresolved, (only ground level transported, no metastables kept explicit), [20]

E-1	Index:	0	1		2
T-Index:					
0	-4.227	118452798D+01	1.29455445199	8D-01 -8.4	33979538052D-02
1	2.411	668100975D+01	-8.12199920828	1D-02 4.0	52570160482D-02
2	-1.203	181133667D+01	-3.99828297093	2D-03 -2.8	819919193060D-03
3	3.829	444688521D+00	2.54641407326	6D-02 2.6	54490306111D-03
4	-7.945	839257175D-01	-1.49359787485	0D-02 -1.0	18320076497D-03
5	1.054	334178555D-01	4.33882124414	7D-03 -1.4	83560478208D-04
6	-8.578	643565653D-03	-6.68920260352	5D-04 9.0	84162487421D-05
7	3.886	232727181D-04	5.18080512347	6D-05 -1.1	25453787291D-05
8	-7.487	575233223D-06	-1.58297743374	0D-06 4.4	13792107083D-07
E-1	Index:	3	4		5
T-Index:					
0	4.910	721979375D-02	-1.45404728243	8D-02 2.1	78105605879D-03
1	-2.367	924962508D-02	8.48839204136	6D-03 -1.4	52752408581D-03
2	-1.904	887727240D-03	-2.39094858533	4D-04 1.8	344484422285D-04
3	1.087	493205419D-03	-4.46919220689	6D-04 3.7	15538155590D-05
4	2.821	927325759D-04	3.26926485458	1D-05 -5.9	37518354028D-06
5	-6.901	574689672D-05	6.35049031289	9D-06 -4.4	14167358057D-07
6	-4.184	111347149D-06	1.15391932715	1D-07 3.7	97435455934D-08
7	1.536	214841434D-06	-1.63260139851	7D-07 8.9	48177075796D-09
8	-7.832	095176637D-08	9.58697477495	0D-09 -6.7	39076170810D-10
E-1	Index:	6	7		8
T-Index:					
0	-1.657	512355348D-04	6.16142956479	3D-06 -8.9	10615590909D-08
1	1.170	902182939D-04	-4.41047924530	8D-06 6.2	97315949647D-08
2	-1.972	728027860D-05	7.77944021980	1D-07 -1.0	33814145233D-08
3	-1.595	0144154431D-06	6.31103912405	6D-08 -1.4	85989166680D-09
4	4.714	656637197D-07	-2.43346292399	3D-08 5.3	307423532159D-10
5	1.266	603603049D-08	8.04943555833	9D-10 -3.8	807796193572D-11
6	-4.123	383037275D-09	1.09596007874	6D-10 -5.1	09801608123D-14
7	-1.853	674996294D-10	1.34216670799	9D-14 1.1	84569645146D-14
8	2.565	598443992D-11	-4.99462509880	7D-13 4.1	24048804450D-15
N2MIN =	L.00000E	08 1/CM3			
N2MAX = 2	L.00000E	0 16 1/CM3			
Max. rel	. Error:	1.4966 %			

Mean rel. Error: .1241 %

4.17 Reaction 2.3.9b $e + He(1s^21S; r) \rightarrow e + He^+(1s) + e$

Eth=24.588 eV Fujimoto Formulation I (meta-stable resolved, i.e., ground level and 2 meta-stable levels transported) [20]

T-Index: 0 -4.465926038712D+01 2.779089377769D-01 -1.924882766567D-0 1 2.525835077281D+01 -3.615923725584D-01 1.317375998510D-0 2 -1.209203690110D+01 2.546508612886D-01 -4.865271188617D-0 3 3.800524426932D+00 -1.050334429568D-01 1.534747997056D-0 4 -8.039502806290D-01 2.383460807262D-02 -2.453115299067D-0 5 1.113782505171D-01 -2.736570987242D-03 -1.204111477713D-0 6 -9.620115283603D-03 1.170152671250D-04 8.499825475516D-0 7 4.684217843660D-04 2.993567258600D-06 -9.064004864288D-0	E-J	Index: 0	1	2
0-4.465926038712D+012.779089377769D-01-1.924882766567D-012.525835077281D+01-3.615923725584D-011.317375998510D-02-1.209203690110D+012.546508612886D-01-4.865271188617D-033.800524426932D+00-1.050334429568D-011.534747997056D-04-8.039502806290D-012.383460807262D-02-2.453115299067D-051.113782505171D-01-2.736570987242D-03-1.204111477713D-06-9.620115283603D-031.170152671250D-048.499825475516D-074.684217843660D-042.993567258600D-06-9.064004864288D-0	T-Index:			
12.525835077281D+01-3.615923725584D-011.317375998510D-02-1.209203690110D+012.546508612886D-01-4.865271188617D-033.800524426932D+00-1.050334429568D-011.534747997056D-04-8.039502806290D-012.383460807262D-02-2.453115299067D-051.113782505171D-01-2.736570987242D-03-1.204111477713D-06-9.620115283603D-031.170152671250D-048.499825475516D-074.684217843660D-042.993567258600D-06-9.064004864288D-0	0	-4.465926038712D+01	2.779089377769D-01	-1.924882766567D-01
2-1.209203690110D+012.546508612886D-01-4.865271188617D-033.800524426932D+00-1.050334429568D-011.534747997056D-04-8.039502806290D-012.383460807262D-02-2.453115299067D-051.113782505171D-01-2.736570987242D-03-1.204111477713D-06-9.620115283603D-031.170152671250D-048.499825475516D-074.684217843660D-042.993567258600D-06-9.064004864288D-0	1	2.525835077281D+01	-3.615923725584D-01	1.317375998510D-01
3 3.800524426932D+00 -1.050334429568D-01 1.534747997056D-0 4 -8.039502806290D-01 2.383460807262D-02 -2.453115299067D-0 5 1.113782505171D-01 -2.736570987242D-03 -1.204111477713D-0 6 -9.620115283603D-03 1.170152671250D-04 8.499825475516D-0 7 4.684217843660D-04 2.993567258600D-06 -9.064004864288D-0	2	-1.209203690110D+01	2.546508612886D-01	-4.865271188617D-02
4-8.039502806290D-012.383460807262D-02-2.453115299067D-051.113782505171D-01-2.736570987242D-03-1.204111477713D-06-9.620115283603D-031.170152671250D-048.499825475516D-074.684217843660D-042.993567258600D-06-9.064004864288D-0	3	3.800524426932D+00	-1.050334429568D-01	1.534747997056D-02
5 1.113782505171D-01 -2.736570987242D-03 -1.204111477713D-0 6 -9.620115283603D-03 1.170152671250D-04 8.499825475516D-0 7 4.684217843660D-04 2.993567258600D-06 -9.064004864288D-0	4	-8.039502806290D-01	2.383460807262D-02	-2.453115299067D-03
6-9.620115283603D-031.170152671250D-048.499825475516D-074.684217843660D-042.993567258600D-06-9.064004864288D-0	5	1.113782505171D-01	-2.736570987242D-03	-1.204111477713D-04
7 4.684217843660D-04 2.993567258600D-06 -9.064004864288D-0	6	-9.620115283603D-03	1.170152671250D-04	8.499825475516D-05
	7	4.684217843660D-04	2.993567258600D-06	-9.064004864288D-06
8 -9.803749599678D-06 -2.872558504737D-07 3.052211397578D-0	8	-9.803749599678D-06	-2.872558504737D-07	3.052211397578D-07
E-Index: 3 4 5	E-]	Index: 3	4	5
T-Index:	T-Index:			
0 8.206249637969D-02 -1.857913019533D-02 2.303280474362D-0	0	8.206249637969D-02	-1.857913019533D-02	2.303280474362D-03
1 -3.756327901158D-02 7.553859741475D-03 -9.078039556264D-0	1	-3.756327901158D-02	7.553859741475D-03	-9.078039556264D-04
2 3.019270415903D-03 6.079717185636D-05 -1.971883028916D-0	2	3.019270415903D-03	6.079717185636D-05	-1.971883028916D-05
3 -1.216174535037D-04 -1.789202918039D-04 2.652901470795D-0	3	-1.216174535037D-04	-1.789202918039D-04	2.652901470795D-05
4 1.469571845580D-04 -3.672662632973D-05 3.283809863879D-0	4	1.469571845580D-04	-3.672662632973D-05	3.283809863879D-06
5 1.895504949459D-05 9.915856648703D-06 -1.080542155973D-0	5	1.895504949459D-05	9.915856648703D-06	-1.080542155973D-06
6 -1.228789754131D-05 -2.775942493726D-07 3.600949456643D-0	6	-1.228789754131D-05	-2.775942493726D-07	3.600949456643D-08
7 1.331783826572D-06 -3.482200586084D-08 3.023300632995D-0	7	1.331783826572D-06	-3.482200586084D-08	3.023300632995D-09
8 -4.228344440471D-08 1.047078160211D-09 -7.325236965794D-1	8	-4.228344440471D-08	1.047078160211D-09	-7.325236965794D-11
E-Index: 6 7 8	E-]	Index: 6	7	8
T-Index:	T-Index:			
0 -1.557492713615D-04 5.412603196390D-06 -7.592974771773D-0	0	-1.557492713615D-04	5.412603196390D-06	-7.592974771773D-08
1 6.285196169828D-05 -2.363737361863D-06 3.748123629849D-0	1	6.285196169828D-05	-2.363737361863D-06	3.748123629849D-08
2 -1.284093049142D-06 2.768704515392D-07 -9.149600770688D-0	2	-1.284093049142D-06	2.768704515392D-07	-9.149600770688D-09
3 -7.430360191467D-07 -7.771887920734D-08 3.535086119528D-0	3	-7.430360191467D-07	-7.771887920734D-08	3.535086119528D-09
4 -3.318791946233D-07 3.208524419469D-08 -1.011210049359D-0	4	-3.318791946233D-07	3.208524419469D-08	-1.011210049359D-09
5 5.266320143919D-08 -3.383189536291D-09 1.132832454025D-1	5	5.266320143919D-08	-3.383189536291D-09	1.132832454025D-10
6 3.748617077019D-09 -1.897621201127D-10 -6.405513953940D-1	6	3.748617077019D-09	-1.897621201127D-10	-6.405513953940D-13
7 -7.781196082881D-10 4.279614523560D-11 -6.119815491934D-1	7	-7.781196082881D-10	4.279614523560D-11	-6.119815491934D-13
8 2.391497281895D-11 -1.495486439356D-12 2.587685854804D-1	8	2.391497281895D-11	-1.495486439356D-12	2.587685854804D-14
N2MIN = 1.00000D 08 1/CM3	N2MIN = 1	1.00000D 08 1/CM3		
N2MAX = 1.00000D 16 1/CM3	N2MAX = 1	1.00000D 16 1/CM3		
May rel Frror. 1 3886 %	May rol	Frror: 1 3886 8		
Mean rel. Error: .1520 %	Mean rel	. Error: .1520 %		

4.18 Reaction 2.3.9c $e + He(1s^21S; r) \rightarrow e + He(1s^12s^11S; r)$

Eth=20.614

E-	Index:	0	1			2
T-Index:						
0	-4.0462	178452435D+01	2.79378002	23801D-02	-2.63682	27236275D-02
1	2.021	782349890D+01	-8.1681510	09006D-02	6.13745	59348454D-02
2	-9.9764	409627529D+00	7.20301748	86249D-02	-4.59474	14469839D-02
3	3.121	941621264D+00	-3.2523687	76384D-02	1.83813	36188172D-02
4	-6.605	740116932D-01	7.97171003	32974D-03	-3.49150)1531484D-03
5	9.3144	429433629D-02	-1.23705322	21067D-03	3.53933	30238278D-04
6	-8.331	619915042D-03	1.2809983	59531D-04	-2.16467	71094364D-05
7	4.2553	343291630D-04	-7.9514392	18420D-06	7.96532	20643996D-07
8	-9.415	940442146D-06	2.15837413	32954D-07	-1.21234	16927674D-08
E-	Index:	3	4			5
T-Index:						
0	9.9669	974050192D-03	-1.92505818	89572D-03	2.07461	L8402408D-04
1	-1.7893	108699037D-02	2.49930104	42347D-03	-1.70816	54459820D-04
2	1.0993	110619333D-02	-1.1232363	52791D-03	2.76831	L9881512D-05
3	-4.0671	150951400D-03	4.16974230	01105D-04	-1.42494	11738587D-05
4	5.8212	208934666D-04	-4.62380242	27724D-05	8.86590)8638099D-07
5	-1.6930	003577039D-05	-2.1955242	73463D-06	2.45144	15678475D-07
6	-3.4961	132235049D-06	7.6073870	51093D-07	-2.64385	51478727D-08
7	4.015	715517122D-07	-6.69088780	08842D-08	2.04593	34897132D-09
8	-1.4969	923652893D-08	2.59468228	85097D-09	-1.39965	55571965D-10
E-	Index:	6	7			8
T-Index:						
0	-1.2620)53793968D-05	4.0555871	51672D-07	-5.34826	63576276D-09
1	4.6282	208806209D-06	2.7915472	74449D-08	-2.55466	52311089D-09
2	3.397	787872961D-06	-2.5467343	68181D-07	5.04859	96843802D-09
3	-7.637	600844108D-07	7.1906782	72390D-08	-1.51599	96656096D-09
4	1.5434	470779365D-07	-1.15485162	29261D-08	2.41311	L5266566D-10
5	-1.4661	182203352D-08	7.28529420	06745D-10	-1.70646	52195600D-11
6	-1.132	975723190D-09	6.49207623	32833D-11	-3.97250	06213491D-13
7	1.178	546445834D-10	-6.4827754	63755D-12	5.12214	19685044D-14
8	2.3460)36357946D-12	-3.2687456	63823D-14	1.99560	04762061D-15
N2MIN =	1.0000D	08 1/CM3				
N2MAX =	1.0000D	16 1/CM3				
Max. rel	. Error:	1.9207 %				

Mean rel. Error: .5914 %

4.19 Reaction 2.3.9d $e + He(1s^21S; r) \rightarrow e + He(1s^12s^13S; r)$

Eth=19.818 eV

E	E-Index:	0		1		2
T-Inde>	x:					
(-3.8862	266644950D+01	7.019809	942099D-04	-4.88	84086339705D-03
1	1.929	521258283D+01	-2.357936	604103D-02	-1.32	28300789738D-02
2	2 -9.0464	404053855D+00	8.666192	442035D-02	5.47	4654335859D-02
	3 2.6730	018107253D+00	-1.398928	491802D-01	3.21	8710988103D-03
4	4 -5.5482	107653535D-01	7.465434	423573D-02	-1.17	9392922571D-02
Ē	5 7.7748	830542594D-02	-1.905817	901709D-02	3.63	88331146570D-03
6	6 -6.8482	256427157D-03	2.528446	995280D-03	-4.70	0217870527D-04
7	7 3.4008	854043835D-04	-1.673888	466652D-04	2.61	4365787435D-05
8	-7.262	673007156D-06	4.357192	276102D-06	-4.50	6225745622D-07
E	E-Index:	3		4		5
T-Inde>	Χ:					
(4.3948	808572685D-03	-1.302054	032826D-03	1.82	26711561551D-04
1	1 1.0824	410659623D-03	8.797507	874605D-04	-1.90	04140538432D-04
2	2 -2.932	730590755D-02	5.819861	355501D-03	-6.21	1677015176D-04
3	3 7.5863	337950327D-03	-1.674705	131468D-03	1.74	5859315455D-04
4	4 2.158	501813724D-04	7.916139	470987D-05	-6.47	0261758484D-06
	5 -2.8303	357834958D-04	2.090178	740450D-05	-2.90)5940657585D-06
6	5 2.610	671874389D-05	-7.317822	457225D-07	2.93	37506973332D-07
7	9.223	198907867D-07	-4.349863	908454D-07	1.89	3279869199D-08
8	3 -1.4184	436717966D-07	3.344143	189525D-08	-2.43	88361820942D-09
E	E-Index:	6		7		8
T-Inde>	Χ:					
() -1.3382	147384862D-05	4.944420	378156D-07	-7.27	4738213340D-09
1	1.572	144633422D-05	-5.949713	883471D-07	8.66	51413444821D-09
2	2 3.751	189894835D-05	-1.205285	676422D-06	1.59	6181856159D-08
3	3 -1.0723	392282940D-05	3.817775	426074D-07	-5.94	1731934892D-09
Δ	1 5.703	111011170D-07	-4.610054	978455D-08	1.25	57685434225D-09
	5 1.3762	224572390D-07	3.158742	833521D-09	-2.25	6374221221D-10
6	5 -2.1239	916588197D-08	-1.342964	777517D-10	2.53	34904955517D-11
5	7 2.4380	015393047D-11	2.825944	427401D-11	-1.72	24540860429D-12
8	8.609	5/6897508D-11	-2.649053	786615D-12	6.20)5443362599D-14
N2MIN =	1.0000D	08 1/CM3				
N2MAX =	1.00000D	16 1/CM3				

Max.	rel.	Error:	4.7040	20
Mean	rel.	Error:	1.6362 9	50

4.20 Reaction 2.3.9e $e + He(1s^{1}2s^{1}1S; r) \rightarrow e + He(1s^{2}1S; r)$

Exotherm by -20.614 eV

E-	Index:	0	1		2	
T-Index:						
0	-1.2062	84357030D+01	-9.39574120072	22D-01	8.9415590	06967D-02
1	1.0014	13279976D-01	1.09216977672	28D-01	1.3681982	58579D-01
2	7.5864	00083695D-02	-3.7954227770	09D-03	-4.5928619	87024D-02
3	-6.3059	41229397D-02	-1.3443976791	89D-02	5.9183004	97317D-03
4	1.7691	50254942D-02	3.7908112803	15D-03	-6.6568619	14400D-06
5	-2.6491	42451670D-03	-4.3901827393	85D-04	-1.3786346	31707D-04
6	2.2862	16360493D-04	1.4211073918	65D-05	2.7276323	07001D-05
7	-1.0818	90897336D-05	1.61446589552	21D-06	-2.7983793	57036D-06
8	2.1943	68384994D-07	-1.1695871825	44D-07	1.1782265	46132D-07
E-	Index:	3	4		5	
T-Index:						
0	2.2361	04074143D-02	-6.4912790059	72D-03	6.9497278	32958D-04
1	-5.5659	30009734D-02	1.01040247362	29D-02	-1.0468275	64504D-03
2	1.2583	34121198D-02	-1.8760855574	57D-03	1.9021101	55531D-04
3	6.9569	02121898D-04	-2.6058249600	44D-04	1.9507027	12776D-05
4	-5.6785	513919575D-04	9.9169184678	53D-05	-5.4617006	71234D-06
5	9.1550	83108892D-05	-9.58210879212	23D-06	-4.8235489	54286D-08
6	-8.9736	543720110D-06	5.0158220676	00D-07	4.7333556	30355D-08
7	7.3154	16774742D-07	-6.0709511706	83D-08	2.4967497	55159D-09
8	-3.2052	08905129D-08	4.2118684823	08D-09	-4.1464191	26420D-10
E-	Index:	6	7		8	
T-Index:						
0	-3.7988	49551595D-05	1.0604260736	14D-06	-1.2217927	72705D-08
1	6.3436	54833533D-05	-2.0818122275	89D-06	2.8408251	18625D-08
2	-1.2353	36841503D-05	4.3917370314	75D-07	-6.3611463	84328D-09
3	-2.6090	90338780D-07	-2.0353328884	90D-08	5.6974689	68308D-10
4	9.5846	572975523D-09	7.5226673902	32D-09	-1.6435951	53340D-10
5	4.8999	77333096D-08	-2.2323474894	72D-09	2.9007289	52005D-11
6	-4.9560	07021108D-09	1.0360725912	63D-10	5.4764914	21305D-13
7	-2.4643	846448050D-10	1.9831862453	49D-11	-4.9771139	23684D-13
8	3.3343	67936705D-11	-1.5857185266	09D-12	2.9836998	05655D-14
N2MIN =	1.0000D	08 1/CM3				
N2MAX =	1.00000D	16 1/CM3				
Max. rel	. Error:	1.4647 %				

Moan	rol	Frror.	6170 2
Mean	reı.	Error:	.01/9 6

4.21 Reaction 2.3.9f $e + He(1s^{1}2s^{1}1S; r) \rightarrow e + He^{+}(1s) + e$

Eth=24.588-20.614 eV= 3.974 eV

Mean rel. Error: .5043 %

E-	-Index:	0	1		2	2
T-Index:	:					
0	-2.041	118707850D+01	2.0642779041	192D-01	-2.3013141	11088D-01
1	4.734	415747558D+00	-2.5528287035	588D-01	2.3422975	501453D-01
2	-2.031	119990372D+00	1.3241704646	675D-01	-4.7090024	194788D-02
3	6.371	388191840D-01	-6.4853234996	659D-02	-1.3181058	376403D-02
4	-1.606	102572000D-01	3.0310946735	577D-02	4.3533152	277834D-03
5	2.869	498856933D-02	-8.5946579263	314D-03	1.2454061	54419D-04
6	-3.217	835269221D-03	1.2988137729	998D-03	-1.4463990)13109D-04
7	1.992	406567281D-04	-9.7560343431	132D-05	1.5580382	205391D-05
8	-5.162	497860818D-06	2.8731354179	997D-06	-5.1210828	356413D-07
E-	-Index:	3	4		Ę	5
T-Index:	:					
0	1.064	846554112D-01	-2.3849462028	344D-02	2.8753608	342310D-03
1	-1.009	365349705D-01	2.1544245008	334D-02	-2.4503979	986314D-03
2	1.965	251665219D-02	-4.8610438980	033D-03	5.7411393	338224D-04
3	6.274	439358726D-03	-5.3365998263	346D-04	6.7665272	255195D-06
4	-2.730	895337646D-03	2.8798563997	739D-04	-8.5394430)51056D-06
5	3.376	848227155D-04	-2.7610344494	494D-05	-1.2268631	19476D-06
6	-1.429	851963639D-05	8.5643315433	394D-07	2.2667569	951926D-07
7	1.313	034465605D-07	-1.1555405000	016D-07	8.9073977	769803D-09
8	-9.429	070218568D-09	1.0432113075	579D-08	-1.5475494	46017D-09
E-	-Index:	6	7		8	3
T-Index:	:					
0	-1.875	978041743D-04	6.2453470359	980D-06	-8.3319880)72406D-08
1	1.492	018825102D-04	-4.5696919820)94D-06	5.5066730)96644D-08
2	-3.190	474508863D-05	7.5444651685	586D-07	-4.7381530	09264D-09
3	-4.524	848313611D-07	1.1012728894	478D-07	-3.6474484	163620D-09
4	1.327	453253122D-07	-2.3647325582	216D-08	8.9852195	510628D-10
5	1.509	448581903D-07	-1.0510903229	975D-09	-1.0357494	196501D-10
6	-1.493	652619657D-08	-1.7288257552	255D-10	1.8515262	257919D-11
7	-1.266	737591814D-09	1.0328998308	898D-10	-2.6324773	881331D-12
8	1.383	817472027D-10	-6.7595402088	869D-12	1.3000209	937903D-13
N2MIN =	1.0000D	08 1/CM3				
N2MAX =	1.0000D	16 1/CM3				
Max. rel	l. Error:	3.1668 %				

4.22 Reaction 2.3.9g $e + He(1s^{1}2s^{1}1S; r) \rightarrow e + He(1s^{1}2s^{1}3S; r)$

Exotherm by -20.614 + 19.818 eV = -0.796 eV

E-	Index:	0	1	2
T-Index:				
0	-1.511	.346543847D+01	-8.315548974761D-03	3 1.043755302803D-03
1	2.080	755731664D-02	-1.438655344675D-02	2 3.050387143129D-02
2	-1.559	881223335D-01	-4.819070749165D-03	5.469768725333D-03
3	3.593	311746308D-02	-3.264350393911D-03	-2.797070666582D-03
4	-7.539	069188132D-03	2.816838207584D-03	3 1.209358979731D-04
5	1.249	554266705D-03	-6.865425821712D-04	4.394712468238D-05
6	-1.346	691563985D-04	7.711126608572D-05	5 -3.761880439834D-06
7	8.141	.009386823D-06	-4.262318558331D-06	5 -5.160666241730D-08
8	-2.101	701177702D-07	1.010890135509D-07	3.792122360486D-09
E-	Index:	3	4	5
T-Index:				
0	2.642	487583410D-03	-1.141726366943D-03	1.946543332558D-04
1	-1.854	158470475D-02	4.594389089735D-03	-5.599959861484D-04
2	2.070	413057149D-04	-3.457506453968D-04	4.738780926722D-05
3	8.235	312574359D-04	-9.572690868675D-05	5 8.428282893341D-06
4	-1.330	419686348D-04	1.899203210608D-05	5 -1.396220087820D-06
5	1.494	981666075D-05	-3.053826052126D-06	5 2.132092797921D-07
6	-2.368	299001887D-06	4.919560666227D-07	-3.450359185228D-08
7	2.216	347288940D-07	-4.134834676754D-08	2.800553268281D-09
8	-5.585	637013718D-09	9.462594289102D-10	-4.980912274284D-11
E-	Index:	6	7	8
T-Index:				
0	-1.635	057730275D-05	6.698344020218D-07	7 -1.065235099548D-08
1	3.560	438313422D-05	-1.132594240133D-06	5 1.422148875942D-08
2	-2.442	018698579D-06	4.281026474337D-08	5.902980719683D-11
3	-6.289	242286208D-07	2.809710863001D-08	-4.986421098936D-10
4	5.944	783491030D-08	-1.403317455776D-09	9 1.466091168551D-11
5	-2.812	985305069D-09	-2.643823395694D-10) 7.873039688058D-12
6	3.288	755762988D-10	5.309244160943D-11	-1.497810114810D-12
7	-2.188	207542114D-11	-4.594641184965D-12	1.274835520030D-13
8	-1.490	478001851D-12	2.101409635615D-13	-4.858731679885D-15
N2MIN =	1.00000	08 1/CM3		
N2MAX =	1.00000	0 16 1/CM3		
Max. rel	. Error:	3.2971 %		
Mean rel	. Error:	.9554 %		

4.23 Reaction 2.3.9h $e + He(1s^{1}2s^{1}3S; r) \rightarrow e + He(1s^{2}1S; r)$

Exotherm by = -19.818 eV

E-I	Index:	0	1	2
T-Index:				
0	-1.830	459498604D+01	1.680944192322D-01	-1.907710632311D-01
1	1.261	631206881D+00	-3.697196539108D-01	3.033207775574D-01
2	-6.559	878055182D-01	3.061935618408D-01	-1.782153223733D-01
3	1.697	614445868D-01	-1.342126595676D-01	5.676221077284D-02
4	-3.176	415719557D-02	3.126025766778D-02	-1.011584147746D-02
5	3.950	262828345D-03	-3.455627026606D-03	6.079929754617D-04
6	-2.881	881569143D-04	1.125950976085D-04	5.069359855193D-05
7	1.022	634571062D-05	7.797965660632D-06	-7.903959237155D-06
8	-1.046	204166475D-07	-5.060676841045D-07	2.672428957821D-07
E-1	Index:	3	4	5
T-Index:				
0	7.870	000493965D-02	-1.578049324901D-02	1.693793556658D-03
1	-1.021	849055299D-01	1.773149558150D-02	-1.726009071069D-03
2	4.310	244321027D-02	-5.236106415441D-03	3.417399063180D-04
3	-8.861	603178392D-03	3.398799078845D-04	4.431709264967D-05
4	1.152	839986316D-03	9.136542557803D-06	-9.999842824089D-06
5	-1.259	483668399D-05	-8.845662317330D-06	8.897275861513D-07
6	-1.194	283431812D-05	8.912124314893D-07	-4.132333818961D-08
7	7.631	517909210D-07	5.811563274232D-08	-6.834989323422D-09
8	-3.354	009675567D-09	-6.847471248575D-09	6.066678972621D-10
E-I	Index:	6	7	8
T-Index:				
0	-9.871	776235813D-05	2.943212020081D-06	-3.527779579573D-08
1	9.567	692855718D-05	-2.834877407571D-06	3.493434187484D-08
2	-1.237	776471579D-05	2.515470587336D-07	-2.566899239887D-09
3	-4.572	811804993D-06	1.335801462225D-07	-8.926601447859D-10
4	3.785	048727116D-07	1.570413745481D-08	-7.805586685406D-10
5	3.807	398587262D-08	-7.209735737750D-09	2.098640072212D-10
6	-2.405	215414685D-09	4.468725637555D-10	-1.423750029854D-11
7	-9.649	173073383D-12	1.030982426102D-11	-1.042452128502D-13
8	-2.881	700207187D-12	-1.158584840686D-12	2.909357590574D-14
N2MIN =	1.00000D	08 1/CM3		
N2MAX = 2	1.00000D	16 1/CM3		
Max. rel	. Error:	6.5233 %		
Mean rel	. Error:	1.8951 %		

4.24 Reaction 2.3.9i $e + He(1s^{1}2s^{1}3S; r) \rightarrow e + He(1s^{1}2s^{1}1S; r)$

Eth = 20.614 - 19.818 eV = 0.796 eV

E-1	Index:	0	1	2
T-Index:				
0	-1.745	844276703D+01	8.157573269596D	-02 -8.846137669182D-02
1	7.481	807449876D-01	-8.855888981396D	-02 6.895575898405D-02
2	-4.821	059764779D-01	4.679324654447D	-02 -3.297751569188D-02
3	1.178	180871789D-01	-6.059351136561D	-03 6.707641671282D-03
4	-1.832	266433398D-02	-3.019133239406D	-03 -4.072864365252D-06
5	1.619	689578381D-03	1.226840796832D	-03 -1.633059618549D-04
6	-5.423	530837755D-05	-1.774072691416D	-04 1.112445681671D-05
7	-1.967	026987940D-06	1.153537885107D	-05 9.730921470847D-07
8	1.471	829150856D-07	-2.811554762172D	-07 -8.690862477419D-08
E-1	Index:	3	4	5
T-Index:				
0	3.729	534986051D-02	-7.748150218997D	-03 8.681073774233D-04
1	-2.009	477611517D-02	2.695260975948D	-03 -1.670023006117D-04
2	7.266	340675294D-03	-5.231546959702D	-04 -1.405113747904D-05
3	-1.185	084843308D-03	-7.521294935444D	-06 1.345383423264D-05
4	-3.463	344438708D-06	2.717377734542D	-05 -3.273238480292D-06
5	5.881	112042281D-06	-3.089656478315D	-06 4.514505533598D-07
6	6.093	509408469D-06	-8.020661101230D	-07 1.087961936931D-08
7	-1.135	225653662D-06	1.679703656220D	-07 -7.767824389490D-09
8	5.404	365621466D-08	-8.134516470380D	-09 4.439057728063D-10
E-1	Index:	6	7	8
T-Index:				
0	-5.326	368279955D-05	1.687247391834D	-06 -2.160318603760D-08
1	3.273	035637060D-06	9.077935253350D	-08 -3.430880317364D-09
2	3.581	367863934D-06	-1.600203938605D	-07 2.265889575361D-09
3	-7.627	838979440D-07	1.599025715771D	-09 4.761644881308D-10
4	1.521	655610951D-08	1.078364608775D	-08 -3.386106465918D-10
5	-8.083	755569905D-09	-1.161692326935D	-09 4.153576692338D-11
6	2.280	605076008D-09	-9.703614416875D	-11 8.269006530832D-13
7	-1.272	866644000D-10	1.985460981397D	-11 -4.226560743702D-13
8	1.412	497774809D-13	-8.003922930542D	-13 1.975681079140D-14
N2MIN = 1	L.00000E	08 1/CM3		
N2MAX = 1	L.00000E	16 1/CM3		
Max. rel.	. Error:	1.8916 %		
Mean rel.	Error:	.4888 %		

4.25 Reaction 2.3.9j $e + He(1s^12s^13S; r) \rightarrow e + He^+(1s) + e$

Eth = 24.588 - 19.818 eV = 4.770 eV

E-1	Index:	0	1	2
T-Index:				
0	-2.055	363233340D+01	4.495119087580D-0	-5.238622256836D-01
1	5.210	334391329D+00	-2.968974679742D-0	2.779506719390D-01
2	-2.250	469356935D+00	7.010500442526D-0	-1.213577735853D-01
3	5.852	050404826D-01	8.921407862649D-0	4.101964952741D-03
4	-9.522	800090383D-02	-6.623026789339D-0	1.426598675675D-02
5	8.361	746435674D-03	1.876265413172D-0	-4.938987966830D-03
6	-2.082	000823695D-04	-2.653612987499D-0	7.235705862418D-04
7	-1.971	223241071D-05	1.866108873151D-0	-5.008080286294D-05
8	1.129	438144977D-06	-5.204161575593D-0	1.341100873190D-06
E-]	Index:	3	4	5
T-Index:				
0	2.389	768266075D-01	-5.282830816524D-0	6.225525677663D-03
1	-9.544	309562602D-02	1.574089888139D-0	-1.373029882004D-03
2	3.981	143589359D-02	-5.552464406897D-0	4.010663176656D-04
3	-6.610	103528390D-03	9.857909449549D-0	-6.826906017552D-05
4	-7.969	610821575D-04	-1.713086806983D-0	05 3.192882264529D-06
5	4.727	105277550D-04	-1.892061941621D-0	5.709120517813D-07
6	-6.875	356963100D-05	2.067400657772D-0	06 -4.852278760689D-08
7	4.145	701518111D-06	-3.688167910326D-0	9 -5.119123986569D-09
8	-8.570	742834160D-08	-5.179756344998D-0	9 4.745066997076D-10
E-1	Index:	6	7	8
T-Index:				
0	-3.959	446131986D-04	1.281892887943D-0	05 -1.658021134736D-07
1	6.228	002425783D-05	-1.303442479359D-0	6 8.322300537481D-09
2	-1.588	204879114D-05	3.456291200468D-0	07 -3.614686328664D-09
3	3.402	964809821D-06	-1.409141853759D-0	2.865103804351D-09
4	-3.264	060374187D-07	2.446519428773D-0	-6.273758803879D-10
5	-3.265	134644505D-08	8.398689087309D-1	.0 1.744587191452D-12
6	1.231	197186211D-08	-8.532974556790D-1	.0 1.733410572003D-11
7	-1.110	937956560D-09	9.978997213312D-1	1 -2.217674451730D-12
8	3.268	128548473D-11	-3.678837719391D-1	2 8.560132404451D-14
N2MIN = 1	.00000D	08 1/CM3		
N2MAX = 1	.00000D	16 1/CM3		
Max. rel.	Error:	7.0831 %		
Mean rel.	Error:	2.2103 %		

4.26 Reaction 2.3.13a $e + He^+(1s) \rightarrow He(1s^21S)$

Helium multi-step model, here recombination: radiative + threebody + dielectronic Fujimoto Formulation II (only ground level transported, no metastables kept explicit), [20]

E-1	Index:	0	1	2
T-Index:				
0	-2.872	754373123D+01	-6.171082987797D-03	3 2.414548639597D-02
1	1.564	233603544D+00	-3.972220721457D-02	2 -4.466712599181D-02
2	-6.182	140631482D+00	1.626641668186D-0	1 3.366589582541D-02
3	5.459	428677778D+00	-1.700323494998D-03	1 -1.540106384088D-02
4	-2.128	115924661D+00	7.233939709414D-02	2 5.819196258503D-03
5	4.373	730373037D-01	-1.574917019835D-02	2 -1.456253436544D-03
6	-4.972	257208732D-02	1.866175274689D-03	3 2.047337498511D-04
7	2.967	287371427D-03	-1.147811325052D-0.	4 -1.460813593905D-05
8	-7.271	204747116D-05	2.874049670122D-0	6 4.124421172202D-07
E-1	Index:	3	4	5
T-Index:				
0	-7.188	662067622D-03	9.481268604767D-0	4 -1.958887458637D-05
1	1.247	359158796D-02	-1.660591942878D-03	3 6.019181402025D-05
2	-7.413	737965595D-03	1.220189896183D-03	3 -9.505295724750D-05
3	9.524	545793262D-04	-8.734341535385D-0	5 -2.796027477899D-06
4	-7.655	935845761D-05	-1.837949067050D-0	5 4.725789832980D-06
5	4.772	491845078D-05	-1.827059132463D-0	6 -6.941163292710D-08
6	-1.004	438052808D-05	7.590734865850D-0	7 -6.771179147667D-08
7	7.422	385993164D-07	-3.281946488134D-0	3 2.164459880579D-09
8	-1.689	203971933D-08	-9.071172814458D-1	0 1.844295219334D-10
E-1	Index:	6	7	8
T-Index:				
0	-5.507	786383328D-06	4.358288686930D-0	7 -9.503272091010D-09
1	3.800	156798817D-06	-3.377807793756D-0	7 6.828447501225D-09
2	4.459	492214068D-06	-1.552772441333D-0	7 2.866586118879D-09
3	4.561	981097438D-07	4.940311502014D-0	9 -6.525725010760D-10
4	-3.997	782411860D-07	1.036731541123D-0	8 -3.373845712183D-11
5	2.716	740135949D-08	-1.143121626264D-0	9 1.295139027087D-11
6	1.218	720257518D-09	6.787024479540D-1	1 -2.432253541918D-12
7	1.113	868237282D-10	-1.513922678655D-1	1 3.951084520871D-13
8	-2.055	023511556D-11	1.101902611511D-12	2 -2.206082129473D-14
N2MIN =	L.00000D	08 1/CM3		
N2MAX = 2	L.00000E	16 1/CM3		
Max. rel.	. Error:	16.4494 %		
Mean rel	Error:	3.2360 %		

4.27 Reaction 2.3.13b $e + He^+(1s) \rightarrow He(1s^21S; r)$

Helium multi-step model, here recombination: radiative + threebody + dielectronic Fujimoto Formulation I (ground level and 2 meta-stable levels transported), effective recombination into ground state (1|1S)

	E-Index:	0	1	2
T-Index	:			
	0 -2.93	32450239883D+01	-1.725214936087D-02	4.209507397331D-02
	1 1.36	58459463821D+00	-7.548584212824D-02	-3.321889449021D-02
	2 -5.05	57940093488D+00	2.531332526084D-01	-1.925988688740D-02
	3 4.43	37755591817D+00	-2.369773678428D-01	2.411850401784D-02
	4 -1.70	4236205062D+00	9.630485149239D-02	-6.971157814419D-03
	5 3.43	80644471030D-01	-2.061167258227D-02	7.487855629993D-04
	6 -3.80	9452269361D-02	2.434745940239D-03	-1.722706965522D-06
	7 2.21	8026788496D-03	-1.502211895379D-04	-5.165559630643D-06
	8 -5.30	1589276464D-05	3.780661493099D-06	2.647213620732D-07
	E-Index:	3	4	5
T-Index	:			
	0 -1.84	3883199649D-02	4.330069861940D-03	-5.571398183907D-04
	1 2.24	6769961570D-02	-6.920109284335D-03	1.034704067336D-03
	2 -1.56	52041938975D-03	2.844891620769D-03	-5.840417169956D-04
	3 -6.24	5247150004D-03	1.707788608782D-04	8.828047075521D-05
	4 2.15	0122229030D-03	-1.997306644340D-04	2.987453868437D-06
	5 -2.35	52870835454D-04	2.321396939441D-05	-1.669051074965D-06
	6 -1.92	9788529702D-06	1.001774243168D-06	7.435769683477D-08
	7 1.99	9043007214D-06	-3.211502011021D-07	8.114609805127D-09
	8 -9.89	7241177277D-08	1.504658532546D-08	-5.883462440247D-10
	E-Index:	6	7	8
T-Index	:			
	0 4.00	6413547865D-05	-1.488766590351D-06	2.211904689519D-08
	1 -8.06	56726007499D-05	3.137222500010D-06	-4.796687278784D-08
	2 5.16	56332348737D-05	-2.133727041895D-06	3.362146796114D-08
	3 -1.09	9721749926D-05	5.014979395019D-07	-8.105197770220D-09
	4 4.90	4814231191D-07	-2.358575243153D-08	2.498171028400D-10
	5 1.74	5034668357D-07	-1.128396994326D-08	2.586295673609D-10
	6 -3.34	2032519922D-08	2.451263340785D-09	-5.477602284810D-11
	7 2.41	4625764231D-09	-2.022906627308D-10	4.590099192405D-12
	8 -6.46	5233005227D-11	6.181507714121D-12	-1.430061439345D-13
N2MIN =	1.000000	08 1/CM3		
N2MAX =	1.00000	0 16 1/CM3		
Max. re	l. Error:	15.0191 %		
Mean re	l. Error:	3.1731 %		

4.28 Reaction 2.3.13c $e + He^+(1s) \rightarrow He(1s^12s^11S; r) + hv$

[20]. Here: effective recombination into meta-stable level (2|1S).

	E-Index:	0	1	2
T-Index	:			
	0 -3.290	594969157D+01	5.936377204270D-0	1 -5.786568026984D-01
	1 1.289	118555318D+00	-7.322821510173D-0	1 5.216313908016D-01
	2 -4.581	116130605D+00	4.359234826400D-0	1 -1.879684009591D-01
	3 3.975	023080430D+00	-1.135607337249D-0	1 -2.093787195291D-02
	4 -1.511	744296191D+00	9.273954721890D-0	3 3.091151170807D-02
	5 3.006	694544045D-01	-7.098672020828D-0	4 -6.524345786670D-03
	6 -3.291	282273842D-02	4.674323034046D-0	4 3.252758528411D-04
	7 1.885	862263038D-03	-7.894912660673D-0	5 3.023350709086D-05
	8 -4.430	501809351D-05	3.801909601518D-0	6 -2.522313594898D-06
	E-Index:	3	4	5
T-Index	:			
	0 2.219	812747147D-01	-4.301992587218D-0	2 4.645717376756D-03
	1 -1.469	524854136D-01	1.758178948996D-0	2 -6.553480315101D-04
	2 4.156	489474989D-02	-1.653580474529D-0	3 -5.740235177360D-04
	3 4.449	510483711D-03	-7.099391762833D-0	4 1.140482945563D-04
	4 -6.447	934562370D-03	5.521339815402D-0	4 -1.215385049113D-05
	5 1.190	208632381D-03	-8.535844740287D-0	5 1.100343069640D-06
	6 7.662	178711899D-06	-1.003394753061D-0	5 9.133676744341D-07
	7 -1.693	836511335D-05	2.998300023499D-0	6 -2.134268520285D-07
	8 1.008	933043477D-06	-1.637662372864D-0	7 1.194860574397D-08
	E-Index:	6	7	8
T-Index	:			
	0 -2.827	549938027D-04	9.098967864743D-0	6 -1.204212130817D-07
	1 -3.911	503234413D-05	3.838699392781D-0	6 -8.432388008514D-08
	2 8.252	435318894D-05	-4.174329959264D-0	6 7.461274593602D-08
	3 -1.015	903498277D-05	4.067368927608D-0	7 -5.956193776494D-09
	4 -1.743	597814483D-06	1.504881645494D-0	7 -3.516856295239D-09
	5 3.283	228084253D-07	-2.777357769656D-0	8 6.855090395029D-10
	6 -3.246	510016651D-08	1.021166636920D-0	9 -2.826061022812D-11
	7 5.448	904749550D-09	1.026064555133D-1	1 -1.372295711583D-12
	8 -3.572	199625876D-10	1.353028569150D-1	2 7.810473188768D-14
N2MIN =	1.00000D	08 1/CM3		
N2MAX =	1.00000D	16 1/CM3		
Max. re	l. Error:	12.8697 %		
Mean re	l. Error:	4.3370 %		

4.29 Reaction 2.3.13d $e + He^+(1s) \rightarrow He(1s^12s^13S; r) + hv$

[20]. Here: effective recombination into meta-stable level (2|3S).

E	L-Index:	0	1	2
T-Index:				
C	-2.9562	47006586D+01	4.857379877013D-01	1 -4.698385090723D-01
1	2.2266	55583858D+00	-5.008925977592D-01	1 4.409072277517D-01
2	-8.3862	71074322D+00	-6.680555751755D-02	2 1.358293373473D-01
3	7.8025	51872732D+00	1.513454163302D-01	1 -2.382523353494D-01
4	-3.1760	66118073D+00	-2.915513853670D-02	2 8.389442053277D-02
5	6.7904	03187679D-01	-8.583336134054D-03	3 -8.339355078342D-03
6	-8.0050	18693268D-02	3.501616009283D-03	3 -8.108811483383D-04
7	4.9368	33057738D-03	-4.038202701566D-04	4 1.917972012272D-04
8	-1.2459	31475232D-04	1.550754095349D-0	5 -8.944775549284D-06
E	-Index:	3	4	5
T-Index:				
C	1.8164	91812551D-01	-3.584007722558D-02	2 4.008582628581D-03
1	-1.4900	76771833D-01	2.428208422290D-02	2 -2.197248681202D-03
2	-4.1922	64845130D-02	6.681287810863D-03	3 -3.474715517406D-04
3	7.0342	51548002D-02	-9.653541471324D-03	3 3.950052472624D-04
4	-2.5949	11934917D-02	3.785834072023D-03	3 -1.721024156646D-04
5	3.1007	72841149D-03	-5.641898835295D-0	4 3.146400786804D-05
6	1.2264	53809803D-04	9.772361084934D-0	6 -1.220791337288D-06
7	-4.7376	71071626D-05	4.334084847132D-0	6 -1.862385782715D-07
8	2.3643	80548912D-06	-2.583267263336D-0	7 1.313403535033D-08
E	-Index:	6	7	8
T-Index:				
С	-2.5622	89391561D-04	8.707904177549D-0	6 -1.215806872260D-07
1	1.1099	06018249D-04	-2.900632901582D-0	6 3.027934182965D-08
2	-1.0769	50834118D-05	1.529234802310D-0	6 -3.663757563702D-08
3	2.4081	58683211D-05	-2.450750101163D-0	6 5.482201735529D-08
4	-8.2292	47133546D-06	9.351454862581D-0	7 -2.147970339341D-08
5	1.0224	59855218D-06	-1.480508733520D-0	7 3.599099499020D-09
6	-8.1129	83260770D-08	1.090170350156D-0	8 -2.777349026055D-10
7	6.4150	33848685D-09	-3.093185955060D-1	0 7.625408371264D-12
8	-2.6248	38999683D-10	-6.850467836445D-13	3 5.598594440202D-14
N2MIN =	1.0000D C	8 1/CM3		
N2MAX =	1.00000D 1	6 1/CM3		
Max. rel	. Error:	21.5948 %		
Mean rel	. Error:	5.8841 %		

4.30 Reaction 2.2C $e + He^+(1s) \rightarrow He^{++} + e + e$

Ionization Rates for singly charged helium ions COLRAD (McWhirter), hydrogen-like approximation [22] $\langle sigma * vrel \rangle (Te, ne)(cm**3/s)$

E-I	ndex:	0	-	1		2
T-Index:						
0	-7.504	895618885D+01	2.2014654	463709D-02	-5.069	769253639D-03
1	5.475	513292431D+01	-5.4175897	714886D-02	3.775	044165759D-02
2	-2.693	028880068D+01	3.7749479	998557D-02	-2.411	882491817D-02
3	8.660	359434783D+00	-1.7648771	195580D-02	7.243	690204418D-03
4	-1.955	813859940D+00	8.2021681	146805D-03	-3.070	056924124D-03
5	3.098	090672677D-01	-2.7717305	559069D-03	1.297	834186151D-03
6	-3.271	260113212D-02	5.3251121	160328D-04	-2.929	485587655D-04
7	2.050	483088051D-03	-5.1908095	564237D-05	3.145	856505861D-05
8	-5.719	259025474D-05	2.004313	708534D-06	-1.292	078319547D-06
E-I	ndex:	3	2	1		5
T-Index:						
0	3.915	543748345D-03	-1.0311327	793821D-03	1.654	691798718D-04
1	-1.633	041262280D-02	3.4599312	210677D-03	-4.194	602018842D-04
2	8.989	971506710D-03	-1.8296225	573856D-03	2.164	276869595D-04
3	-1.273	168299077D-03	1.7636244	435402D-04	-2.479	535228702D-05
4	9.752	207930721D-05	6.2511218	332296D-05	-6.640	018325938D-06
5	-1.296	242864408D-04	-8.8051763	355814D-06	1.717	983972172D-06
6	4.563	001069981D-05	-1.8363586	658149D-06	-6.237	635823497D-08
7	-5.886	932297134D-06	4.2775845	502763D-07	-1.234	530993035D-08
8	2.657	229485598D-07	-2.2989849	920724D-08	9.125	550698905D-10
E-I	index:	6	-	7		8
T-Index:						
0	-1.471	360785546D-05	6.8235045	501535D-07	-1.247	427417560D-08
1	2.861	803302953D-05	-1.0362981	188456D-06	1.553	321018673D-08
2	-1.391	926980686D-05	4.5129421	l19697D-07	-5.904	011561947D-09
3	1.882	628114227D-06	-6.3230646	673756D-08	8.275	404429978D-10
4	1.952	370344224D-07	1.7512644	412799D-09	-1.622	640470420D-10
5	-5.793	682625805D-08	-1.2204511	186228D-09	7.819	729115572D-11
6	1.020	925549512D-09	4.417455	780936D-10	-1.689	115024159D-11
7	4.669	160272059D-10	-4.6065565	580267D-11	1.506	577519668D-12
8	-2.598	750073326D-11	1.4645294	452448D-12	-4.669	913022501D-14
N2MIN = 1	.00000D	08 1/CM3				
N2MAX = 1	.00000D	16 1/CM3				
Max. rel.	Error:	.3141 %				

.1103 %

Mean rel. Error:

Electron Temperature (eV)

4.31 Reaction 2.6A0 $e + C \rightarrow C^+ + 2e$

Ionization Rates for singly charged carbon, ADAS 93 $\langle sigma * vrel \rangle (Te, ne) (cm^{**}3/s)$

E-	-Index:	0	1	2
T-Index:	:			
0	-2.971	457639565D+01	1.107810794514D+00	-4.929092425558D-01
1	1.499	806652944D+01	-2.549991583370D+00	9.026830825116D-01
2	-7.145	949073329D+00	6.664487958895D-01	-1.727631701810D-01
3	2.340	511256186D+00	-1.160562412201D-01	1.411445363827D-02
4	-5.249	343322780D-01	2.135356892092D-02	-1.638667443530D-03
5	7.562	2193210612D-02	-2.918522374196D-03	1.286365870759D-04
6	-6.679	478578836D-03	3.000723261637D-04	-1.608459495742D-05
7	3.270	945618657D-04	-1.883054084198D-05	1.732029469888D-06
8	-6.675	613055770D-06	4.142784144247D-07	-3.486309036661D-08
E-	-Index:	3	4	5
T-Index:	:			
0	1.300)116911300D-01	-2.066054730760D-02	2.042310400958D-03
1	-1.879	920996407D-01	2.431269610957D-02	-2.004879563783D-03
2	2.797	274709016D-02	-2.903521270254D-03	1.995997150157D-04
3	-5.971	983093427D-04	-7.377767439216D-05	1.267367125997D-05
4	6.910	190376581D-05	-5.464445143303D-06	5.674562003155D-07
5	-7.001	250033151D-07	7.855848854211D-07	-8.856533728232D-08
6	4.049	976855256D-07	-2.088187353775D-08	-6.089302275674D-09
7	-1.675	345958159D-07	1.579162356473D-08	-6.994965968869D-10
8	2.814	1990023664D-09	-2.947061589979D-10	2.418389203250D-11
E-	-Index:	6	7	8
T-Index:	:			
0	-1.198	3777580517D-04	3.797623457774D-06	-5.001748956830D-08
1	1.013	3724485054D-04	-2.844335907618D-06	3.386548334244D-08
2	-8.259	361032307D-06	1.731145419218D-07	-1.270740802103D-09
3	-1.039	751082795D-06	4.599752398553D-08	-7.953804201299D-10
4	1.653	3887367244D-08	-3.425776625948D-09	8.586728657030D-11
5	-4.099	151298763D-09	5.982763605144D-10	-1.370643938638D-11
6	1.485	858394226D-09	-8.987472676089D-11	1.616606601615D-12
7	-1.867	411789486D-11	2.235327393834D-12	-3.862181485750D-14
8	-1.188	3451034508D-12	4.216699821614D-14	-9.477595087316D-16
T1MIN =	1.00000	00 EV		
T1MAX =	5.00000	04 EV		
N2MIN =	1.00000) 10 1/CM3		
N2MAX =	1.00000) 15 1/CM3		
Max. rel	L. Error:	1.2246 %		
Mean rel	l. Error:	.2748 %		

4.32 Reaction **2.7A0** $e + N \rightarrow N^+ + 2e$

Ionization Rates for neutral nitrogen, ADAS 96 $\langle sigma * vrel \rangle (Te, ne)(cm^{**3/s})$

E-I	index: 0	1	2
T-Index:			
0	-3.125599079514D+01	8.881344790721D-02	3.875689690924D-02
1	1.501972942719D+01	-2.245019983323D-01	-1.170266566017D-01
2	-8.563505396323D+00	2.563611550679D-01	5.993043917730D-02
3	3.259172785778D+00	-1.459562059574D-01	-3.629785517504D-03
4	-8.028485847461D-01	4.560133800137D-02	-3.579706539679D-03
5	1.239955993583D-01	-8.202838629323D-03	9.221893790607D-04
6	-1.152891908930D-02	8.472922768697D-04	-8.914562423314D-05
7	5.889464965188D-04	-4.669795084986D-05	3.515034526935D-06
8	-1.269186213968D-05	1.064343317380D-06	-3.611292369142D-08
E-	Index: 3	4	5
T-Index:			
0	-7.367355926910D-03	-8.933351435213D-04	1.937451469905D-04
1	4.426863655734D-02	-4.430861799571D-03	3.253064203736D-05
2	-3.020399271227D-02	3.927234491519D-03	-1.959177270882D-04
3	6.189975576309D-03	-7.279341465385D-04	2.546794744614D-05
4	-2.466055005611D-04	-1.287111351337D-05	7.621210137952D-06
5	-3.039643456169D-05	9.491026278127D-06	-1.535906103316D-06
6	-2.900624448150D-06	3.745360666294D-07	3.692979682516D-08
7	8.586152612035D-07	-1.356120392220D-07	4.747296972249D-09
8	-3.812958439511D-08	5.487542777793D-09	-1.437006614531D-10
E-	Index: 6	7	8
T-Index:			
0	-4.302425039372D-06	-4.449062046116D-07	1.641092601069D-08
1	1.829955290678D-05	-1.088030063258D-06	2.060046531889D-08
2	1.624638825366D-06	2.150911835291D-07	-6.785152839285D-09
3	-1.935192712324D-07	-2.396214128585D-10	1.822600582381D-10
4	-2.751092797923D-07	-9.878792756722D-09	3.880864455805D-10
5	3.342842434144D-08	3.080573580529D-09	-1.004120274888D-10
6	5.903820424145D-10	-3.124143842671D-10	8.467756187765D-12
7	3.173842995092D-11	-2.659413955852D-12	4.729814633051D-14
8	-1.577918732137D-11	1.171782749066D-12	-2.466359817399D-14
T1MIN =	0.20000D 00 1/CM3		
T1MAX =	1.50000D 04 1/CM3		
N2MIN =	5.00000D 07 1/CM3		
N2MAX =	2.00000D 15 1/CM3		
Max. rel	. Error: 2.9930 %		

Max.	TET.	ELLOL.	2.9950	6
Mean	rel.	Error:	0.7199	00

4.33 Reaction 2.8A0 $e + O \rightarrow O^+ + 2e$

Ionization Rates for neutral oxygen, ADAS 96 $\langle sigma * vrel \rangle (Te, ne)(cm^{**}3/s)$

E-	-Index:	0	1	2
T-Index:	:			
0	-3.328	362393733D+01	-4.484395495461D-01	6.167722720177D-01
1	1.655	302385400D+01	9.070420476255D-01	-7.492202987359D-01
2	-9.246	899232716D+00	-6.861308571709D-01	3.853130674026D-01
3	3.468	152479829D+00	2.653279717129D-01	-9.503130449306D-02
4	-8.532	829072212D-01	-5.834222497364D-02	9.030518658158D-03
5	1.333	834015615D-01	7.496194087446D-03	4.753498599348D-04
6	-1.265	465442757D-02	-5.453745857810D-04	-1.638438870269D-04
7	6.624	459298778D-04	2.000567259474D-05	1.131325208597D-05
8	-1.465	832842295D-05	-2.619665824220D-07	-2.369684156977D-07
E-	-Index:	3	4	5
T-Index:	:			
0	-2.589	961397492D-01	4.118976653137D-02	-1.959950990473D-03
1	2.638	779663615D-01	-3.490775262239D-02	5.793136771074D-04
2	-1.247	067819410D-01	1.680118594677D-02	-5.089127052875D-04
3	2.929	033903989D-02	-4.430118646918D-03	2.507450743683D-04
4	-2.550	710866039D-03	4.693149835285D-04	-3.225531357806D-05
5	-1.298	585181626D-04	-1.260782059434D-06	-6.674084144123D-07
6	3.005	970684014D-05	-2.808693744681D-07	3.437325607970D-08
7	-5.378	571580338D-07	-4.142319433039D-07	5.148458125516D-08
8	-5.436	002215866D-08	2.927695957962D-08	-3.654799869508D-09
E-	-Index:	6	7	8
T-Index:	•			
0	-9.739	946501376D-05	1.139459064885D-05	-2.689494629827D-07
1	2.088	106459889D-04	-1.507734725052D-05	3.066201565961D-07
2	-5.644	498060513D-05	4.238399098405D-06	-7.745613330596D-08
3	-3.986	851509525D-06	7.226554994339D-08	-6.046272342238D-09
4	1.782	158795226D-06	-1.325057610801D-07	4.204627741204D-09
5	2.320	632028445D-08	9.646974765235D-09	-4.535319182284D-10
6	-1.080	831526075D-08	1.525797006183D-10	1.266728082419D-11
7	-2.138	597283955D-09	3.312940600087D-11	-2.535541525696D-13
8	1.982	722701483D-10	-4.851782342710D-12	4.242787336605D-14
T1MIN =	0.2000D	00 1/CM3		
T1MAX =	1.5000D	04 1/CM3		
N2MIN =	5.0000D	07 1/CM3		
N2MAX =	2.000000	15 1/CM3		
Max. rel	l. Error:	8.8515 %		
Mean rel	L. Error:	0.9745 %		

4.34 Reaction 2.3.2B0 $e + He^+(1s) \rightarrow He(1s^21S) + hv$

Data from impurity transport code "STRAHL", [17] Recombination Rates for single charged Helium Ions (w/o three-body)

	E-In	dex:	0		1			2
T-Inde:	x:							
	0	-2.89886	56818182D+01	-3.068	735204957D	0-02	7.818231	1657785D-02
	1	1.81650	4622984D+00	-1.996	644882484D	-01 -	-2.022934	4910684D-01
	2	-5.95762	20306977D+00	5.564	226839342D	0-01	2.720939	9045109D-01
	3	4.88335	6392367D+00	-5.504	736532364D	-01 -	-1.589729	9887673D-01
	4	-1.78569	0784875D+00	2.554	161096465D	0-01	4.391044	4966362D-02
	5	3.44397	6158874D-01	-6.304	562647473D	-02 -	-6.048646	6045521D-03
	6	-3.66667	0180913D-02	8.499	875301084D	0-03	4.080124	4220783D-04
	7	2.04247	4095540D-03	-5.896	220272289D	-04 -	-1.226460	6093436D-05
	8	-4.65387	3125342D-05	1.644	314326566D	-05	1.520073	3468241D-07
	E-In	dex:	3		4			5
T-Inde:	х:							
	0	-4.36028	39476744D-02	1.088	616122909D	-02 -	-1.442780)146671D-03
	1	1.05707	9914763D-01	-2.358	570776702D	0-02	2.968485	5844589D-03
	2	-1.23507	6579967D-01	2.248	324096678D	-02 -	-2.49706	7848696D-03
	3	6.63555	51763548D-02	-9.269	476706908D	0-03	8.089219	9419856D-04
	4	-1.83117	4182029D-02	1.752	848228102D	-03 -	-7.418643	3102963D-05
	5	2.90570)5534546D-03	-1.678	595996471D	-04 -	-7.790745	5301776D-06
	6	-2.92691	4092439D-04	1.437	277876918D	0-05	1.085100	5848461D-06
	7	1.89420	7582471D-05	-1.612	501983994D	0-06	6.632343	3028157D-08
	8	-5.98940)6850464D-07	8.425	772893569D	-08 -	-8.367921	1447451D-09
	E-In	dex:	6		7			8
T-Inde:	х:							
	0	1.04355	54466513D-04	-3.878	190225512D	0-06	5.783675	5088058D-08
	1	-2.14905	50424333D-04	8.207	356509792D	-06 -	-1.268150)915732D-07
	2	1.77983	88048026D-04	-7.127	873717134D	0-06	1.175164	4928521D-07
	3	-5.67549	7459272D-05	2.589	770454486D	-06 -	-4.902088	3171680D-08
	4	5.56129	2499931D-06	-4.363	201173962D	0-07	1.122814	4678532D-08
	5	2.46599	2165628D-07	5.016	603759447D	-08 -	-1.901239	9672341D-09
	6	-4.18829	9784450D-09	-8.149	167953030D	0-09	2.753349	9347791D-10
	7	-1.16733	37552792D-08	1.023	904862606D	-09 -	-2.578964	4505694D-11
	8	8.32116	59431770D-10	-4.756	050161152D	-11	9.973991	1458967D-13
N2MIN =	1.0	0000D 08	3 1/CM3					
N2MAX =	1.0	0000D 16	5 1/CM3					
Max. r	el. E	rror: 1	6.6458 %					

4.35 Reaction 2.3.2B1 $e + He^{++} \rightarrow He^{+}(1s) + hv$

Recombination Rates for double charged Helium Ions (w/o three-body)

	E-Inde	x:	0		1			2	
T-Inde:	х:								
	0 -2	.68973	0745452D+01	-4.1	189774474	235D-02	3.	9070096	91550D-02
	1 -6	.43387	4222932D-01	3.2	299308672	728D-02	-2.	1125647	79272D-02
	2 -1	.77931	2827872D-02	-2.7	784310132	407D-02	3.	7563346	28555D-03
	3 -2	.94120	8629331D-03	2.3	348797955	174D-02	-3.	6030447	25903D-03
	4 -1	.09707	9440712D-04	-1.(041386945	451D-02	2.	1104840	02085D-03
	5 3	.62719	0561298D-05	2.4	454594288	891D-03	-5.	4699346	510104D-04
	6 -2	.05149	8433274D-06	-3.1	182066464	328D-04	7.	4451815	97104D-05
	7 9	.04989	7913059D-08	2.1	153132862	082D-05	-5.	3110994	51965D-06
	8 -2	.58919	6837551D-09	-5.9	949628493	511D-07	1.	5702048	24882D-07
	E-Inde	х:	3		4			5	i i
T-Inde:	х:								
	0 -1	.85697	6066463D-02	4.2	225395376	848D-03	-5.	1897968	61077D-04
	1 9	.36157	5704851D-03	-2.0	96884296	6496D-03	2.	4609783	51345D-04
	2 -1	.50078	6464745D-05	-5.2	281337256	827D-05	1.	8226882	74176D-05
	3 -1	.19974	1248527D-04	7.7	729105625	058D-05	-1.	2925712	16711D-05
	4 -1	.21539	4704492D-04	8.8	335563507	260D-07	2.	3461390	78670D-07
	5 3	.71784	1775232D-05	-4.6	659128130	528D-07	2.	3366591	34693D-08
	6 -4	.78404	6635653D-06	-1.8	379150864	927D-07	3.	4846667	07655D-08
	7 3	.62953	3941682D-07	1.9	916572317	480D-08	-4.	0267632	60489D-09
	8 -1	.31778	9208085D-08	-1.8	308855222	707D-10	9.	5399534	63992D-11
	E-Inde	x:	6		7			8	
T-Inde:	х:								
	0 3	.50953	3525807D-05	-1.2	228955181	999D-06	1.	7399865	70439D-08
	1 -1	.53442	3152274D-05	4.7	789360346	5264D-07	-5.	8523990	19136D-09
	2 -2	.72334	4400799D-06	1.6	665540778	802D-07	-3.	5216405	01579D-09
	3 1	.40809	4932910D-06	-7.8	305738049	487D-08	1.	5984236	94616D-09
	4 -8	.82484	8629130D-08	8.2	227207653	809D-09	-2.	1310615	31618D-10
	5 2	.25097	6512907D-10	-4.2	235527036	624D-10	1.	5500660	68535D-11
	6 -2	.04147	1088674D-09	8.3	365367756	5013D-11	-1.	6526616	21540D-12
	7 2	.60059	2567487D-10	-9.1	155241214	856D-12	1.	4191330	04850D-13
	8 -6	.93372	6687326D-12	2.5	503906957	552D-13	-3.	7983723	86466D-15
N2MIN =	1.000	00D 08	1/CM3						
N2MAX =	1.000	00D 16	1/CM3						
Max. re	el. Err	or:	4.5211 %						

Mean	rel.	Error:	0.3321	00

4.36 Reaction 2.3.2C $e + He^{++} \rightarrow He^{+}(1s) + hv$

McWhirter's COLRAD (Hydrogen-like-ion) code: [22]

E-1	Index: ()	1		2	
T-Index:						
0	-2.6892147	14131D+01	3.8416920926500	0-02 -2	.151460046123	1D-02
1	-7.4166842	84021D-01	-5.199553857553D	0-02 3	.438416388654	4D-02
2	1.5498116	528148D-02	1.9218492374970	0-02 -8	.089751449112	1D-03
3	-5.0226431	37206D-03	1.5406290508270	0-03 -7	.848453879802	2D-03
4	-2.9668211	61678D-03	-1.8935399247420	0-03 4	.846354316088	3D-03
5	1.7160182	23894D-03	6.4680523864120	0-06 -9	.304158014363	LD-04
6	-4.2292573	398810D-04	1.4305451460210)-04 2	.720980715002	2D-05
7	4.8552981	00008D-05	-2.7131030187930)-05 1	.061403221125	5D-05
8	-2.0913799	21301D-06	1.5299182992980	0-06 -8	.819776625245	5D-07
E-1	Index: 3		4		5	
T-Index:						
0	1.1132519	29355D-02	-2.6120085684920	0-03 3	.55511596039	7D-04
1	-1.6497094	08021D-02	3.7450358255070)-03 -4	.770050113400)D-04
2	5.0514669	15107D-03	-1.4008886150250	0-03 1	.945119633833	3D-04
3	2.2487858	870746D-03	-1.5930979340710)-04 -1	.072827330359	9D-05
4	-1.7511841	49675D-03	2.3112135519800)-04 -1	.261592043312	2D-05
5	3.9662178	825812D-04	-5.599522857044D)-05 3	.206357069410)D-06
6	-2.8356925	54212D-05	3.9863813354340)-06 -1	.23752685904	5D-07
7	-1.5633133	372280D-06	2.6259594707380)-07 -3	.94081981805	7D-08
8	2.1723253	347358D-07	-3.4733255195670)-08 3	.57946968031	7D-09
E-1	Index: 6	5	7		8	
T-Index:						
0	-2.7317538	894771D-05	1.1066684613410)-06 -1	.81117529520	7D-08
1	3.3685327	16741D-05	-1.2372230530470)-06 1	.842374272400)D-08
2	-1.3496777	36259D-05	4.4581077635080)-07 -5	.616195641425	5D-09
3	1.5498018	888675D-06	-4.4666729288170)-08 1	.76479524897	5D-10
4	2.9701104	43204D-07	-7.0354534963510)-09 1	.847001891274	4D-10
5	-7.2826194	16548D-08	9.8592561612710)-10 -1	.965913679526	6D-11
6	-6.5795753	877692D-09	3.7133676462340)-10 -4	.389109805641	LD-12
7	2.9198130	70386D-09	-9.3451427101660)-11 1	.091816211559	9D-12
8	-2.0875789	72278D-10	6.0334950761880)-12 -6	.83485844029	7D-14
N2MIN =	L.00000D 08	1/CM3				
N2MAX = 2	L.00000D 16	1/CM3				
Max. rel	Error:	.2915 %				
Mean rel	Error:	.0363 %				

Electron Temperature (eV)

Data from impurity transport code "STRAHL", [17] Recombination Rates for single charged Be Ions (w/o three-body)

4.37 Reaction 2.3.4B0 $e + Be^+ \rightarrow Be + hv$

E	-Index:	0	1			2
T-Index:						
0	-2.725929	462038D+01	-1.296055365	5219D-01	2.245292	2514899D-02
1	1.598632	576296D+00	1.302182159	9333D-04	-2.924508	3048254D-02
2	-7.069733	638623D-02	1.301621002	2137D-02	1.388489	9192201D-02
3	-2.067343	201215D-01	1.279607652	2398D-02	-8.226493	8898105D-03
4	2.796219	393914D-02	-1.144848913	3448D-02	3.649484	1551890D-03
5	5.780534	740910D-03	3.235328959	9441D-03	-7.482336	5928187D-04
6	-1.791370	907134D-03	-4.230924884	1959D-04	5.874787	7455135D-05
7	1.653534	958925D-04	2.595221480)786D-05	-2.868950)341068D-08
8	-5.311684	839816D-06	-5.924897096	5316D-07	-1.331690)294260D-07
E	-Index:	3	4			5
T-Index:						
0	-1.244235	177506D-02	3.352082223	3981D-03	-4.750321	L394261D-04
1	1.419746	473600D-02	-4.100011934	1711D-03	6.269202	2287880D-04
2	-4.288663	227065D-03	1.247934273	3073D-03	-2.322360)688726D-04
3	2.497646	037590D-04	4.417198058	3647D-05	1.716710)307904D-05
4	2.490565	857171D-05	-6.848577114	1910D-05	3.867029	9384089D-06
5	-2.697562	238180D-05	1.387239687	7374D-05	-4.925211	L191787D-07
6	1.287864	123306D-05	-2.354269427	7799D-06	3.073587	7970762D-08
7	-1.972411	742335D-06	2.825061118	3192D-07	-7.702743	3784611D-09
8	9.449990	775297D-08	-1.322880879	9849D-08	5.884617	7340207D-10
E	-Index:	6	7			8
T-Index:						
0	3.617661	866105D-05	-1.399725603	3339D-06	2.156930)157877D-08
1	-5.003180	914560D-05	1.985020029	9777D-06	-3.097413	3546292D-08
2	2.077646	031907D-05	-8.667756318	3377D-07	1.374149	9193674D-08
3	-2.600090	567970D-06	1.170403862	2720D-07	-1.712303	3962785D-09
4	-4.054013	167812D-08	3.807690920)711D-09	-2.098135	5936009D-10
5	-7.568193	559820D-09	-9.343144402	2500D-10	6.008228	3504862D-11
6	6.869621	840242D-09	-1.575414388	3099D-10	-3.255005	5891524D-12
7	-5.010735	365600D-10	2.217617931	L435D-11	-5.017068	3152436D-14
8	2.010217	590918D-12	-5.523345073	3293D-13	4.450782	2184771D-15
N2MIN =	1.00000D 08	1/CM3				
N2MAX =	1.00000D 16	1/CM3				
Max. rel	. Error: 6	.2699 %				

Mean rel. Error: 1.0385 %

Data from impurity transport code "STRAHL", [17] Recombination Rates for doubly charged Be Ions (w/o three-body)

4.38 Reaction **2.3.4B1** $e + Be^{++} \rightarrow Be^{+} + hv$

E	-Index:	0	1	2
T-Index:				
0	-2.728	409454363D+01	-1.241811114602D-0	01 1.328174994693D-01
1	-2.299	481340923D+00	1.889049385273D-0	01 -2.096802695556D-01
2	4.885	685671195D+00	-2.008764876827D-0	01 1.648701897617D-01
3	-5.251	357791035D+00	1.631486837681D-0	01 -7.503508975743D-02
4	2.543	387065980D+00	-7.665832661210D-0	02 1.818184962498D-02
5	-6.269	100539052D-01	1.928103605570D-0	02 -2.110079141475D-03
6	8.249	496717063D-02	-2.610043486921D-0	03 7.049607917706D-05
7	-5.541	301207997D-03	1.802133911336D-0	04 5.702189021974D-06
8	1.496	309096538D-04	-4.989437255700D-0	06 -3.793346968439D-07
E	-Index:	3	4	5
T-Index:				
0	-5.910	214948004D-02	1.285989947336D-0	02 -1.526818134096D-03
1	7.862	010247287D-02	-1.449011071235D-0	02 1.461947439599D-03
2	-5.176	172885669D-02	7.317236286761D-0	03 -5.006068297333D-04
3	2.174	133611107D-02	-2.589246910885D-0	03 1.224743194508D-04
4	-5.098	247822369D-03	5.664018911361D-0	04 -2.623256825779D-05
5	5.566	735359374D-04	-5.584858194143D-0	05 3.211048838419D-06
6	-1.070	413228691D-05	-3.231789926435D-0	07 -9.263670040464D-08
7	-2.513	802136711D-06	4.313606598236D-0	07 -1.345931063116D-08
8	1.390	196607821D-07	-2.084300790388D-0	08 8.301747763811D-10
E	-Index:	6	7	8
T-Index:				
0	1.005	202819403D-04	-3.444000702166D-	06 4.788161890026D-08
1	-8.097	933215082D-05	2.286740613012D-0	06 -2.544219441065D-08
2	1.209	066466730D-05	2.327109476167D-0	07 -1.143146298073D-08
3	1.794	422803392D-06	-3.537707361735D-0	07 8.456876614023D-09
4	-2.156	876176312D-07	6.001245421502D-0	08 -1.405872631137D-09
5	-1.162	693902875D-07	2.839971828955D-0	09 -4.787146737233D-11
6	2.652	307178112D-08	-1.756949577531D-0	09 3.793381075708D-11
7	-2.115	315858957D-09	1.781987654521D-3	10 -3.982036996716D-12
8	6.140	791320298D-11	-5.995928373217D-3	12 1.365597034534D-13
N2MIN =	1.00000D	08 1/CM3		
N2MAX =	1.00000D	16 1/CM3		
Max. rel	. Error:	19.0670 %		

Mean rel. Error: 6.8000 %

Electron Temperature (eV)

Data from impurity transport code "STRAHL", [17] Recombination Rates for singly charged B Ions (w/o three-body)

4.39 Reaction **2.3.5B0** $e + B^+ \to B + hv$

Mean rel. Error: 2.2281 %

E-	Index:	0	1		2
T-Index:					
0	-2.918	3956305904D+01	3.267550103394	4D-02 -4.	823066950210D-02
1	8.901	L372275414D-01	-3.397383703545	5D-01 1.2	289852726858D-01
2	3.343	3506939285D+00	2.282515642460	DD-01 -9.	103783258930D-02
3	-3.008	3679922076D+00	-5.388342232412	2D-02 2.	167553199906D-02
4	1.112	2964165086D+00	1.26053466631	7D-03 -7.	052258987157D-04
5	-2.245	5854583458D-01	1.232228819204	4D-03 -1.	977243930068D-04
6	2.569	9483673112D-02	-1.483676372126	6D-04 -3.	653164425984D-05
7	-1.563	3882824177D-03	2.300571590825	5D-06 1.	068539912027D-05
8	3.933	3351235932D-05	2.450506888590)D-07 -5.	790374711265D-07
E-	Index:	3	4		5
T-Index:					
0	1.084	1235624678D-02	4.281860869234	4D-05 -3.	006985941012D-04
1	-3.793	3909504492D-02	4.214381437312	2D-03 5.	910871725608D-06
2	2.943	3514986182D-02	-4.396644202855	5D-03 2.	457154873853D-04
3	-7.736	5046881343D-03	1.441634147933	3D-03 -1.2	205002465319D-04
4	3.042	L197053727D-04	-1.227481836109	9D-04 1.	626382262962D-05
5	1.17	7319584913D-04	-1.388326649605	5D-05 3.	987367591191D-07
6	-2.705	5344470187D-06	1.266769783662	2D-06 -1.	190611163202D-07
7	-2.130	5704633704D-06	2.158430175622	2D-07 -1.	198466851774D-08
8	1.462	2074438369D-07	-1.888327232304	1D-08 1.3	358886807026D-09
E-	Index:	6	7		8
T-Index:					
0	3.913	3363201372D-05	-1.987487775013	3D-06 3.	630009838447D-08
1	-3.40	7335594737D-05	2.302780682573	3D-06 -4.	724118588530D-08
2	3.689	9509356594D-06	-8.271291751691	LD-07 2.1	110278755964D-08
3	3.252	2526057299D-06	7.531658549775	5D-08 -3.	753147142803D-09
4	-7.584	1147771365D-07	5.617754775370)D-09 2.	618328829288D-10
5	1.169	9505739833D-09	4.403213913778	BD-10 -2.	082516311551D-11
6	6.928	3958657672D-09	-2.614080202244	4D-10 3.	949718599255D-12
7	2.061	L339771948D-10	7.658743006289	9D-12 -2.3	294692069099D-13
8	-5.021	L219740097D-11	7.599476609801	LD-13 -1.	699102278262D-15
N2MIN =	1.00000	0 8 1/CM3			
N2MAX =	1.000001	D 16 1/CM3			
Max. rel.	Error:	15.7065 %			

This page is intentionally left blank

Data from impurity transport code "STRAHL", [17] Recombination Rates for doubly charged B Ions (w/o three-body)

4.40 Reaction **2.3.5B1** $e + B^{++} \rightarrow B^{+} + hv$

E	-Index:	0	1			2
T-Index:						
0	-2.69627	1008275D+01	-7.42398716	7527D-02	3.57199	7357107D-02
1	2.02549	9561046D+00	-2.01754309	6490D-01	3.88973	2429633D-02
2	-4.52578	8140577D-01	1.96846015	9120D-01	-6.41295	2427778D-02
3	-3.57012	7232580D-01	-7.67703412	5200D-02	2.45820	0773053D-02
4	2.17645	3653579D-01	1.75725462	4302D-02	-4.00291	1937506D-03
5	-5.55141	9899407D-02	-2.86726492	0419D-03	3.69544	9702619D-04
6	7.44174	7604883D-03	3.37091648	9954D-04	-3.53439	7855198D-05
7	-5.09796	2423085D-04	-2.39263974	6135D-05	3.30787	5064213D-06
8	1.40577	0163082D-05	7.24125804	8176D-07	-1.32481	5003798D-07
E	-Index:	3	4			5
T-Index:						
0	-1.95740	5255310D-02	4.91026868	4892D-03	-6.46447	6031989D-04
1	-5.50897	2762098D-03	-4.10303862	8528D-04	1.90283	0434350D-04
2	1.58548	4361226D-02	-2.17739918	6175D-03	1.56316	9407076D-04
3	-4.63986	8259732D-03	6.16771609	0045D-04	-4.54933	0605404D-05
4	4.47699	1372525D-05	2.47633039	3040D-05	-4.31507	1827987D-06
5	1.27474	0751517D-04	-2.13488946	1534D-05	1.85454	4233927D-06
6	-1.47966	2046092D-05	1.58127965	4885D-06	-5.64145	8092706D-08
7	3.70449	3921569D-07	4.73479162	6350D-08	-1.45528	5738785D-08
8	1.01341	3641304D-08	-5.63991471	5196D-09	8.77854	8005120D-10
E	-Index:	6	7			8
T-Index:						
0	4.60821	3097181D-05	-1.68232834	3662D-06	2.46255	2849920D-08
1	-1.93693	1659635D-05	8.24235423	2962D-07	-1.27877	8364027D-08
2	-5.71756	3499079D-06	1.15922645	1051D-07	-1.57755	9627995D-09
3	1.71007	7304240D-06	-4.60889452	8959D-08	1.03407	6249492D-09
4	4.27930	4514899D-07	-1.37287092	3770D-08	1.65570	0973007D-11
5	-1.24905	1804766D-07	3.97261883	1455D-09	-2.39205	6598119D-11
6	3.66280	5039340D-09	-1.41012724	7126D-10	-5.28419	0509036D-13
7	8.81404	8276934D-10	-2.37965172	3043D-11	3.92394	6846891D-13
8	-5.22150	3829879D-11	1.45588395	0215D-12	-1.92145	3513095D-14
N2MIN =	1.00000D 0	8 1/CM3				
N2MAX =	1.00000D 1	6 1/CM3				
Max. rel	. Error:	7.5135 %				

This page is intentionally left blank

Data from impurity transport code "STRAHL", [17] Recombination Rates for singly charged C Ions (w/o three-body)

4.41 Reaction **2.3.6B0** $e + C^+ \to C + hv$

Mean rel. Error: 2.5839 %

E-	-Index:	0	1		2
T-Index:	:				
0	-2.923	3411311232D+01	1.67833797400	62D-01 -1	.269890700218D-01
1	-1.749)378923698D+00	-5.86750881369	96D-01 3	.397276446168D-01
2	6.127	7446343098D+00	3.51377016322	24D-01 -3	.131110083174D-01
3	-4.441	560794072D+00	-3.0361374293	91D-02 1	.289084037863D-01
4	1.527	7841448611D+00	-3.93215230260	66D-02 -2	.579185039826D-02
5	-2.957	7532224524D-01	1.51678313703	12D-02 2	.555395039340D-03
6	3.288	3049698838D-02	-2.32975094030	D7D-03 -1	.325353309286D-04
7	-1.958	3690224903D-03	1.66087108862	28D-04 6	.019220191601D-06
8	4.844	127251791D-05	-4.53565454453	18D-06 -2	.688488538169D-07
E-	-Index:	3	4		5
T-Index:	:				
0	2.720)437652981D-02	-1.11163101143	30D-03 -3	.480216080173D-04
1	-6.886	5574322654D-02	3.43964529554	41D-03 5	.751243071725D-04
2	6.328	3287422211D-02	-4.08140901715	51D-03 -2	.359905542867D-04
3	-2.671	202258246D-02	2.10871977624	41D-03 -7	.726681822181D-06
4	5.571	312305715D-03	-4.81817606821	15D-04 1	.334742280902D-05
5	-6.449	9949817748D-04	5.95829154590)1D-05 -1	.609837915859D-06
6	5.723	3823810059D-05	-6.76038688766	66D-06 1	.723115899471D-07
7	-4.762	2486550175D-06	7.31796697500)6D-07 -3	.186790226580D-08
8	2.051	810131854D-07	-3.48663021923	12D-08 2	.049817590722D-09
E-	-Index:	6	7		8
T-Index:	:				
0	5.022	2696584875D-05	-2.54846144579	98D-06 4	.576047167523D-08
1	-8.585	5218474052D-05	4.1985800365	78D-06 -7	.219262965042D-08
2	4.464	1512662440D-05	-2.12241291302	24D-06 3	.430797320366D-08
3	-6.790)151469405D-06	2.9605264150	72D-07 -3	.591611206495D-09
4	-8.898	3179366602D-08	2.11305397705	58D-08 -8	.335017960966D-10
5	1.948	3025779931D-08	-3.87906232043	37D-09 1	.297193866948D-10
6	1.158	3556735339D-08	-6.9385083644	72D-10 1	.200809450653D-11
7	-9.678	3693700555D-10	1.16607138713	36D-10 -2	.726800105081D-12
8	-8.574	281546240D-13	-4.12917266788	38D-12 1	.141324130890D-13
N2MIN =	1.00000	08 1/CM3			
N2MAX =	1.00000	D 16 1/CM3			
Max. rel	L. Error:	20.1006 %			

this page is intentionally left blank

4.42 Reaction **2.3.6A0** $e + C^+ \rightarrow C + hv$

Recombination Rates for single charged Carbon Ions, ADAS 93, lower valid density range than in Behringer rate, 1e9–4e15, i.e. also wrong low ne (Corona) limit.

E-Index: 0	1	2
T-Index:		
0 -2.386015899408D+01	-3.910955838564D+00	1.552770970883D+00
1 -5.659678700923D+00	3.273571762123D+00	-1.226359264263D+00
2 5.390501265589D+00	-2.355302777087D-01	-5.195368951742D-02
3 -3.714328835667D+00	3.628845439540D-01	-2.200031489025D-02
4 1.135859606525D+00	-1.186644208284D-01	5.551341663448D-03
5 -1.869372950502D-01	1.628631987628D-02	6.410015500816D-04
6 1.780826701298D-02	-1.478766722313D-03	-8.533991517766D-05
7 -9.287327719634D-04	9.071133960815D-05	-1.095758224111D-06
8 2.035725216911D-05	-2.414914230400D-06	1.597295024608D-07
E-Index: 3	4	5
T-Index:		
0 -3.450187675134D-01	4.712272970491D-02	-4.042671286872D-03
1 2.600531850861D-01	-3.341908339155D-02	2.682578223051D-03
2 1.011059953763D-02	-1.169563926566D-03	6.667572788661D-05
3 3.526377986446D-03	-3.427847110389D-04	1.835504781865D-05
4 -8.838264136732D-04	8.565268990423D-05	-1.066175819677D-06
5 -8.593821289931D-05	5.272524686958D-06	-1.224520162331D-06
6 2.660975471746D-06	1.089822895916D-06	-2.890683271478D-09
7 1.203297067573D-06	-2.099731716273D-07	6.174132427111D-09
8 -4.421659538874D-08	4.310876850464D-09	2.079113580150D-10
E-Index: 6	7	8
T-Index:		
0 2.122032361962D-04	-6.207489360202D-06	7.739602341370D-08
1 -1.336715470333D-04	3.811224434825D-06	-4.747119054140D-08
2 1.856735987460D-06	-3.458187396125D-07	9.391749990270D-09
3 -2.365613863260D-06	2.014784469522D-07	-5.309278460907D-09
4 2.407496723541D-07	-4.228290011762D-08	1.385165315494D-09
5 3.962428233835D-08	4.764982812388D-09	-2.132127641260D-10
6 -8.202254054789D-10	-4.541903480422D-10	2.006990579325D-11
7 2.277931530317D-10	3.545967143036D-12	-6.419790552377D-13
8 -4.192645662630D-11	1.557121980135D-12	-1.271691932014D-14
N2MIN = 1.00000D 09 1/CM3		
N2MAX = 4.00000D 15 1/CM3		
Max. rel. Error: 7.2475 %		
Mean rel. Error: 1.9064 %		

Recombination Rates for single charged Nitrogen Ions, ADAS 96 lower valid density range than in Behringer rate: 1e8 –4e15

E-Ir	ndex: 0		1	2
T-Index:				
0	-2.8909794479	61D+01 3.4	04781058304D-0	2 3.109171343385D-02
1	-1.1745429359	34D-01 -6.3	00786378143D-0	2 1.285451136251D-02
2	1.0623966315	45D+00 -4.5	94988800022D-0	2 -2.144355651778D-02
3	-1.2817848575	03D-01 1.7	50663794712D-0	2 -4.218563857410D-04
4	-1.7785754302	66D-01 7.5	78877787156D-0	3 3.404271527997D-03
5	6.7987857839	58D-02 -4.5	97105849322D-0	3 -4.739820114489D-04
6	-1.0285263256	32D-02 8.6	17482106535D-0	4 -6.225202836732D-05
7	7.2680822813	80D-04 -7.0	84122217378D-0	5 1.512785518009D-05
8	-1.9880536918	42D-05 2.1	83474002160D-0	6 -7.348547415367D-07
E-1	Index: 3		4	5
T-Index:				
0	-2.9595971717	11D-02 9.9	72437524383D-0	3 -1.611047280109D-03
1	-3.2847205995	38D-03 -3.2	77710167038D-0	4 1.453494237233D-04
2	1.5908752832	51D-02 -4.4	16788978628D-0	3 6.137394728855D-04
3	-4.2678737727	33D-03 1.8	98156366712D-0	3 -3.376326628079D-04
4	-9.5222099575	84D-04 9.5	92101950028D-0	6 2.643190197805D-05
5	2.7956174037	51D-04 -5.6	64874714649D-0	5 5.086981091994D-06
6	1.0443791548	37D-05 1.1	94568825982D-0	7 -2.192339608178D-07
7	-5.8543821337	61D-06 1.0	51704842577D-0	6 -9.578564349722D-08
8	3.2496561136	47D-07 -6.5	45647058295D-0	8 6.814062555229D-09
E-1	Index: 6		7	8
T-Index:				
0	1.3622633477	04D-04 -5.7	86235879715D-0	6 9.750444797037D-08
1	-1.4524339759	75D-05 5.6	48617057221D-0	7 -7.117648875509D-09
2	-4.5539879136	30D-05 1.7	30678240365D-0	6 -2.652544738754D-08
3	2.9339580658	56D-05 -1.2	40562994480D-0	6 2.045493282478D-08
4	-3.6344401205	48D-06 1.8	85575439239D-0	7 -3.485971868424D-09
5	-1.9498628937	43D-07 2.0	24442443875D-0	9 2.630734008273D-11
6	2.5211644432	25D-08 -1.2	96752613661D-0	9 2.627656129565D-11
7	4.3586650268	82D-09 -7.3	47981360072D-1	1 -2.477653636206D-13
8	-3.7724518029	02D-10 1.0	08260868721D-1	1 -9.316575573714D-14
N2MIN =	L.00000D 08 1/C	МЗ		
N2MAX =	4.00000D 15 1/C	МЗ		
Max. rel	. Error: 21.57	15 %		

4.44 Reaction 2.3.8A0 $e + O^+ \rightarrow O + hv$

Recombination Rates for single charged Oxygen Ions, ADAS 96 lower valid density range than in Behringer rate

E-In	ndex: 0	1	2
T-Index:			
0	-2.950202333277D+0	01 3.417421048652D-02	5.550176406244D-04
1	-3.905878105714D-0	01 -3.366885804101D-02	5.611644267242D-03
2	8.142161905922D-0	01 -2.619980609301D-02	1.119917102498D-02
3	-6.314301870760D-0	02 -6.677833838048D-04	-4.595557614154D-03
4	-1.300209551942D-0	01 7.344464113626D-03	1.010388603060D-03
5	4.543327490228D-0	D2 -2.431608679889D-03	-1.605807371797D-04
6	-6.551209458023D-0	03 3.385675498043D-04	1.776299449335D-05
7	4.487444713804D-0	04 -2.208733089758D-05	-1.188982868102D-06
8	-1.202054123175D-0)5 5.549447564031D-07	3.573244244320D-08
E-I	index: 3	4	5
T-Index:			
0	-4.878404722759D-0	03 2.496704857025D-03	-4.801811432048D-04
1	-6.846315928181D-0	03 1.781404680449D-03	-2.299350278961D-04
2	-7.650465593431D-0	03 2.291477501261D-03	-3.428663325456D-04
3	3.319766657887D-0	03 -8.305632223570D-04	9.687240430638D-05
4	-7.429595897823D-0	1.597082088291D-04	-1.586721570563D-05
5	9.174847318131D-0)5 -1.791485541629D-05	2.557912304553D-06
6	-3.656971171905D-0	06 4.415203015131D-07	-2.729885842433D-07
7	-2.390420213573D-0	07 8.850471294306D-08	1.320290015666D-08
8	1.760145190417D-0	08 -5.311149778654D-09	-1.932208107521D-10
E-I	index: 6	7	8
T-Index:			
0	4.414828976029D-0)5 -1.913653761986D-06	3.169334833101D-08
1	1.629563730611D-0)5 -6.508094947057D-07	1.168016914799D-08
2	2.801630724815D-0)5 -1.195893028045D-06	2.066069583201D-08
3	-5.817227023091D-0	06 1.815236921961D-07	-2.440874713720D-09
4	6.876080976925D-0	07 -7.143508700482D-09	-1.579410946829D-10
5	-2.191883763675D-0	07 9.084875748335D-09	-1.438945391695D-10
6	4.429673221310D-0	08 -2.592667144327D-09	5.218677785470D-11
7	-3.785422204476D-0	2.552603164217D-10	-5.520425235115D-12
8	1.170863046694D-1	LO -8.639504027193D-12	1.945039811844D-13
N2MIN = 1	.00000D 08 1/CM3		
N2MAX = 4	.00000D 15 1/CM3		
Max. rel.	Error: 17.6166 %		
Mean rel.	Error: 5.7730 %		

4.45 Reaction 2.3.10B0 $e + Ne^+ \rightarrow Ne + hv$

Data from impurity transport code "STRAHL", [17] Recombination Rates for singly charged Ne Ions (w/o threebody)

E-Ind	ex: 0	1	2
T-Index:			
0 –	2.950007003885D+01	3.491651842120D-01	-4.526729152358D-01
1 -	6.520457077063D-01	7.213904325098D-02	3.658011914091D-01
2 -	2.555722669669D+00	-7.475436856707D-01	9.738719342931D-02
3	3.661205101651D+00	5.765147468133D-01	-1.604649380940D-01
4 –	1.748125063014D+00	-2.102066448685D-01	6.321986952859D-02
5	4.075296845781D-01	4.352555184156D-02	-1.311266215655D-02
6 –	5.084544478774D-02	-5.232558963021D-03	1.582205007651D-03
7	3.267745768343D-03	3.392758114186D-04	-1.046424800738D-04
8 –	8.515144644683D-05	-9.147101439320D-06	2.913148029419D-06
E-Ind	ex: 3	4	5
T-Index:			
0	1.822526019576D-01	-3.440093707612D-02	3.365607055965D-03
1 -	1.925738935529D-01	4.196008186724D-02	-4.824821656521D-03
2	2.722985240177D-02	-9.973812872134D-03	1.461560737391D-03
3	1.878485303345D-02	-1.385285413951D-03	9.295164050536D-06
4 –	7.774293016035D-03	7.843935223543D-04	-5.991856389796D-05
5	1.332124081154D-03	-1.033638922199D-04	8.612183709508D-06
6 –	1.337988184391D-04	5.636490415762D-06	-4.121413995158D-07
7	8.230405845512D-06	-1.571454512161D-07	3.845854426768D-09
8 –	2.383823550795D-07	4.365491330109D-09	2.073873285125D-12
E-Ind	ex: 6	7	8
T-Index:			
0 –	1.720328845594D-04	4.174907414363D-06	-3.433683135382D-08
1	3.088521584980D-04	-1.043623699368D-05	1.452433604004D-07
2 -	1.188366580476D-04	5.102874363441D-06	-8.840074619382D-08
3	1.172576233056D-05	-9.701778130960D-07	2.315053595109D-08
4	1.480911313552D-06	7.311631221035D-08	-3.231110770367D-09
5 –	3.779888128247D-07	1.120723303371D-09	2.214485537742D-10
6	2.901125564163D-08	-7.405559613471D-10	1.446032893388D-12
7 –	1.213848594721D-09	7.298790343151D-11	-1.305351788753D-12
8	3.400354319444D-11	-2.737297017901D-12	6.063188511756D-14
N2MIN = 1.0	0000D 08 1/CM3		
N2MAX = 1.0	0000D 16 1/CM3		
Max. rel. Er	ror: 54.9736 %		

Mean	rol	Error.	6 6709	0
Mean	тет.	FLLOL:	0.0709	6

Data from impurity transport code "STRAHL", [17] Recombination Rates for doubly charged Ne Ions (w/o three-body)

4.46 Reaction **2.3.10B1** $e + Ne^{++} \rightarrow Ne^{+} + hv$

E-I	Index:	0	1			2
T-Index:						
0	-2.764	720323935D+01	-1.95565587	7647D-01	1.671527	/355799D-01
1	1.118	894063339D+00	3.12912465	1555D-01	-1.009059	388068D-01
2	-5.807	229758743D+00	-4.30356019	3277D-01	5.147902	2079014D-02
3	5.906	119436289D+00	2.90807486	8726D-01	-3.504756	5895839D-02
4	-2.486	369699756D+00	-1.06667787	2724D-01	1.675054	1599333D-02
5	5.400	218712330D-01	2.28596969	0928D-02	-4.685542	2119686D-03
6	-6.423	019855816D-02	-2.86008728	4730D-03	7.328508	3385727D-04
7	3.984	332639562D-03	1.92728779	9126D-04	-5.887153	870896D-05
8	-1.009	911047233D-04	-5.38043247	0580D-06	1.881736	5675497D-06
E-I	Index:	3	4			5
T-Index:						
0	-7.260	114126178D-02	1.58300993	6797D-02	-1.898589	9530133D-03
1	3.746	533708965D-02	-8.65589442	1673D-03	1.099661	830628D-03
2	-6.718	805346046D-03	1.99961242	8280D-03	-3.290996	5365052D-04
3	-4.526	057371154D-04	-1.45033258	3776D-05	6.267094	921401D-05
4	4.734	615609031D-04	-1.87229373	9068D-04	1.215375	5414502D-06
5	-1.215	606626036D-05	5.13215991	8071D-05	-2.379109	9789101D-06
6	-2.422	737859678D-05	-4.56825329	0882D-06	2.259728	8294625D-07
7	3.940	458387139D-06	2.91718097	1670D-08	6.379283	8743551D-09
8	-1.800	023588704D-07	9.20974613	5240D-09	-1.047238	3386420D-09
E-I	Index:	6	7			8
T-Index:						
0	1.268	000506338D-04	-4.41413632	1690D-06	6.233135	5264975D-08
1	-7.507	106502001D-05	2.54275684	2488D-06	-3.303898	330923D-08
2	2.397	963779263D-05	-6.71687873	1698D-07	3.568810)796685D-09
3	-6.220	521674696D-06	1.25773426	0178D-07	2.204442	2932049D-09
4	9.599	983583142D-07	-1.35224427	3881D-08	-1.106786	5869688D-09
5	-1.008	039023067D-07	1.88016816	6012D-09	2.080209	9442599D-10
6	1.781	190939483D-08	-6.44738234	3471D-10	-1.518762	2965124D-11
7	-2.457	175556170D-09	9.55783981	0920D-11	1.286224	1146698D-14
8	1.179	856275948D-10	-4.47102255	0637D-12	3.079250)396313D-14
N2MIN = 1	.00000D	08 1/CM3				
N2MAX = 1	.00000D	16 1/CM3				
Max. rel.	Error:	21.1204 %				
Mean rel.	Error:	6.0132 %				

Data from impurity transport code "STRAHL", [17] Recombination Rates for singly charged Ar Ions (w/o three-body)

4.47 Reaction **2.3.18B0** $e + Ar^+ \rightarrow Ar + hv$

E-Index: 0	1	2
T-Index:		
0 -2.961523714505D	+01 -3.466294797008D-01	3.739734228058D-01
1 -9.700717663678D	-01 3.174213911999D-01	-2.690300717347D-01
2 2.733587493672D	-01 -3.157221881515D-01	6.974859201463D-02
3 -2.623209601735D	-01 2.934758215827D-01	-5.501202052884D-02
4 1.121844963088D	-01 -1.406901237239D-01	3.460910634739D-02
5 -2.608050847276D	-02 3.514232816083D-02	-9.818421888710D-03
6 3.353322712511D	-03 -4.716045851013D-03	1.375466865468D-03
7 -2.241669321389D	-04 3.232299270856D-04	-9.397908348434D-05
8 6.083901388792D	-06 -8.888872233070D-06	2.502839044441D-06
E-Index: 3	4	5
T-Index:		
0 -1.677610771210D	-01 3.629620906444D-02	-4.200257817954D-03
1 1.288420244186D	-01 -3.161715324237D-02	4.057456599586D-03
2 -1.580414272181D	-02 5.471732050209D-03	-8.980424488739D-04
3 -9.482732378151D	-04 4.606867303099D-04	7.340402374160D-06
4 -1.908249918710D	-03 -8.498577198828D-05	9.702094170437D-06
5 8.582053824339D	-04 -2.071529296492D-05	-1.272108567719D-07
6 -1.258112651082D	-04 1.949277321810D-06	2.643262514781D-07
7 7.448923978325D	-06 2.740906796410D-07	-7.103042442755D-08
8 -1.383359038597D	-07 -2.541568324398D-08	4.131280999373D-09
E-Index: 6	7	8
T-Index:		
0 2.648330614117D	-04 -8.569045126425D-06	1.113597041124D-07
1 -2.773372679142D	-04 9.588925395704D-06	-1.320334721938D-07
2 6.859512197435D	-05 -2.469218146406D-06	3.413301196731D-08
3 -3.175389000213D	-06 1.354114675747D-07	-1.709524073729D-09
4 -1.895926857712D	-07 -4.275832820919D-09	1.814552488433D-10
5 -7.124015966833D	-08 7.365306362028D-09	-1.907511087995D-10
6 -3.822283871117D	-09 -9.046050010004D-10	3.169432383695D-11
7 3.382667208777D	-09 -1.902820234583D-11	-1.500255342391D-12
8 -2.249462681920D	-10 4.358044610945D-12	-5.630369486130D-16
N2MIN = 1.00000D 08 1/CM3		
N2MAX = 1.00000D 16 1/CM3		
Max. rel. Error: 21.9156	00	

Mean rel. Error: 2.3347 %

Data from impurity transport code "STRAHL", [17] Recombination Rates for doubly charged Ar Ions (w/o three-body)

4.48 Reaction **2.3.18B1** $e + Ar^{++} \rightarrow Ar^{+} + hv$

E-	-Index:	0	1		2
T-Index:	:				
0	-2.772	2725546092D+01	-1.964508067762	D-01 2.32462 [°]	7102422D-01
1	-6.978	8601807006D-01	-3.079561336369	0-02 -2.14538	1507914D-02
2	-1.450	309406042D-01	1.046307484649	0-01 -4.36962	9888000D-02
3	7.260	838315993D-02	-3.466094766036	0-02 -7.25599	1015237D-04
4	-2.582	2804347800D-02	1.815351628023	0-03 6.87128	0269968D-03
5	5.160	665923838D-03	1.395970098141	0-03 -2.11405	4789289D-03
6	-5.799	496412067D-04	-3.699751917053	0-04 3.25201	6165358D-04
7	3.420	248521929D-05	3.736066138991	0-05 -2.707472	2572922D-05
8	-8.205	975768535D-07	-1.373593769853	9.39188	1125204D-07
E-	-Index:	3	4		5
T-Index:	:				
0	-1.121	363406353D-01	2.586067808011	0-02 -3.21069	0057370D-03
1	1.781	324636009D-02	-4.150064170275	0-03 4.49149	0678296D-04
2	1.565	988829654D-02	-4.208889079256	0-03 6.47211	0597204D-04
3	-1.979	769358644D-04	6.7228469839011	0-04 -1.47665	0287912D-04
4	-1.629	081885435D-03	7.839217315971	D-05 5.746848	8866889D-06
5	3.607	110982734D-04	-3.5242828424631	D-06 -1.87812	5337156D-06
6	-4.180	965183796D-05	-2.409133311107	D-06 5.593232	2200934D-07
7	3.500	759466355D-06	1.374491446170	0-07 -3.705743	3160513D-08
8	-1.463	3187124936D-07	4.107894379819	0-09 1.82415	9518664D-10
E-	-Index:	6	7		8
T-Index:	:				
0	2.193	3249820474D-04	-7.757566204730	D-06 1.10898	5082330D-07
1	-2.393	8877794814D-05	5.679271788812	0-07 -3.90082	7694763D-09
2	-5.394	011848597D-05	2.2727967322711	0-06 -3.77788	9093261D-08
3	1.363	319474233D-05	-5.936164719619	0-07 9.95738	5133643D-09
4	-6.009)177241892D-07	1.4859832550771	0-08 -3.09901	1150065D-11
5	1.007	709629207D-08	8.232051597397	0-09 -2.66844	8723973D-10
6	-1.251	252096167D-08	-1.153506022137	0-09 4.32552	6291510D-11
7	5.438	8054847774D-10	1.039015370714	0-10 -3.543703	3207540D-12
8	4.191	847861623D-11	-5.007688195721	D-12 1.30965	9229521D-13
N2MIN =	1.00000	08 1/CM3			
N2MAX =	1.00000	0 16 1/CM3			
Max. rel	L. Error:	25.0141 %			

Mean rel. Error: 1.9704 %

4.49 Reaction 3.2.3r $p + H_2(+e) \rightarrow H + H + H$ (MAR via H_2^+ , cold H_2)

 H_2 multi-step model, MAR rate coefficient cm^3/s . Data: Sawada/Fujimoto [7] $H_2(v = 0)$ transported, H_2^+ in QSS with H_2 , $E_{H_2} = 0.1$ eV $H_2(v \ge 1)$ is also in QSS with $H_2(v = 0)$. Vibrational distribution P(v) as fat of $T_2(-T_2)$

 $H_2(v \ge 1)$ is also in QSS with $H_2(v = 0)$. Vibrational distribution P(v) as fct. of $T_e (= T_p)$ only (assuming $n_e = n_p$, so density cancels here).

The MAR rate coefficient is a fct. of n_e and $T(T_e = T_p)$, and must be multiplied with density n_p to turn it into a collision rate 1/s, and then with $n_{H_2(v=0)}$ to turn it into a volumetric reaction rate $(cm^{-3}s^{-1})$. This is consistent with underlying P(v) only for $n_e = n_p$.

E-1	Index: 0	1	2
T-Index:			
0	-2.191302446846D+01	2.201979359177D-02	-5.084127804366D-02
1	2.515287131029D+00	-1.951782673829D-03	1.210559594877D-02
2	-3.739165027129D+00	-5.039990032868D-03	5.156475880767D-02
3	1.460287495804D+00	-1.902427777619D-02	-2.653691460740D-03
4	-3.613420054183D-01	-9.136720216773D-03	-4.776315047524D-03
5	1.022097226981D-01	1.430112787487D-02	-2.068159413388D-03
6	-2.326509820253D-02	-4.698557490053D-03	1.350601458627D-03
7	2.755718181169D-03	6.183157753063D-04	-2.180157674348D-04
8	-1.245440617856D-04	-2.916396705941D-05	1.131212737957D-05
E-]	Index: 3	4	5
T-Index:			
0	2.725675449247D-02	-6.821140812496D-03	8.984277627487D-04
1	-1.056465122608D-02	3.268414282907D-03	-4.770499814477D-04
2	-3.005896796044D-02	7.117618884301D-03	-8.640595844451D-04
3	8.718387627078D-03	-3.083275129564D-03	4.690013186619D-04
4	2.274299170449D-03	-8.429380778242D-05	-5.166724308864D-05
5	-8.581335425960D-04	2.018790326947D-04	-9.377832906111D-06
6	9.091464941954D-06	-3.214048434350D-05	2.476622604418D-06
7	1.640987010283D-05	1.594693278851D-06	-1.857150815035D-07
8	-1.227368784843D-06	-6.059729362682D-09	4.830770876395D-09
E-]	Index: 6	7	8
T-Index:			
0	-6.471300739878D-05	2.392339469853D-06	-3.542871296534D-08
1	3.555893312434D-05	-1.316695158693D-06	1.915346495446D-08
2	5.696582068003D-05	-1.943708118398D-06	2.693231032650D-08
3	-3.587259258804D-05	1.355091397789D-06	-2.009854793386D-08
4	7.313297805130D-06	-3.673160516940D-07	6.439394992510D-09
5	-6.689618689827D-07	6.721794871158D-08	-1.490826423672D-09
6	4.829313987833D-08	-1.004736504929D-08	2.534364634180D-10
7	-4.842242342991D-09	9.541230138142D-10	-2.466137348591D-11
8	2.201416000842D-10	-3.685384915056D-11	9.608086847565D-13
N2MIN = 1	.00000D 08 1/CM3		
N2MAX = 1	.00000D 16 1/CM3		
May rol	Frror. 10 0200 8		
Mean rel.	Error: 5.5197 %		

4.50 Reaction 3.2.3d $p + H_2(+e) \rightarrow p + H + H(+e)$ (MAD via H_2^+ , cold H_2)

 H_2 multi-step model, MAD rate coefficient cm^3/s , same conditions as for effective MAR rate coefficient: $n_e = n_p$ to remove n_e and n_p dependence in P(v), $T_e = T_p$ to remove T_p dependence in P(v), $E_{H_2} = 0.1$ eV.

	E-I	Index:	0		1			2	
T-Inde	ex:								
	0	-2.305	748927979D+01	5.7	240381744	56D-02	-5.615	5862094751D-02	2
	1	5.292	904264798D+00	-1.2	927002638	54D-01	3.199	0290063730D-02	2
	2	-4.5890	002200888D+00	1.0	351414854	54D-01	4.245	5746723064D-02	2
	3	1.282	553627472D+00	8.2	286346391	44D-03	-6.982	2329836971D-02	2
	4	-5.7683	335357015D-02	-4.2	312805755	73D-02	4.520)570788253D-02	2
	5	-1.762	738366359D-02	1.7	541537367	92D-02	-1.333	3930685945D-02	2
	6	-6.2204	461405830D-04	-2.8	419409831	05D-03	1.674	1562107704D-03	3
	7	6.4132	295998688D-04	1.7	777010872	91D-04	-5.286	5124278229D-05	ō
	8	-4.623	793560750D-05	-2.1	101026379	34D-06	-2.826	5184196637D-00	6
	E-I	Index:	3		4			5	
T-Inde	ex:								
	0	2.580	537345185D-02	-5.1	876385313	38D-03	5.591	824235916D-04	4
	1	-1.4110)97510416D-03	-1.8	616701373	47D-03	3.728	8807776936D-04	4
	2	-2.833	978655627D-02	6.6	804535623	88D-03	-7.508	3030455334D-04	4
	3	2.1974	199638706D-02	-2.7	868727543	76D-03	1.536	533061795D-04	4
	4	-9.8503	360398006D-03	5.8	248096804	28D-04	2.282	2005339391D-05	5
	5	2.3288	857648314D-03	-4.9	066642568	89D-05	-9.488	3057748931D-06	6
	6	-1.6440	016839248D-04	-2.4	471008611	04D-05	2.465	5487188700D-00	6
	7	-1.933	715475610D-05	7.3	079090833	02D-06	-5.218	3713324203D-0	7
	8	2.372	770563877D-06	-5.3	415290370	52D-07	3.931	259348181D-08	3
	Ε-I	Index:	6		7			8	
T-Inde	ex:								
	0	-3.2829	931512925D-05	9.8	148531429	75D-07	-1.164	1322982242D-08	3
	1	-3.011	576633244D-05	1.1	388281600	76D-06	-1.667	604512176D-08	3
	2	4.303	656667760D-05	-1.2	015109832	54D-06	1.269	878029776D-08	3
	3	-1.3364	438693130D-06	-1.9	020108025	33D-07	5.308	3752951539D-09	9
	4	-3.7344	435698157D-06	1.3	317544139	45D-07	-1.412	2895213605D-09	9
	5	1.0963	l15694138D-07	3.9	976916126	05D-08	-1.319	0357291444D-09	9
	6	1.5278	360379159D-07	-2.0	556265890	64D-08	5.202	2352548656D-10	С
	7	-1.4419	930896339D-08	2.5	410115101	81D-09	-6.500	0006263746D-11	1
	8	-7.9289	979184194D-11	-9.5	152290047	63D-11	2.697	745453159D-12	2
N2MIN =	1	.0000D	08 1/CM3						
N2MAX =	1	.0000D	16 1/CM3						

Max.	rel.	Error:	11.3558	00
Mean	rel.	Error:	5.3396	00

4.51 Reaction 3.2.3i $p + H_2(+e) \rightarrow p + p + H + e(+e)$ (MAI via H_2^+ , cold H_2)

 H_2 multi-step model, MAI rate coefficient cm^3/s , Data: Sawada/Fujimoto ,[7] same conditions as for effective MAR rate coefficient: $n_e = n_p$ to remove n_e and n_p dependence in P(v), $T_e = T_p$ to remove T_p dependence in P(v), $E_{H_2} = 0.1$ eV.

E	-Index:	0	1			2
T-Index	:					
0	-4.37313	31541734D+01	6.718149393	827D-01	-3.867837	685625D-01
1	2.17468	39987798D+01	-1.191104354	1839D+00	7.378457	372332D-01
2	-1.16218	32756359D+01	7.756604222	2360D-01	-4.321461	052143D-01
3	1.83700)3210284D+00	-1.537238550)557D-01	8.022138	313912D-02
4	8.79171	L5928275D-01	-6.293664899	458D-02	2.407530	624100D-02
5	-4.70169	97036505D-01	4.136103649	916D-02	-1.573783	289950D-02
6	9.14689	91578771D-02	-9.230394630	199D-03	3.397451	000676D-03
7	-8.35294	10909550D-03	9.482379346	5865D-04	-3.411244	141755D-04
8	2.98398	30601563D-04	-3.758192682	2764D-05	1.332532	546790D-05
E	-Index:	3	4			5
T-Index	:					
0	1.35053	32623779D-01	-2.606290252	2421D-02	2.960623	240635D-03
1	-2.33789	97758691D-01	4.249920373	347D-02	-4.710792	852313D-03
2	1.24402	24912859D-01	-1.991554109	9544D-02	2.092199	411332D-03
3	-2.76813	33389852D-02	3.798880238	8692D-03	-3.638596	889044D-04
4	4.58210	53407263D-04	-2.026711273	3229D-04	1.801057	292473D-05
5	1.17920	54114144D-03	-1.870608178	3594D-05	-1.181360	244394D-06
6	-2.82754	10980953D-04	8.280496335	5764D-07	8.876306	183255D-07
7	2.89615	54172252D-05	2.341967770	730D-07	-1.335324	508242D-07
8	-1.14600)2829775D-06	-1.521564259	490D-08	5.973795	729243D-09
E	-Index:	6	7			8
T-Index	:					
0	-1.93291	L2896769D-04	6.651475974	1023D-06	-9.311652	407600D-08
1	3.05974	17667206D-04	-1.054165293	3122D-05	1.478357	492460D-07
2	-1.37461	L1007871D-04	4.927217261	940D-06	-7.245875	668840D-08
3	2.59072	22791448D-05	-1.080909364	1087D-06	1.850940	055128D-08
4	-1.95236	51813207D-06	1.287993215	5397D-07	-3.006990	415615D-09
5	1.19403	38887873D-07	-1.002354431	841D-08	3.112143	515737D-10
6	-3.42233	31996712D-08	3.799710153	8845D-10	-6.935765	606162D-12
7	4.28963	35494443D-09	5.061843256	5637D-11	-2.503981	294990D-12
8	-1.60172	24546314D-10	-5.336350859	0656D-12	1.956601	576452D-13
N2MIN = N2MAX =	1.00000D (1.00000D 1	08 1/CM3 16 1/CM3				

Max. rel. Error: 3.7214 %

1.4562 %

Mean rel. Error:

4.52 Reaction 7.2.3a $p + H^- \rightarrow H + H$ (for cold H^-)

CX multistep recombination rate for H^- ions, [7] Rate $\mathbf{p} + H^- \rightarrow H + H^*$ followed by $H^* \rightarrow H(1)$ $\langle \sigma * v_{rel} \rangle (T_e, n_e) (cm^3/s)$ Assume low energy of projectile, $E(H^-) = 0.1 \text{ eV}, T_e = T_i$. H^* production based on HYDHEL 7.2.2, 7.2.3.

E-Ind	ex: 0	1	2
T-Index:			
0 –	1.690146932812D+01	7.569370314490D-02	-1.118661556236D-01
1 -	2.301580195362D-01	2.981364856606D-03	-1.296888142995D-02
2	2.124304411230D-02	-4.585972147659D-02	7.447057284991D-02
3	7.720995917466D-03	3.504507942086D-03	1.734371731330D-04
4	1.331695301990D-02	-9.042026807455D-04	-4.764566765886D-03
5	3.536238349067D-04	-8.011930719727D-04	1.101704458636D-03
6 –	1.446558546363D-03	1.152532160685D-03	-8.305881275354D-04
7	2.479021261394D-04	-2.773890711262D-04	2.167753172783D-04
8 –	1.248597948333D-05	1.903633250451D-05	-1.590752591530D-05
E-Ind	ex: 3	4	5
T-Index:			
0	5.784649204408D-02	-1.430206446825D-02	1.883300059210D-03
1	9.188878355062D-03	-2.795985155376D-03	4.355473614802D-04
2 –	3.922380885092D-02	9.609624588460D-03	-1.240136716983D-03
3 –	1.347164354237D-03	5.423527604759D-04	-9.468953600274D-05
4	3.858570576628D-03	-1.128426542832D-03	1.607204158523D-04
5 –	5.449050513405D-04	1.255763496307D-04	-1.495920840346D-05
6	2.084267816803D-04	-1.903417990674D-05	-2.796205484739D-07
7 –	6.195779421732D-05	7.927649861583D-06	-4.211576616550D-07
8	4.992428048704D-06	-7.522431288906D-07	5.827438308119D-08
E-Ind	ex: 6	7	8
T-Index:			
0 –	1.346209157175D-04	4.900081433053D-06	-7.105742130265D-08
1 –	3.579321024690D-05	1.457520878645D-06	-2.319369078632D-08
2	8.671653962517D-05	-3.101461653370D-06	4.442783018453D-08
3	8.309512179236D-06	-3.552667688177D-07	5.887954953357D-09
4 –	1.197915401674D-05	4.484319353024D-07	-6.656156226037D-09
5	9.441566217674D-07	-2.989807912656D-08	3.717785721362D-10
6	1.584268580014D-07	-9.504026475042D-09	1.811886563961D-10
7	2.531413590874D-10	7.572949322455D-10	-1.937737123063D-11
8 –	2.220813567852D-09	3.174650814148D-11	6.296020826533D-14
N2MIN = 1.0	0000D 08 1/CM3		
N2MAX = 1.0	0000D 16 1/CM3		
Max. rel. E	rror: 4.1781 %		

.9694 %

Mean rel. Error:

Electron Temperature (eV)

Reaction 7.2.3b $p + H^- \rightarrow H + H^+ + 2e$ (for cold H^-) 4.53

CX multistep ionization rate for H^- ions, [7] Rate $p + H^- \rightarrow H + H^*$ followed by $H^* \rightarrow H^+ + e$ $\langle \sigma * v_{rel} \rangle (T_e, n_e) (cm^3/s)$ Assume low energy of projectile, $E(H^-) = 0.1 \text{ eV}, T_e = T_i. H^*$ production based on HYHDEL 7.2.2, 7.2.3 (not included: process 7.2.1 of proton impact electron detachment).

E-1	Index:	0	1			2
T-Index:						
0	-3.274	642366537D+01	1.05534780	8907D+00	-8.644168	3315786D-02
1	1.594	755262357D+00	-1.13450548	8332D-01	1.193838	3572515D-01
2	-7.947	374319647D-01	5.37223167	2557D-02	-1.798104	4638021D-02
3	2.774	560684070D-01	-3.73163792	4945D-02	1.249720)348407D-02
4	-9.340	115304254D-02	7.82408018	8667D-03	-7.880149	9239516D-05
5	2.404	236598616D-02	8.34879030	3724D-04	-1.94721	7396578D-03
6	-3.635	353640159D-03	-4.37965953	0212D-04	4.542432	L412762D-04
7	2.758	341263855D-04	4.57869689	9777D-05	-3.345082	2277318D-05
8	-7.995	248003067D-06	-1.40553033	5553D-06	4.938572	2628097D-07
E-1	Index:	3	4			5
T-Index:						
0	5.770	739917980D-02	-1.65154397	1724D-02	2.42692	6977738D-03
1	-4.779	741494751D-02	9.03660299	4533D-03	-8.82878	6882875D-04
2	-2.492	326178844D-04	1.07000381	8666D-03	-1.975024	4076418D-04
3	-2.377	802775838D-03	3.18524579	5525D-04	-3.766702	L342971D-05
4	2.730	699348365D-04	-1.61368246	1379D-04	2.95630	5967893D-05
5	4.228	772072344D-04	-3.06126474	4513D-05	-4.41270	7867464D-07
6	-8.943	967815733D-05	7.19106576	0263D-06	-2.516432	1736865D-07
7	3.040	805346315D-06	4.03703492	1179D-07	-7.745783	3067338D-08
8	2.407	555731254D-07	-8.58082196	1541D-08	1.001283	L190560D-08
E-]	Index:	6	7			8
T-Index:						
0	-1.852	128922021D-04	6.94855341	6066D-06	-1.01491	7161032D-07
1	4.408	052942176D-05	-1.01862628	5421D-06	7.671244	1985570D-09
2	1.598	210863669D-05	-6.15971493	0603D-07	9.185228	3515472D-09
3	3.135	633075387D-06	-1.38390548	2846D-07	2.38026	5714001D-09
4	-2.493	019966708D-06	1.00018010	6519D-07	-1.546520)999798D-09
5	1.760	055762971D-07	-8.60576755	0690D-09	1.33850	7166605D-10
6	5.049	361112014D-09	-2.84103328	1170D-10	9.49181	5236733D-12
7	4.107	873810473D-09	-5.89953430	9929D-11	-6.50213	5074988D-13
8	-5.295	286447696D-10	1.19608037	2249D-11	-7.019149	9004762D-14
N2MIN =	1.00000D	08 1/CM3				
N2MAX = 1	1.00000D	16 1/CM3				
Max. rel.	. Error:	4.7342 %				

1.9827 %

Mean rel. Error:

4.54 Reaction 2.2.17r $e + H_2(+p) \rightarrow H + H + H$ (MAR via H^- , cold H_2)

 H_2 multi-step model, intermediate H⁻ condensed MAR rate coefficient cm^3/s . Data: Sawada/Fujimoto/Greenland [7] $H_2(v = 0)$ transported, H- in QSS with H_2 , $E_{H_2} = 0.1$ eV $H_2(v \ge 1)$ is also in QSS with $H_2(v = 0)$. Vibrational distribution P(v) as fct. of T_e only (assuming $n_e = n_p$, so density cancels here).

The MAR rate coefficient is a fct. of n_e and $T(T_e = T_p)$, and must be multiplied with density n_e to turn it into a collision rate 1/s, and then with $n_{H_2(v=0)}$ to turn it into a volumetric reaction rate $(cm^{-3}s^{-1})$.

E-1	Index: 0	1	2
T-Index:			
0	-2.297800283146D+	-01 6.534592113445D-02	-9.544034335177D-02
1	3.255752862650D-	-01 -4.609955130788D-02	5.098906708830D-02
2	-2.786114306651D+	-00 -1.546214758321D-02	2.847577356774D-02
3	5.451071688762D-	01 1.247241020831D-02	-1.353760272178D-02
4	-6.286158855226D-	-02 -4.389219885290D-03	3.206993381146D-03
5	4.602307315406D-	-02 -3.365073093686D-04	4.783138611752D-04
6	-1.377583511277D-	02 6.740788490537D-04	-6.551863726515D-04
7	1.527262955311D-	-03 -1.450720501257D-04	1.431871130747D-04
8	-5.704031483864D-	05 9.223227686785D-06	-9.308552409010D-06
E-1	Index: 3	4	5
T-Index:			
0	4.970735210679D-	-02 -1.243141252556D-02	1.655580726220D-03
1	-1.954797928578D-	-02 3.399801537594D-03	-2.849051225621D-04
2	-1.678956104784D-	-02 4.504025971793D-03	-6.240461921076D-04
3	5.119377169125D-	-03 -8.773390579671D-04	7.144457352822D-05
4	-5.136674287472D-	-04 -7.768096468037D-05	3.000125315688D-05
5	-2.297027336534D-	-04 4.978316796624D-05	-5.355797001723D-06
6	2.206810315147D-	-04 -3.303528206775D-05	2.195396861484D-06
7	-4.980757484889D-	05 8.014816441375D-06	-6.397577372929D-07
8	3.352896292336D-	-06 -5.723489499349D-07	5.088071892707D-08
E-1	Index: 6	7	8
T-Index:			
0	-1.194692428627D-	-04 4.379565825329D-06	-6.383725114244D-08
1	1.051829766407D-	-05 -9.154397761809D-08	-2.152692619811D-09
2	4.608932334537D-	-05 -1.718655992974D-06	2.542645887393D-08
3	-2.388410284649D-	-06 2.655768446028D-09	1.025732328009D-09
4	-3.192832412396D-	-06 1.454747252965D-07	-2.454086710166D-09
5	2.865878646518D-	-07 -6.904361734587D-09	5.002886041869D-11
6	-3.785101515696D-	-08 -2.050241512510D-09	7.102693831116D-11
7	2.367506961773D-	-08 -2.530033040264D-10	-3.372527364917D-12
8	-2.359337617271D-	-09 5.134816267193D-11	-3.545642487622D-13
N2MIN =	1.00000D 08 1/CM3		
N2MAX =	1.00000D 16 1/CM3		
Max. rel	. Error: 0.234E+0	2 %	
Mean rel	. Error: 0.116E+0	12 %	

4.55 Reaction 2.2.17d $e + H_2(+p) \rightarrow p + H + H$ (MAD via H^- , cold H_2)

 H_2 multi-step model, H⁻ condensed MAD rate coefficient cm^3/s , same conditions as for effective MAR rate coefficient: $n_e = n_p, T_e = T_p$ to remove n_p, T_p dependence in second step, $E_{H_2} = 0.1$ eV.

E-Index: 0	1	2
T-Index:		
0 -3.882083547683D+01	1.095791921388D+00	-1.230711293981D-01
1 2.151709312342D+00	-4.168827415549D-02	4.892315481992D-02
2 -3.595143998663D+00	-2.412908863509D-02	3.295635167166D-02
3 7.775259996676D-01	-6.068712552241D-03	3.634654300394D-03
4 -1.395293276372D-01	4.544589777558D-03	-4.066643547905D-03
5 6.013775491272D-02	-1.839703814205D-04	3.051477843336D-04
6 -1.461016120534D-02	-6.880568170969D-05	-5.434943913724D-05
7 1.482124097593D-03	-1.816234384924D-06	2.631936396542D-05
8 -5.220871340356D-05	9.259820722261D-07	-2.405390251053D-06
E-Index: 3	4	5
T-Index:		
0 7.156191553995D-02	-1.924429230749D-02	2.729436304739D-03
1 -2.163365368372D-02	4.090487899919D-03	-3.583331242137D-04
2 -1.528766675405D-02	3.561575456573D-03	-4.454863057078D-04
3 -1.214281149023D-03	2.441534541113D-04	-3.652079252543D-05
4 1.744404381785D-03	-3.908220370889D-04	5.014932056722D-05
5 -2.160937153726D-04	5.731455836804D-05	-7.513434462406D-06
6 5.747785604281D-05	-1.494808974427D-05	1.694028119666D-06
7 -1.618482069160D-05	3.709442120281D-06	-4.001502419799D-07
8 1.271263892578D-06	-2.787472368647D-07	2.994682318717D-08
E-Index: 6	7	8
T-Index:		
0 -2.041720297851D-04	7.573899339820D-06	-1.099140704569D-07
1 1.252069523769D-05	-1.374650112152D-08	-5.466351407287D-09
2 3.063903823423D-05	-1.087318819599D-06	1.550671864150D-08
3 3.268697767939D-06	-1.457925944423D-07	2.490300520343D-09
4 -3.621341085954D-06	1.350800086799D-07	-2.014614269650D-09
5 5.230899431395D-07	-1.841979478877D-08	2.572500353175D-10
6 -9.509188594474D-08	2.540647702443D-09	-2.460554994619D-11
7 2.191691514991D-08	-5.803874517021D-10	5.695004783405D-12
8 -1.671204190850D-09	4.617233523173D-11	-4.914469012752D-13
N2MIN = 1.00000D 08 1/CM3		
N2MAX = 1.00000D 16 1/CM3		
Max. rel. Error: 0.250E+02 %		

Mean rel. Error: 0.108E+02 %

5 H.5 : Fits for $\langle \sigma \cdot v \cdot momentum \rangle(T)$

to be written

6 H.6 : Fits for $\langle \sigma \cdot v \cdot momentum \rangle(E,T)$

to be written

7 H.7 : Fits for $\langle \sigma \cdot v \cdot momentum \rangle(n_e, T)$

This page is intentionally left blank

8 H.8 : Fits for $\langle \sigma \cdot v \cdot E_p \rangle(T_b) [cm^3/s \cdot eV]$

 E_p is a relevant energy related to the process, e.g. it may be the impacting electron or ion in eV, or the radiation energy loss per reaction, etc. In the present section the energy-weighted rate is a function of temperature [eV] of the impacting electron or ion

8.1 Reaction 2.2.14 $e + H_2^+(v) \to H(1s) + H^*(n)(v = 0 - 9, n \ge 2)$

The energy weighting in this rate coefficient is done with the kinetic energy of impacting electron. The general expression for this type of incident particle energy-weighted rate, in which the second particle is at rest, reads:

 $\langle \sigma v_e E_{elec} \rangle (T_e) = kT_e \cdot \langle \sigma v_e \rangle \cdot \left(3/2 + \frac{d \ln \langle \sigma v_e \rangle}{d \ln (kT_e)} \right)$ The fit for the particular process in this paragraph should result in

The fit for the particular process in this paragraph should result in $\langle \sigma v_e E_{elec} \rangle(T_e) \approx 0.896 \ kT_e \ \langle \sigma v_e \rangle$,

i.e. low energy electrons are preferred in this reaction, over the average electrons with $3/2 kT_e$

h0	-1.681368547011e+01	h1	3.964355004318e-01	h2	0.00000000000000000000000000000000000
h3	0.000000000000e+00	h4	0.000000000000e+00	h5	0.000000000000e+00
h6	0.000000000000e+00	h7	0.000000000000e+00	h8	0.00000000000e+00

8.2 Reaction 2.7.14 $e + N_2^+ \rightarrow N + N^*(n)$

The energy weighting in this rate coefficient is done with the kinetic energy of impacting electron. The same procedure is applied as for H_2^+ dissociative recombination, see above in this section.

h0	-1.65001000000e+01	h1	0.70000000000e+00	h2	0.0000000000000e+00
h3	0.000000000000e+00	h4	0.000000000000e+00	h5	0.000000000000e+00
h6	0.000000000000e+00	h7	0.000000000000e+00	h8	0.000000000000e+00

This page is intentionally left blank

h0	-3.294427070846D+01	h1	2.058485983359D+01	h2	-1.018663912043D+01
h3	3.072113276309D+00	h4	-6.121540418115D-01	h5	8.135920959426D-02
h6	-6.956871247682D-03	h7	3.454933903445D-04	h8	-7.541153102380D-06

8.4 Reaction 2.2B1 $e + He^+(1s) \rightarrow e + He^{++} + e$ 11/94 update

h0	-5.355348236978D+01	h1	4.009715623653D+01	h2	-1.981585158765D+01
h3	6.148719835529D+00	h4	-1.288397616745D+00	h5	1.817351838759D-01
h6	-1.642324160178D-02	h7	8.519919601377D-04	h8	-1.917188865674D-05

Electron Cooling rates, associated with He and He+ ionisation

Electron Temperature (eV)

8.5 Reaction 2.4B0 $e + Be \rightarrow e + Be^+ + e$ 1/96 update

Electron cooling rates for neutral Beryllium Atoms $\langle de * sigma * vrel \rangle (T_e) (eV * cm * *3/s), Be \rightarrow Be^*$

```
h0 -1.600797819812D+01 h1 4.801721310374D+00 h2 -2.546377115756D+00
h3 7.688590079004D-01 h4 -1.502880642117D-01 h5 1.910668947476D-02
h6 -1.528566911077D-03 h7 6.997210970692D-05 h8 -1.398145303385D-06
Max. rel. Error: .1477 %
Mean rel. Error: .0376 %
```

8.6 Reaction **2.4B1** $e + Be^+ \rightarrow e + Be^{++} + e$ **1/96** update

Electron cooling rates for single charged Beryllium Ions $\langle de * sigma * vrel \rangle (T_e) (eV * cm * *3/s), Be^+ \rightarrow Be^{+*}$

```
h0 -1.570117098474D+01 h1 3.492073280813D+00 h2 -1.988895527002D+00
h3 6.770887182178D-01 h4 -1.567537912034D-01 h5 2.416405226747D-02
h6 -2.343329470312D-03 h7 1.280666147623D-04 h8 -2.989849097428D-06
Max. rel. Error: .1400 %
Mean rel. Error: .0783 %
```


8.7 Reaction 2.5B0 $e + B \rightarrow e + B^+ + e$ 1/96 update

Electron cooling rates for neutral Boron Particles $\langle de * sigma * vrel \rangle (T_e) (eV * cm * *3/s), B \rightarrow B^*$

h0	-1.854307390504D+01	h1	6.477147013729D+00	h2	-3.012265953316D+00
h3	7.443204571714D-01	h4	-9.875163519457D-02	h5	4.879302715434D-03
h6	3.317004129594D-04	h7	-5.135297123379D-05	h8	1.774782835741D-06

8.8 Reaction 2.5B1 $e + B^+ \rightarrow e + B^{++} + e$ 1/96 update

Electron cooling rates for single charged Boron Particles $\langle de * sigma * vrel \rangle (T_e) (eV * cm * *3/s), B^+ \rightarrow B^{+*}$

h0 -2.025375436381D+01	h1 8.540697000676D+00	h2 -4.378249188138D+00
h3 1.324025185106D+00	h4 -2.627439468179D-01	h5 3.472998074572D-02
h6 -2.959016392102D-03	h7 1.467662520364D-04	h8 -3.204537616409D-06

This page is intentionally left blank

8.9 Reaction 2.6B0 $e + C \rightarrow e + C^+ + e$ 1/98 update

Electron cooling rates for neutral Carbon Particles. Here: use $\Delta E_e = I_p = const = 11.30$ constant multiplier to corresp. ionisation fit. $\langle de * sigma * vrel \rangle (T_e) (eV * cm * *3/s), C \rightarrow C^*$

```
h0 -2.712642477000D+01 h1 1.180604026361D+01 h2 -5.438799573749D+00
h3 1.750648117869D+00 h4 -3.946542606866D-01 h5 5.887749368990D-02
h6 -5.469027807326D-03 h7 2.850693136991D-04 h8 -6.354758903485D-06
```

8.10 Reaction 2.6B1 $e + C^+ \rightarrow e + C^{++} + e$ 1/98 update

Electron cooling rates for single charged Carbon Particles $\langle de * sigma * vrel \rangle (T_e) (eV * cm * *3/s), C^+ \rightarrow C^{+*}$

```
h0 -2.182881258910D+01 h1 8.721441032283D+00 h2 -3.874718527697D+00
h3 9.883761525498D-01 h4 -1.611584081736D-01 h5 1.774337558846D-02
h6 -1.355435656870D-03 h7 6.703143691651D-05 h8 -1.588682523808D-06
Max. rel. Error: 1.0056 %
Mean rel. Error: .3730 %
```

This page is intentionally left blank
8.11 Reaction 2.7B0 $e + N \rightarrow e + N^+ + e$

Electron cooling rates for neutral Nitrogen atoms due to ionisation. here: use $\Delta E_e = I_p = const = 14.535$ $\langle de * sigma * vrel \rangle (T_e) (eV * cm * *3/s), N \rightarrow N^*$

h0	-3.000278067000D+01	h1	1.487745850177D+01	h2	-7.393982038208D+00
h3	2.552657836634D+00	h4	-6.031414732283D-01	h5	9.299608313666D-02
h6	-8.862541230616D-03	h7	4.718778196780D-04	h8	-1.071093371002D-05

8.12 Reaction 2.10B0 $e + Ne \rightarrow e + Ne^+ + e$ 1/96 update

Electron cooling rates for neutral and single charged Neon Particles $\langle de*sigma*vrel \rangle(T_e)(eV*cm**3/s), Ne \rightarrow Ne^*$

```
h0 -3.296011717683D+01 h1 2.090175238087D+01 h2 -1.260497269687D+01
h3 4.703674520432D+00 h4 -1.084256841690D+00 h5 1.545011409578D-01
h6 -1.329678439752D-02 h7 6.349448203560D-04 h8 -1.293944291911D-05
Max. rel. Error: .0768 %
Mean rel. Error: .0448 %
```

8.13 Reaction 2.10B1 $e + Ne^+ \rightarrow e + Ne^{++} + e$ 1/96 update

Electron cooling rates for neutral and single charged Neon Particles $\langle de*sigma*v-rel \rangle (T_e)(eV*cm**3/s), Ne^+ \rightarrow Ne^{+*}$

```
h0 -4.016425730032D+01 h1 2.721204153637D+01 h2 -1.284168864085D+01
h3 3.355303591105D+00 h4 -4.850926860273D-01 h5 3.324128846263D-02
h6 -7.385513932230D-05 h7 -1.193933246957D-04 h8 4.774152004995D-06
Max. rel. Error: .3700 %
Mean rel. Error: .2182 %
```


Electron Temperature (eV)

8.14 Reaction 2.18B0 $e + Ar \rightarrow e + Ar^+ + e$ 1/96 update

Electron cooling rates for neutral and single charged Argon Particles here: use $\Delta E_e = I_p = const = 15.7596$, constant multiplier to corresp. ionisation fit. $\langle de * sigma * vrel \rangle (T_e) (eV * cm * *3/s), Ar \rightarrow Ar^*$

```
h0 -3.054602443000D+01 h1 1.627861918393D+01 h2 -7.765170847889D+00
h3 2.446384994382D+00 h4 -5.186581624286D-01 h5 7.184868450814D-02
h6 -6.200405891186D-03 h7 3.018464732517D-04 h8 -6.325074170944D-06
```

8.15 Reaction 2.18B1 $e + Ar^+ \rightarrow e + Ar^{++} + e$ 1/96 update

Electron cooling rates for neutral and single charged Argon Particles $\langle de*sigma*vrel \rangle(T_e)(eV*cm**3/s), Ar^+ \rightarrow Ar^{+*}$

h0 -4.165898540334D+01 h1 2.608109647112D+01 h2 -1.166949407607D+01 h3 3.280473403465D+00 h4 -6.113171083108D-01 h5 7.504889391247D-02 h6 -5.828589448772D-03 h7 2.593634229260D-04 h8 -5.035811848208D-06 Max. rel. Error: .0697 % Mean rel. Error: .0288 %

8.16 Reaction 2.26B0 $e + Fe \rightarrow e + Fe^+ + e$ 2/06 update

Electron cooling rates for neutral and single charged Iron Particles $\langle de * sigma * vrel \rangle (T_e)(eV * cm * *3/s), Fe \rightarrow Fe^*$

```
h0 -2.251653573541D+01 h1 8.433391246873D+00 h2 -3.846892917152D+00
h3 1.185977478850D+00 h4 -2.459331954696D-01 h5 3.266167601116D-02
h6 -2.642599090120D-03 h7 1.182307520821D-04 h8 -2.237623328108D-06
Max. rel. Error: .0906 %
Mean rel. Error: .0450 %
```

8.17 Reaction 2.26B1 $e + Fe^+ \rightarrow e + Fe^{++} + e^{-2/06}$ update

Electron cooling rates for neutral and single charged Iron Particles $\langle de * sigma * vrel \rangle (T_e)(eV * cm * *3/s), Fe^+ \rightarrow Fe^{+*}$

```
h0 -1.624809050332D+01 h1 4.421997781459D+00 h2 -2.249312140674D+00
h3 5.326087246569D-01 h4 -3.768433369019D-02 h5 -8.032685540054D-03
h6 1.913339126234D-03 h7 -1.516002249042D-04 h8 4.332622078891D-06
Max. rel. Error: .4042 %
Mean rel. Error: .2088 %
```


8.18 Reaction 3.1.8L $p + H(1s) \to H(1s) + p$

Langevin CX rate, for testing only.

 E_p is the kinetic energy of the impacting ion in eV. The energy weighted rate for the Langevin approximation is 3/2 kT * 2e-8

	E-Index:	0		1		2
T-Ir	ndex:					
h0	-1.7322068460	00D+01	h1	1.000000000000000000000000000000000000	h2	0.000000000000000000000000000000000000
h3	0.0000000000	00D+00	h4	0.000000000000000000000000000000000000	h5	0.000000000000000000000000000000000000
h6	0.0000000000	00D+00	h7	0.000000000000000000000000000000000000	h8	0.000000000000000000000000000000000000

9 H.9 :Fits for $\langle \sigma \cdot v \cdot E_p \rangle (E_0, T_p) [cm^3/s \cdot eV]$

9.1 Reaction 3.1.8 $p + H(1s) \rightarrow H(1s) + p$

 E_p is the kinetic energy of the impacting ion in eV. The energy-weighted rate coefficient is a function of ion temperature T_p [eV] and of the impacting neutral particle kinetic energy E_0 [eV]

E-I	ndex:	0	1	2
T-Index:				
0	-1.77	7579549728D+01	1.009523650881D-01	4.654228527844D-02
1	1.275	5231758810D+00	-9.644906009036D-02	-2.211669235384D-02
2	4.530)160377165D-02	2.342045574729D-02	-9.203651373424D-03
3	-5.955	5369019980D-03	3.554165401021D-03	5.687922583665D-03
4	-1.979	9653552345D-03	-2.139061718958D-03	-5.015782273336D-05
5	1.38	7089441785D-04	2.267300682383D-04	-4.035280214497D-04
6	9.252	2160306969D-05	1.040699979357D-05	8.704096952722D-05
7	-1.432	2658980502D-05	-2.945710692553D-06	-7.300036168036D-06
8	5.659	9366058900D-07	1.274167039318D-07	2.222526255554D-07
E-	Index:	3	4	5
T-Index:				
0	1.080	5931313538D-02	-2.594201995447D-03	-7.731266223508D-04
1	8.46	7481122042D-03	1.412559491188D-03	-7.442507107710D-04
2	-4.73	7882712502D-03	1.276905220752D-03	2.370696675146D-04
3	-1.10	7407133685D-03	-5.709773444309D-04	1.803637598216D-04
4	6.785	5109655871D-04	-6.025307354437D-05	-5.642411701218D-05
5	-5.545	5614797192D-05	6.129382543768D-05	-3.599116584649D-06
6	-9.853	3811706993D-06	-1.141186867496D-05	2.733706713304D-06
7	1.708	3575489575D-06	8.872884700942D-07	-3.140831827282D-07
8	-6.988	3406373694D-08	-2.556421038443D-08	1.135791478659D-08
E-	Index:	6	7	8
T-Index:		-		-
0	2.413	3613977749D-04	-2.132300538605D-05	6.057223635716D-07
1	9.518	3302025258D-05	-4.753012706978D-06	7.069997192010D-08
2	-1.000)952289205D-04	1.059536089242D-05	-3.696859736968D-07

3	-1.512070888533D-05	5.360958997427D-08	2.773215541900D-08
4	1.500712819446D-05	-1.393253051164D-06	4.521246252095D-08
5	-1.937812763003D-06	3.059696948703D-07	-1.282436081613D-08
6	-9.308661633534D-08	-1.924954958807D-08	1.274653104848D-09
7	2.993136285588D-08	-4.094687301095D-10	-4.251053762140D-11
8	-1.386563064570D-09	5.641978567123D-11	-1.151564989100D-13

Max.	rel.	Error:	1.2514	00
Mean	rel.	Error:	0.2865	00

9.2 Reaction 3.1.8L $p + H(1s) \rightarrow H(1s) + p$

 E_p is the kinetic energy of the impacting ion in eV. The energy-weighted rate for the Langevin approximation is 3/2 kT * 2e-8

E-I	index: 0	1	2
T-Index:			
0	-1.732206846000D+01	0.000000000000000000000000000000000000	0.000000000000000000000000000000000000
1	1.000000000000000000000000000000000000	0.000000000000000000000000000000000000	0.000000000000000000000000000000000000
2	0.000000000000000000000000000000000000	0.000000000000000000000000000000000000	0.000000000000000000000000000000000000
3	0.000000000000000000000000000000000000	0.000000000000000000000000000000000000	0.000000000000000000000000000000000000
4	0.000000000000000000000000000000000000	0.000000000000000000000000000000000000	0.000000000000000000000000000000000000
5	0.000000000000000000000000000000000000	0.000000000000000000000000000000000000	0.000000000000000000000000000000000000
6	0.000000000000000000000000000000000000	0.000000000000000000000000000000000000	0.000000000000000000000000000000000000
7	0.000000000000000000000000000000000000	0.000000000000000000000000000000000000	0.000000000000000000000000000000000000
8	0.000000000000000000000000000000000000	0.00000000000D+00	0.000000000000000000000000000000000000
E-I	index: 3	4	5
T-Index:			
0	0.000000000000000000000000000000000000	0.000000000000000000000000000000000000	0.000000000000000000000000000000000000
1	0.000000000000000000000000000000000000	0.000000000000000000000000000000000000	0.000000000000000000000000000000000000
2	0.000000000000000000000000000000000000	0.000000000000000000000000000000000000	0.000000000000000000000000000000000000
3	0.000000000000000000000000000000000000	0.000000000000000000000000000000000000	0.000000000000000000000000000000000000
4	0.000000000000000000000000000000000000	0.000000000000000000000000000000000000	0.000000000000000000000000000000000000
5	0.000000000000000000000000000000000000	0.000000000000000000000000000000000000	0.000000000000000000000000000000000000
6	0.000000000000000000000000000000000000	0.000000000000000000000000000000000000	0.000000000000000000000000000000000000
7	0.000000000000000000000000000000000000	0.000000000000000000000000000000000000	0.000000000000000000000000000000000000
8	0.000000000000000000000000000000000000	0.00000000000D+00	0.000000000000000000000000000000000000
E-I	ndex: 6	7	8
T-Index:			
0	0.000000000000000000000000000000000000	0.000000000000D+00	0.00000000000D+00
1	0.00000000000D+00	0.000000000000D+00	0.000000000000000000000000000000000000
2	0.000000000000000000000000000000000000	0.000000000000D+00	0.000000000000D+00
3	0.00000000000D+00	0.000000000000D+00	0.000000000000000000000000000000000000
4	0.000000000000000000000000000000000000	0.00000000000D+00	0.000000000000D+00
5	0.000000000000000000000000000000000000	0.000000000000000000000000000000000000	0.000000000000000000000000000000000000
6	U.000000000000000000000000000000000000	0.000000000000000000000000000000000000	U.000000000000000000000000000000000000
7	0.000000000000000000000000000000000000	0.000000000000000000000000000000000000	0.000000000000000000000000000000000000
8	0.000000000000000000000000000000000000	0.00000000000D+00	0.000000000000000000000000000000000000
NG 7			

Max.	rel.	Error:	0.0000	00
Mean	rel.	Error:	0.0000	00

9.3 Reaction 3.3.1 $p + He(1s^21S) \rightarrow H + He^+(1s)$

Proton energy weighted charge exchange rate coefficient, protons with ground state Helium He, $E_{th} \approx 11.2$ eV. Corresponding un-weighted rate coefficient is given also here in an earlier section and in HYHEL with same sub-section number.

E-	Index: 0	1	2
T-Index:			
0	-3.445873460852D+01	8.326134682590D-01	1.933054122941D-01
1	7.061207340144D+00	-1.313817435577D+00	-2.022008463051D-02
2	-1.736559910607D+00	9.850170907730D-01	-2.150416408177D-01
3	2.831856629788D-01	-4.245131595514D-01	1.739383391445D-01
4	2.241285385641D-02	1.103647192643D-01	-6.088038032579D-02
5	-2.212724523621D-02	-1.746079083640D-02	1.145240838422D-02
6	4.425243772505D-03	1.637736454226D-03	-1.204202849751D-03
7	-3.781548873891D-04	-8.345178061307D-05	6.671405376586D-05
8	1.193024795969D-05	1.774873395657D-06	-1.517888839586D-06
E-	Index: 3	4	5
T-Index:			
0	6.873661138878D-02	-2.530594845507D-02	3.637744786711D-03
1	-1.061062949296D-01	4.412103967546D-02	-3.685824519445D-03
2	6.376880737273D-02	-1.785764179094D-02	1.574503264024D-03
3	-2.171235372363D-02	-3.103258502378D-04	-7.908060831688D-05
4	5.072440380901D-03	1.643836342594D-03	-1.585285238384D-04
5	-8.662593688148D-04	-3.914961081124D-04	5.595248036912D-05
6	1.004763175634D-04	3.863654089420D-05	-8.367160814608D-06
7	-6.737998131918D-06	-1.587918693338D-06	6.003371579626D-07
8	1.916686027968D-07	1.615498260138D-08	-1.693306893859D-08
E-	Index: 6	7	8
T-Index:			
0	-4.698314268303D-04	4.502855041540D-05	-1.724119064743D-06
1	-4.081552915490D-04	7.523889576611D-05	-3.020854867113D-06
2	1.755019472132D-04	-3.622077917093D-05	1.578825987882D-06
3	8.820311155289D-05	-1.096383895966D-05	4.077966484815D-07
4	-4.325767085415D-05	7.303630284565D-06	-3.055052941782D-07
5	3.995980258215D-06	-1.053387214627D-06	4.789068581038D-08
6	4.989305627062D-07	4.799823908148D-09	-9.771077724410D-10
7	-1.009348152873D-07	8.912440158402D-09	-3.117095091366D-10
8	4.438767986041D-09	-4.806081198001D-10	1.835893653264D-11
Max. rel.	Error: 13.4603 %		

Mean rel. Error: 0.9308 %

9.4 Reaction 3.3.6a $p + He^*(1s^12s^11S) \rightarrow H^*(2s) + He^+(1s)$

Proton energy weighted charge exchange rate coefficient, protons with first meta-stable He*, $E_{th} \approx 0.57$ eV. Corresponding (un-weighted) rate coefficient is given here in an earlier section and in HYHEL with same sub-section number.

E-	Index: 0	1	2
T-Index:			
0	-2.397668404788D+01	3.159485036283D-01	1.251349908668D-01
1	3.791127359443D+00	-3.761884787063D-01	-1.201611289430D-01
2	-3.031005464839D-01	1.547966958268D-01	3.418807730147D-02
3	-2.042285843152D-02	-1.849518757027D-02	-2.705500175969D-03
4	9.317257534521D-03	-3.497722978839D-03	5.266899471936D-04
5	-4.841929631711D-04	1.244615194159D-03	-3.264196261141D-04
6	-9.483126811734D-05	-1.399032118750D-04	6.356897513547D-05
7	1.241207591818D-05	6.987980280667D-06	-4.975196671014D-06
8	-4.191666003951D-07	-1.299861951387D-07	1.392550743313D-07
E-	Index: 3	4	5
T-Index:			
0	3.856067365269D-02	-2.026573130919D-03	-2.759136201694D-03
1	-6.229570032866D-03	7.539673693629D-03	3.228125296776D-05
2	-1.117399758747D-02	-3.402440317662D-03	1.301470355832D-03
3	4.346233632875D-03	2.577875598472D-04	-4.359935280851D-04
4	-6.346015739054D-04	1.053315422043D-04	3.920000120015D-05
5	6.551645356748D-05	-2.376485094163D-05	1.685178990397D-06
6	-8.200597026708D-06	1.844480677683D-06	-3.712741557353D-07
7	7.170567793961D-07	-5.326280408650D-08	9.229946485903D-09
8	-2.381772742595D-08	2.014368954375D-10	2.686050437848D-10
E-	Index: 6	7	8
T-Index:			
0	5.281724050161D-04	-3.697200097287D-05	9.237548925974D-07
1	-2.159762940362D-04	2.275443392926D-05	-7.099802232376D-07
2	-1.482835634810D-04	6.952989686416D-06	-1.085642522433D-07
3	7.949763771555D-05	-5.715813906994D-06	1.481611026493D-07
4	-1.214272931648D-05	1.128632380175D-06	-3.510270530142D-08
5	5.986765602098D-07	-9.526271005415D-08	3.781185514127D-09
6	4.147212027299D-09	4.109065328207D-09	-2.316799675035D-10
7	-6.505709803163D-11	-1.612579446392D-10	9.811627985408D-12
8	-4.990895417628D-11	5.743415083193D-12	-2.467665429406D-13
Max. rel.	Error: 6.2499 %		

Mean rel. Error: 0.8870 %

9.5 Reaction 3.3.6b $p + He^*(1s^12s^13S) \rightarrow H^*(2s) + He^+(1s)$

Proton energy weighted charge exchange rate coefficient, protons with second meta-stable He*, $E_{th} \approx 1.37$ eV. Corresponding (un-weighted) rate coefficient is given here in an earlier section and in HYHEL with same sub-section number.

E-	Index: 0	1	2
T-Index:			
0	-2.956696212252D+01	5.281567610030D-01	1.525645856454D-01
1	5.608996254071D+00	-5.554651091960D-01	-8.310107491980D-02
2	-5.586148730643D-01	2.869596240969D-01	2.693533782880D-02
3	8.445222522903D-02	-9.885450333344D-02	-2.375836603441D-02
4	-4.080969150629D-02	2.380017857884D-02	1.216452673035D-02
5	1.109225928721D-02	-3.788861207335D-03	-2.898997798061D-03
6	-1.454903843517D-03	3.686204124267D-04	3.488800425650D-04
7	9.246654975855D-05	-1.956645015230D-05	-2.070012209875D-05
8	-2.304179941047D-06	4.310780137920D-07	4.810780135493D-07
E-	Index: 3	4	5
T-Index:			
0	5.501159994270D-02	5.231877282834D-03	-5.104807314720D-03
1	-3.503708291156D-02	-6.194296661419D-03	8.545246673022D-03
2	-2.619680827152D-02	9.409111065614D-03	-3.292720454900D-03
3	3.066491792837D-02	-6.421108100188D-03	1.185509375312D-04
4	-1.125547411729D-02	2.175569508209D-03	9.073341073380D-05
5	2.024041838757D-03	-4.121003738472D-04	7.128259787760D-06
6	-1.907412735028D-04	4.489456337277D-05	-6.215149457584D-06
7	8.849836285624D-06	-2.639451182160D-06	7.576420403373D-07
8	-1.534752844870D-07	6.492509343847D-08	-2.852852143477D-08
E-	Index: 6	7	8
T-Index:			
0	6.537231707620D-04	-2.747946210980D-05	1.809150198692D-07
1	-1.763283177626D-03	1.440173210330D-04	-4.252159818280D-06
2	6.322499969920D-04	-5.569656379195D-05	1.811409365339D-06
3	9.910404393999D-05	-1.096951926860D-05	3.556184138250D-07
4	-7.195067291013D-05	7.772807797383D-06	-2.677198674596D-07
5	8.134485110505D-06	-1.024492516657D-06	3.813168247354D-08
6	4.630863375819D-07	-1.150736736272D-08	-2.200040624310D-10
7	-1.265796349526D-07	9.977170726720D-09	-2.923241327427D-10
8	5.638328877632D-09	-4.845499350959D-10	1.514129155630D-11
Max. rel.	Error: 6.1811 %		

Mean rel. Error: 0.6136 %

10 H.10 :Fits for $\langle \sigma \cdot v \cdot E_p \rangle (n_p, T_p) [cm^3/s \cdot eV]$

 E_p is either the kinetic energy (or the energy loss per event) of the impacting electron or ion, in eV, or the energy loss (energy cost), associated with a process or set of processes. In the latter case these energy-weighted rate coefficients are obtained from collisional radiative modelling.

10.1 Reaction 2.1.5JH $e + H \rightarrow H^+ + 2e$

Electron energy loss weighted rate coefficient. Total: radiation plus potential energy cost. Data: Johnson, [4]

E-I	ndex:	0	1	2
T-Index:				
0	-2.50812	4023824D+01	1.734108135759D-02	-1.891777149512D-02
1	9.96163	4412423D+00	-1.573307884566D-02	1.843734255418D-02
2	-4.77618	0166264D+00	2.970917601727D-04	-3.807758859655D-03
3	1.63071	3043514D+00	3.457819922651D-03	-1.182846239993D-03
4	-3.86224	6458538D-01	-1.354707016609D-03	5.758335877954D-04
5	5.90834	8117252D-02	2.467671779140D-04	-9.707776439937D-05
6	-5.50214	9035570D-03	-2.550039601080D-05	9.186912710069D-06
7	2.82569	3139758D-04	1.479374192570D-06	-5.357992990165D-07
8	-6.12637	3636033D-06	-3.768914931663D-08	1.516539648383D-08
E-I	ndex:	3	4	5
T-Index:				
0	7.82341	5079914D-03	-1.631549805821D-03	1.886435723148D-04
1	-7.52650	6973636D-03	1.445482212534D-03	-1.430089553311D-04
2	2.10882	0285359D-03	-4.156648351099D-04	3.407098816806D-05
3	-1.06633	2982000D-05	2.942499095980D-05	-8.976235585729D-07
4	-6.05390	3755468D-05	-4.227285712967D-07	-2.352473868493D-09
5	7.78447	3195273D-06	7.205874145075D-07	-9.883252326876D-08
6	-5.44204	8934307D-07	-8.990161485463D-08	8.933475010389D-09
7	4.79775	8886682D-08	-1.637030558354D-09	5.735798106880D-10
8	-2.40410	5327023D-09	3.753206693445D-10	-6.002003170733D-11
E-I	ndex:	6	7	8
T-Index:				
0	-1.22470	0235983D-05	4.170427242828D-07	-5.775556894342D-09
1	7.22137	6553657D-06	-1.633748217561D-07	1.028215793306D-09
2	-8.30018	5166679D-07	-2.671730459566D-08	1.140062425575D-09
3	-3.00628	3377398D-07	2.400198464058D-08	-4.901297252541D-10
4	4.54414	0153285D-08	-2.854579885273D-09	3.868612101415D-11
5	2.57712	4843878D-09	-1.007675407273D-10	6.215200297376D-12
6	-1.93796	0153333D-10	1.664413123118D-11	-9.521242149750D-13
7	-6.97804	2599136D-11	1.836020981290D-12	1.884922171479D-14
8	5.01115	6979547D-12	-1.641995819473D-13	1.257296690473D-15
Max. rel.	Error:	.4678 %		
Mean rel.	Error:	.2498 %		

Electron Temperature (eV)

10.2 Reaction 2.1.5 $e + H \rightarrow H^+ + 2e$

Electron energy loss weighted rate coefficient. Data: Sawada/Fujimoto, [7] (redone May 2016: extend Te range of fit validity from 0.1 - 1e3 now to 0.1 - 2e4 eV)

E-Index: 0	1	2
T-Index:		
0 -2.497580168306D+01	1.081653961822D-03	-7.358936044605D-04
1 1.004448839974D+01	-3.189474633369D-03	2.510128351932D-03
2 -4.867952931298D+00	-5.852267850690D-03	2.867458651322D-03
3 1.689422238067D+00	7.744372210287D-03	-3.087364236497D-03
4 -4.103532320100D-01	-3.622291213236D-03	1.327415215304D-03
5 6.469718387357D-02	8.268567898126D-04	-2.830939623802D-04
6 -6.215861314764D-03	-9.836595524255D-05	3.017296919092D-05
7 3.289809895460D-04	5.845697922558D-06	-1.479323780613D-06
8 -7.335808238917D-06	-1.367574486885D-07	2.423236476442D-08
E-Index: 3	4	5
T-Index:		
0 4.122398646951D-04	-1.408153300988D-04	2.469730836220D-05
1 -7.707040988954D-04	1.031309578578D-04	-3.716939423005D-06
2 -8.328668093987D-04	2.056134355492D-04	-3.301570807523D-05
3 4.707676288420D-04	-5.508611815406D-05	7.305867762241D-06
4 -1.424078519508D-04	3.307339563081D-06	5.256679519499D-09
5 2.411848024960D-05	5.707984861100D-07	-1.016945693300D-07
6 -1.474253805845D-06	-2.397868837417D-07	1.518743025531D-08
7 -4.633029022577D-08	3.337390374041D-08	-1.770252084837D-09
8 5.733871119707D-09	-1.512777532459D-09	8.733801272834D-11
E-Index: 6	7	8
T-Index:		
0 -2.212823709798D-06	9.648139704737D-08	-1.611904413846D-09
1 -4.249704742353D-07	4.164960852522D-08	-9.893423877739D-10
2 2.831739755462D-06	-1.164969298033D-07	1.785440278790D-09
3 -6.000115718138D-07	2.045211951761D-08	-1.790312871690D-10
4 7.597020291557D-10	1.799505288362D-09	-9.280890205774D-11
5 3.517154874443D-09	-4.453195673947D-10	2.002478264932D-11
6 4.149084521319D-10	-6.803200444549D-12	-1.151855939531D-12
7 -5.289806153651D-11	3.864394776250D-12	-8.694978774411D-15
8 7.196798841269D-13	-1.441033650378D-13	1.734769090475D-15
T1MIN = 0.10000D 00 EV		
T1MAX = 2.00000D 04 EV		
N2MIN = 1.00000D 08 1/CM3		
N2MAX = 1.00000D 16 1/CM3		
Max. rel. Error: 0.922E+00 %		
Mean rel. Error: 0.471E+00 %		

10.3 Reaction 2.1.50 $e + H \rightarrow H^+ + 2e$ Ly-opaque

Ditto, all Lyman lines (and continuum) opaque

E-I	ndex:	0	1	2
T-Index:				
0	-2.431395	592098D+01	-2.395941007384D-	-01 2.591565194903D-01
1	1.113429	718187D+01	1.849722545279D-	-01 -2.423728103974D-01
2	-6.654446	687338D+00	2.195366491981D-	-02 6.179888393756D-02
3	2.747075	059275D+00	-6.901300857989D-	-02 1.006521130909D-02
4	-7.372137	934626D-01	2.943069908340D-	-02 -7.829953302392D-03
5	1.227074	461193D-01	-6.057176837025D-	-03 1.694081601397D-03
6	-1.216484	938923D-02	6.701189895777D-	-04 -1.793079853259D-04
7	6.566484	532457D-04	-3.779995638455D-	-05 8.950721046575D-06
8	-1.483802	107723D-05	8.441118380444D-	-07 -1.530047985372D-07
E-I	ndex:	3	4	5
T-Index:				
0	-1.087825	788137D-01	2.304158174814D-	-02 -2.708007727528D-03
1	9.801393	644159D-02	-1.946235514182D-	-02 2.079309382971D-03
2	-2.979923	286006D-02	5.913142010781D-	-03 -5.549143094821D-04
3	1.702193	123225D-03	-6.298136767386D-	-04 4.093195127037D-05
4	6.752425	702279D-04	2.856788083851D-	-05 -7.732295592583D-07
5	-1.621646	872661D-04	-2.526799196487D-	-06 2.543500809367D-07
6	1.506237	912301D-05	4.384573257407D-	-07 -1.137888186554D-08
7	-4.568263	582843D-07	-5.697388918232D-	-08 -1.072747527249D-09
8	-6.560997	301392D-09	3.141908302488D-	-09 3.111434993423D-12
E-I:	ndex:	6	7	8
T-Index:				
0	1.777247	119352D-04	-6.080187141189D-	-06 8.438023009891D-08
1	-1.231134	698172D-04	3.827948966411D-	-06 -4.895455818239D-08
2	2.684044	174965D-05	-6.633266274667D-	-07 6.895128780616D-09
3	-4.598542	858756D-09	-5.542757391998D-	-08 9.032937294372D-10
4	-3.124180	764582D-07	1.188861911457D-	-08 1.649196327692D-11
5	1.826904	076362D-08	4.273639168838D-	-10 -5.875558984747D-11
6	-4.163110	915594D-09	3.345977887826D-	-11 5.495071058936D-12
7	6.106046	869680D-10	-2.063138694762D-	-11 -9.709542597057D-16
8	-2.241669	215814D-11	9.998773490453D-	-13 -9.539526341658D-15
Max. rel.	Error:	2.4939 %		
Mean rel.	Error:	.6828 %		

Electron Temperature (eV)

10.4 Reaction 2.1.8 $H^+ + e \to H(1s)$

effective electron cooling rate due to rad.+three-b. recombination potential energy loss 13.6*(eff-rec.rate) still needs to be subtracted (may render the loss negative, i.e., turn it into a gain) Hence: the quantitity given here happens to be the radiation loss. June17: Fit range extended from 0.1–1e3 to 0.1–2e4

E-	-Index:	0	1	2
T-Index:				
0	-2.592	450349909D+01	1.222097271874D-02	4.278499401907D-05
1	-7.290	670236493D-01	-1.540323930666D-02	-3.406093779190D-03
2	2.363	925869096D-02	1.164453346305D-02	-5.845209334594D-03
3	3.645	333930947D-03	-1.005820792983D-03	6.956352274249D-04
4	1.594	184648757D-03	-1.582238007548D-05	4.073695619272D-04
5	-1.216	668033378D-03	-3.503070140126D-04	1.043500296633D-04
6	2.376	5115895241D-04	1.172709777146D-04	-6.695182045674D-05
7	-1.930	977636766D-05	-1.318401491304D-05	8.848025453481D-06
8	5.599	257775146D-07	4.977823319311D-07	-3.615013823092D-07
E-	Index:	3	4	5
T-Index:				
0	1.943	967743593D-03	-7.123474602102D-04	1.303523395892D-04
1	1.532	243431817D-03	-4.658423772784D-04	5.972448753445D-05
2	2.854	145868307D-03	-5.077485291132D-04	4.211106637742D-05
3	-9.305	056373739D-04	2.584896294384D-04	-3.294643898894D-05
4	-9.379	169243859D-05	1.490890502214D-06	2.245292872209D-06
5	9.536	5162767321D-06	-6.908681884097D-06	8.232019008169D-07
6	1.188	184006210D-05	-4.381514364966D-07	-6.936267173079D-08
7	-2.072	370711390D-06	2.055919993599D-07	-7.489632654212D-09
8	9.466	989306497D-08	-1.146485227699D-08	6.772338917155D-10
E-	Index:	6	7	8
T-Index:				
0	-1.186	560752561D-05	5.334455630031D-07	-9.349857887253D-09
1	-4.070	843294052D-06	1.378709880644D-07	-1.818079729166D-09
2	-1.251	436618314D-06	-1.626555745259D-08	1.073458810743D-09
3	2.112	924018518D-06	-6.544682842175D-08	7.810293075700D-10
4	-3.150	901014513D-07	1.631965635818D-08	-2.984093025695D-10
5	-2.905	331051259D-08	-3.169038517749D-10	2.442765766167D-11
6	6.592	249255001D-09	-1.778887958831D-10	1.160762106747D-12
7	-7.073	5797030749D-11	1.047087505147D-11	-1.877446271350D-13
8	-1.776	5496344763D-11	7.199195061382D-14	3.929300283002D-15
T1MIN =	0.100000	00 EV		
T1MAX =	2.000000	04 EV		
N2MIN =	1.000000	08 1/CM3		
N2MAX =	1.00000) 16 1/CM3		
Max. rel	. Error:	0.930E+01 %		
Mean rel	. Error:	0.127E+01 %		

10.5 Reaction 2.1.80 $H^+ + e \rightarrow H(1s)$ Ly-opaque

effective electron cooling rate due to rad.+three-b. recombination potential energy loss 13.6*(eff-rec.rate) still needs to be subtracted (may render the loss negative, i.e., turn it into a gain) Hence: the quantity given here happens to be the radiation loss.

E	-Index:	0	1	2
T-Index	:			
0	-2.6264	61971500D+01	-1.141522828006D-01	1.076393602102D-01
1	-8.8988	849653304D-02	-3.942292858703D-01	4.197250110873D-01
2	-4.7952	279065913D-01	-1.335489318623D-01	1.698162748512D-01
3	-6.4576	541001473D-02	4.613800494941D-02	-6.378456442460D-02
4	6.8003	392305050D-02	2.637589098726D-02	-2.927766641228D-02
5	-7.7805	96827160D-03	-1.696354616404D-03	4.101919602398D-03
6	-9.2524	20142124D-04	-2.153234057341D-03	1.724087525894D-03
7	2.1157	42192807D-04	3.847511359996D-04	-3.531396348434D-04
8	-9.9093	336050813D-06	-1.829769520002D-05	1.745121101762D-05
E	-Index:	3	4	5
T-Index	:			
0	-3.9511	76865624D-02	7.434448907130D-03	-7.651735363726D-04
1	-1.8198	873891755D-01	3.954265794034D-02	-4.746673604459D-03
2	-7.7776	518558640D-02	1.791770402443D-02	-2.265419802670D-03
3	3.3687	56666920D-02	-8.588159967647D-03	1.161221464744D-03
4	1.2152	210455092D-02	-2.536449841814D-03	2.949052179931D-04
5	-2.8533	313172787D-03	8.331295381374D-04	-1.219354343653D-04
6	-3.8892	280715498D-04	1.445906496031D-05	5.400239087927D-06
7	1.1175	507761644D-04	-1.626382515941D-05	1.138105849294D-06
8	-5.9356	592251130D-06	9.750922276399D-07	-8.514634639125D-08
E	-Index:	6	7	8
T-Index	:			
0	4.2565	50578560D-05	-1.183957210565D-06	1.267430439071D-08
1	3.1602	257175597D-04	-1.090132407225D-05	1.518762884136D-07
2	1.5978	34560300D-04	-5.867107114568D-06	8.703048627852D-08
3	-8.4764	82397035D-05	3.148378986370D-06	-4.661383263216D-08
4	-1.9458	865547958D-05	6.794359168371D-07	-9.714166652574D-09
5	9.3885	539733773D-06	-3.625759741848D-07	5.530677587059D-09
6	-7.4638	324586159D-07	3.657036916983D-08	-6.329837178101D-10
7	-3.2775	50512167D-08	-2.762994890889D-11	1.306756395427D-11
8	4.0079	10080852D-09	-9.447800370353D-11	8.488148236190D-13
Max. rei	l. Error:	26.2822 %		

				-
Mean	rel.	Error:	8.6945	00

10.6 Reaction 2.2.h2c $H_2 + e \rightarrow \dots$

effective electron cooling rate due to destruction of H2 molecules by processes 2.2.5 or 2.2.9, i.e. by dissociation or ionisation. $\Delta E_d = 9.94$, $\Delta E_i = 15.386$

E-Ind	dex: 0	1	2
T-Index:			
0	-2.511426358838D+01	-1.502968736502D-03	2.270301997818D-03
1	1.039650366780D+01	1.940526565095D-03	-2.039057105217D-03
2	-5.056418866002D+00	4.267610495700D-04	-1.570825376355D-03
3	1.698357023335D+00	-1.100217175513D-03	1.346702996596D-03
4	-3.946794266607D-01	8.530611978697D-04	-5.956794001881D-04
5	6.332951863565D-02	-3.363804010733D-04	1.935332922569D-04
6	-7.076439854566D-03	6.801240259521D-05	-3.813794805193D-05
7	5.117651399462D-04	-6.744466929271D-06	3.834955698487D-06
8	-1.768573967186D-05	2.610531177384D-07	-1.508866204608D-07
E-I	ndex: 3	4	5
T-Index:			
0	-1.160949145671D-03	2.711890444924D-04	-3.316751545455D-05
1	8.471089743180D-04	-1.668780150866D-04	1.846170371568D-05
2	1.011062331716D-03	-2.493635375898D-04	3.107778205672D-05
3	-6.015963727342D-04	1.254388145616D-04	-1.431788137516D-05
4	1.440206127855D-04	-1.821423270769D-05	1.364766339804D-06
5	-3.053105755056D-05	1.434719315650D-06	1.264447977870D-07
6	6.171515920637D-06	-4.045829346605D-07	-5.237650672670D-09
7	-7.117247208887D-07	7.283932745297D-08	-3.875678618801D-09
8	3.137300758374D-08	-3.990100914364D-09	3.015422105813D-10
E-I	ndex: 6	7	8
T-Index:			
0	2.179799509766D-06	-7.292508854487D-08	9.764136720820D-10
1	-1.200391601516D-06	4.255709533045D-08	-6.263044644580D-10
2	-2.068798871142D-06	7.024008304152D-08	-9.571647703521D-10
3	9.254739688370D-07	-3.161858685796D-08	4.410801074405D-10
4	-7.044718093836D-08	2.445238251993D-09	-3.975970296405D-11
5	-1.650023620224D-08	6.035147397334D-10	-6.735406816093D-12
6	2.105913693789D-09	-9.389056833568D-11	1.197541371030D-12
7	6.547129244936D-11	1.340983691609D-12	-3.151269189538D-14
8	-1.176278308629D-11	2.089055860523D-13	-1.505656589693D-15
Max. rel.	Error: 3.4722 %		
Mean rel.	Error: 1.4166 %		

10.7 Reaction 2.2.h2r $H_2 + e \rightarrow \dots$

effective electron radiation energy loss rate due to destruction of H2 molecules by processes 2.2.5 or 2.2.9, i.e. by dissociation or ionisation

E	L-Inc	lex:	0		1		2
T-Inde	ex:						
	0	-2.80182	2188516D+01	-2.680)763935218D-0	2 4.	076970248467D-02
	1	1.22655	9489761D+01	-1.963	8731382190D-0	1 1.	282479989566D-01
	2	-5.86775	9617478D+00	8.536	5319354128D-0	2 -3.	568022393739D-02
	3	1.89166	4482986D+00	1.471	792937991D-0	1 -9.	271446717483D-02
	4	-4.03398	0053975D-01	-1.394	1921763886D-0	1 7.	381914918665D-02
	5	5.43966	2377414D-02	4.818	3384180161D-0	2 -2.	188105491841D-02
	6	-4.64226	8879563D-03	-8.093	3950922937D-0	3 2.	987412465436D-03
	7	2.62600	9837514D-04	6.623	3097639192D-0	4 -1.	742669318441D-04
	8	-8.60672	0377928D-06	-2.105	5277432641D-0	5 2.	632539922731D-06
	E-Ir	ndex:	3		4		5
T-Inde	ex:						
	0	-2.29969	9721311D-02	5.853	3248550552D-0	3 -7.	648533513094D-04
	1	-3.15001	8219862D-02	3.847	/305623421D-0	3 -2.	332949388707D-04
	2	4.21076	2118334D-03	-7.901	166941528D-0	5 -2.	122748674317D-05
	3	2.25779	4051374D-02	-2.486	5055370273D-0	3 1.	021925655299D-04
	4	-1.52630	3663894D-02	1.475	511672936D-0	3 -5.	499022366195D-05
	5	3.68919	4332467D-03	-2.674	1426267836D-0	4 4.	688389683681D-06
	6	-3.07344	4697161D-04	-7.067	430960799D-0	6 3.	032281232409D-06
	7	-7.58104	1097732D-06	6.310)703738513D-0	6 -7.	164508757577D-07
	8	1.61925	0275583D-06	-4.490)216679338D-0	7 4.	418606553487D-08
	E-Ir	ndex:	6		7		8
T-Inde	ex:						
	0	5.25889	2572564D-05	-1.807	126279032D-0	6 2.	441424496287D-08
	1	5.06609	1926016D-06	9.700)999841682D-0	8 -4.	515881112268D-09
	2	2.34357	8854939D-06	-1.149	0634211274D-0	7 2.	218794688735D-09
	3	2.17120	7268498D-06	-2.959	9885648343D-0	7 6.	448680553698D-09
	4	-1.16985	0372738D-06	1.491	.856181978D-0	7 -3.	172311462398D-09
	5	4.63673	4103570D-07	-2.759	9830094699D-0	8 4.	590631115748D-10
	6	-1.82991	4413027D-07	3.868	3936732678D-0	9 -1.	492736071699D-11
	7	3.24846	5119283D-08	-5.180)769016510D-1	0 -6.	701126858615D-13
	8	-1.93281	2965191D-09	3.208	399835617D-1	1 -1.	703503159464D-14
Max. r	cel.	Error:	9.7237 %				

Mean rel. Error: 2.8617 %

10.8 Reaction 2.3.9a $e + He(1s^21S) \rightarrow He^+(1s) + 2e$

Eth=24.588 eV effective electron cooling rate due to ionization of Helium atoms. Fujimoto Formulation II (only ground level transported, no meta-stables kept explicit), [20].

E-	Index:	0	1	2
T-Index:				
0	-3.5352	258393674D+01	-3.428249311738D-02	6.378071832382D-02
1	1.9818	355871044D+01	4.854482688892D-02	-5.088928946831D-02
2	-9.3343	355651224D+00	-4.524206463148D-02	2.103002869692D-02
3	2.8003	314250410D+00	2.474350787980D-02	-6.012991773715D-03
4	-5.4890)88598705D-01	-7.339538872774D-03	7.783071302508D-04
5	6.9020)95610357D-02	1.234159378604D-03	2.989745411104D-05
6	-5.3429	940069130D-03	-1.223169549107D-04	-1.500790305823D-05
7	2.3131	L75089975D-04	6.966436907981D-06	8.944962909810D-07
8	-4.2798	300193256D-06	-1.815466669910D-07	-2.282174576618D-09
E-	Index:	3	4	5
T-Index:				
0	-2.8498	318870377D-02	6.041903480645D-03	-6.864532165560D-04
1	1.7321	10218818D-02	-2.781419068092D-03	2.244804771683D-04
2	-4.4639	941003028D-03	2.900917070658D-04	2.482449118881D-05
3	8.9180)09845745D-04	-2.616249899141D-05	-6.885545577757D-06
4	-4.4832	274558979D-05	1.900991581685D-06	-9.747171692727D-07
5	-3.0409	06203340D-05	2.951386149372D-06	7.592185107575D-08
6	5.2539	922160283D-06	-4.468905893926D-07	7.483496971361D-09
7	-1.7120)24596447D-07	-9.782015167261D-09	2.499416349949D-09
8	-6.9729	920569943D-09	2.607191494540D-09	-2.870919514967D-10
E-	Index:	6	7	8
T-Index:				
0	4.2511	L55616815D-05	-1.351759350582D-06	1.728801977101D-08
1	-8.8752	290574348D-06	1.399429819761D-07	-1.389778740510D-10
2	-4.2780)64413224D-06	2.040570181783D-07	-3.324224092217D-09
3	7.0136	516309712D-07	-2.570063437935D-08	3.573487194914D-10
4	1.3498	329568374D-07	-5.815812094637D-09	6.686532777575D-11
5	-1.8050)60230413D-08	3.156859219121D-10	1.071168697340D-11
6	-9.7775	558713428D-10	1.770619394125D-10	-6.050995244427D-12
7	4.7319	973382221D-11	-1.845161957843D-11	6.011070143230D-13
8	8.0596	575146168D-12	3.704316808942D-13	-1.713225271579D-14
Max. rel	. Error:	1.8148 %		

Mean rel. Error: .1839 %

Electron Temperature (eV)

10.9 Reaction 2.3.13a $e + He^+(1s) \to He(1s^21S)$

Helium multi-step model, here recombination: radiative + threebody + dielectronic Fujimoto Formulation II (only ground level transported, no meta-stables kept explicit), [20]. The quantity given here happens to be the radiation loss. The loss of potential energy still needs to be subtracted to make this a total electron energy loss (or gain) rate.

E-	Index:	0	1	2
T-Index:				
0	-2.5383	377692766D+01	-4.826880987619D-02	6.796575967310D-02
1	2.472	758419513D+00	1.668058989207D-01	-1.265192781981D-01
2	-8.8644	117999957D+00	-1.882326730037D-01	1.194028674310D-01
3	8.3949	970578944D+00	8.397993216045D-02	-5.796972813740D-02
4	-3.4658	364794112D+00	-1.572684180220D-02	1.398192327776D-02
5	7.4790)71085372D-01	5.997666028811D-04	-1.614053457119D-03
6	-8.8635	575102304D-02	1.901540166344D-04	6.941090299375D-05
7	5.4849	926807853D-03	-2.510359436743D-05	1.123735445147D-06
8	-1.3884	141945179D-04	9.141995596700D-07	-1.168915890330D-07
E-	Index:	3	4	5
T-Index:				
0	-2.401	710021390D-02	4.130156138736D-03	-3.494803122018D-04
1	2.9381	L71777028D-02	-2.216525055070D-03	-1.261523686946D-04
2	-2.3828	336629119D-02	1.134820469638D-03	1.782113978272D-04
3	1.1580	500348753D-02	-7.504743150582D-04	-2.602911694939D-05
4	-2.7001	L81027443D-03	1.902304157269D-04	-1.534387905925D-06
5	2.6208	366439317D-04	-1.103039382799D-05	-4.215447554819D-07
6	-3.0420	043168371D-06	-1.677907209787D-06	2.153652742395D-07
7	-9.1984	194797723D-07	2.058851315121D-07	-1.866416375894D-08
8	3.4853	370731777D-08	-5.086412415216D-09	3.674153797642D-10
E-	Index:	6	7	8
T-Index:				
0	1.3450)25100540D-05	-1.323917127568D-07	-2.551716207606D-09
1	2.7014	101918133D-05	-1.370446267883D-06	2.313673787201D-08
2	-2.3055	554399898D-05	9.430294093180D-07	-1.305188423829D-08
3	4.5682	209602293D-06	-1.458110560501D-07	9.826599911934D-10
4	-1.0320)60079260D-07	-1.355858638619D-08	5.917279771473D-10
5	-9.9262	L33276192D-09	4.148813674084D-09	-1.207867670158D-10
6	-6.3544	180058307D-09	-1.223103792568D-10	5.543057946730D-12
7	7.5648	335556537D-10	-1.622993472948D-11	2.428986170198D-13
8	-1.6218	309988343D-11	6.737654534264D-13	-1.678705755876D-14
Max. rel	. Error:	22.6665 %		

Mean rel. Error: 8.4662 %

10.10 Reaction 2.6A0 $e + C \rightarrow C^+ + 2e$

electron cooling rate due to ionization of C atoms [eV * cm**3/s] ADAS 93

E-II	ndex: 0	1	2
T-Index:			
0	-1.541340319198D+01	-4.635323668693D+00	1.424306255525D+00
1	6.871565603800D+00	3.062312115608D-02	1.785653882692D-02
2	-2.581732757825D+00	-1.272125958091D-01	3.493561583728D-02
3	4.800945236897D-01	9.573076930006D-02	-2.511071760242D-02
4	-3.221877058224D-02	-1.391798645331D-02	2.175585061019D-03
5	-8.242753615795D-03	1.145594247121D-03	3.885428995621D-05
6	2.099340312561D-03	-1.276880024615D-04	-4.884605861642D-06
7	-1.795437092836D-04	1.389068259360D-05	-1.113237444693D-06
8	5.520442022231D-06	-6.375114106630D-07	9.859364572176D-08
E-I	ndex: 3	4	5
T-Index:			
0	-2.158652670331D-01	1.412329738807D-02	1.168676999154D-04
1	-1.094056812899D-02	3.136700005660D-03	-3.963442307288D-04
2	-5.370773139210D-03	2.974489768572D-04	-1.432652388384D-05
3	3.687719429910D-03	-2.848608239928D-04	1.690331087319D-05
4	-1.746771988767D-04	-3.294582308635D-06	8.485083720382D-07
5	-1.528532398519D-05	1.555056417236D-06	-5.074853324543D-08
6	6.205604777862D-08	1.558979315126D-07	-1.140737345155D-08
7	1.652357272442D-07	-1.003365245229D-08	-1.633709577156D-09
8	-1.163642679910D-08	2.003281042296D-10	1.350639090685D-10
E-I	ndex: 6	7	8
T-Index:			
0	-6.658345040546D-05	3.254244791032D-06	-5.053767538668D-08
1	2.266757015103D-05	-5.406980202349D-07	3.681457471642D-09
2	1.906448581780D-06	-9.658075171996D-08	7.628999658428D-10
3	-6.509994237871D-07	-1.483571537540D-08	1.479901251703D-09
4	-1.063260940363D-07	1.336948585246D-08	-5.357328879289D-10
5	2.810998774881D-09	-8.868420910603D-10	4.953950208308D-11
6	9.322775355772D-10	-5.119114288255D-11	-2.546806508137D-13
7	1.240247466159D-10	1.352672081064D-12	-1.036766300560D-13
8	-1.122860695875D-11	2.002505887771D-13	1.458669917591D-15
Max. rel.	Error: 9.7643 %		
Mean rel.	Error: 3.1877 %		

10.11 Reaction **2.7A0** $e + N \rightarrow N^+ + 2e$

electron cooling rate due to ionization of N atoms [eV * cm**3/s] ADAS 96

E-I	ndex: 0	1	2
T-Index	:		
0	-2.253812547614D+	01 -6.608569288276D-01	1.150452384879D-01
1	5.432527437912D+	00 1.539439865129D+00	-1.576693820511D-01
2	-2.952608997109D-	01 -1.412585437109D+00	4.638775789522D-02
3	-8.226013960740D-	01 6.717054943053D-01	2.187384074057D-02
4	3.729388695172D-	01 -1.832836584927D-01	-1.722342009795D-02
5	-7.841898395520D-	02 2.976002632760D-02	4.564235143138D-03
6	8.985696288257D-	03 -2.839310501238D-03	-6.044432608775D-04
7	-5.395985855412D-	04 1.468399332248D-04	4.023312734034D-05
8	1.328834197911D-	05 -3.174449965134D-06	-1.072687574774D-06
E	-Index: 3	4	5
T-Index	:		
0	-1.065634043574D-	02 9.532285913431D-04	-1.346476910993D-04
1	5.813528015171D-	03 -1.646122278862D-03	3.939136003165D-04
2	1.251511770456D-	02 1.934102369820D-04	-2.591298980417D-04
3	-1.391948893870D-	02 6.061371309834D-04	4.715854993637D-05
4	5.665942301636D-	03 -2.864541076848D-04	-2.009919110756D-06
5	-1.191674192800D-	03 5.671367249642D-05	1.560417026937D-07
6	1.394992142385D-	04 -6.170732864889D-06	-5.745521323400D-08
7	-8.635747882439D-	06 3.695648390668D-07	5.028838822894D-09
8	2.207714212398D-	07 -9.661992346983D-09	-1.002410123923D-10
E	-Index: 6	7	8
T-Index	:		
0	1.499025275503D-	05 -8.381690183270D-07	1.754250184956D-08
1	-4.099253727990D-	05 2.056031618879D-06	-4.072262920583D-08
2	2.795198852134D-	05 -1.439391948855D-06	3.065144075600D-08
3	-5.768287114529D-	06 3.294456589515D-07	-8.730420469452D-09
4	3.415790996484D-	07 -2.777746715732D-08	1.367779235643D-09
5	1.791473635965D-	09 7.602227311451D-10	-1.668997333521D-10
6	9.035743229573D-	10 -4.011075190405D-11	1.670019578529D-11
7	-1.822072807905D-	10 6.518277639583D-12	-1.040108515933D-12
8	4.463372771101D-	12 -1.949905209490D-13	2.634684643675D-14
Max. re	l. Error: 5.8662 %		
Mean re	1. Error: 1.3550 %		

10.12 Reaction 2.8A0 $e + O \rightarrow O^+ + 2e$

electron cooling rate due to ionization of O atoms [eV * cm**3/s] ADAS 96

E-I	ndex:	0	1		2
T-Index:					
0	-2.44574	1605915D+01	-7.55817080545	2D-01 6.4	62171267483D-02
1	5.49260	6381344D+00	1.66952021459	7D+00 -1.0	21865903908D-01
2	9.94382	6013037D-01	-1.49991889735	5D+00 6.0	87399488466D-02
3	-1.65455	2652454D+00	7.18260476482	5D-01 -1.6	14322696382D-02
4	6.11375	6777865D-01	-2.01306037964	0D-01 1.6	32283021337D-03
5	-1.15677	8163561D-01	3.39891575421	5D-02 8.7	87006821195D-05
6	1.22687	2019465D-02	-3.39606438395	0D-03 -3.5	40766244850D-05
7	-6.92702	4005103D-04	1.84675658534	7D-04 3.0	21508483124D-06
8	1.62225	0023780D-05	-4.20783836966	6D-06 -8.9	03799103489D-08
E-I	ndex:	3	4		5
T-Index:					
0	1.75016	2767171D-02	-7.32241463661	5D-03 1.3	47646519764D-03
1	-2.87337	0694294D-02	8.46288276819	3D-03 -1.4	12980882660D-03
2	1.84883	5552799D-02	-2.36538884363	4D-03 2.8	26588118171D-04
3	-8.42759	4128571D-03	1.65284114131	0D-04 5.1	83935809798D-05
4	2.68024	5268321D-03	-2.70485129047	9D-05 -2.0	72676809016D-05
5	-5.20289	7127637D-04	1.69283742929	0D-05 1.5	40185566308D-06
6	5.73449	8698465D-05	-3.00175989092	4D-06 7.1	92469818350D-08
7	-3.29462	2184638D-06	2.06254880187	6D-07 -1.1	57818482174D-08
8	7.66941	0612531D-08	-4.86160386926	7D-09 2.9	25221400690D-10
E-I:	ndex:	6	7		8
T-Index:					
0	-1.28667	2269176D-04	6.00029327522	0D-06 -1.0	78783359137D-07
1	1.37964	2813223D-04	-6.75242130383	0D-06 1.2	68943574449D-07
2	-3.65175	8284440D-05	2.30778425294	8D-06 -5.0	79380257776D-08
3	1.04471	0535961D-06	-3.99446880327	6D-07 1.2	34290357456D-08
4	3.08138	9976655D-07	8.14039413823	9D-08 -2.8	15585650608D-09
5	1.04051	3862277D-07	-1.90505492760	5D-08 5.3	10423435817D-10
6	-2.83345	8966155D-08	2.50221420363	3D-09 -5.9	16747741154D-11
7	2.09850	1461403D-09	-1.49749555546	2D-10 3.2	17115168440D-12
8	-4.73435	3103748D-11	3.14469833976	2D-12 -6.3	42196909047D-14
Max. rel.	Error:	3.7053 %			
Mean rel.	Error:	0.5707 %			

10.13 Reaction 2.3.6A0 $C^+ + e \rightarrow C$

electron cooling rate due to recombination of C^+ ions [eV * cm**3/s], ADAS 96 One must subtract: 11.3 eV per recombination to turn ADAS radiation rate into electron cooling (or heating) rate. Hence: the quantity "PRB" given here happens to be the radiation loss only. Note: these ADAS "PRB" rates include Bremsstrahlung.

	E-I	ndex:	0	1		2	
T-Inc	dex:						
	0	-3.4493	31531577D+01	9.258971812	737D+00	-4.3046905	27938D+00
	1	-4.1798	56306879D+00	4.719723714	161D+00	-1.1097710	79252D+00
	2	2.3117	33850808D+00	-2.370285434	332D+00	1.2166995	92702D+00
	3	1.8067	79837905D+00	-1.398234905	586D+00	8.2518523	05561D-02
	4	-8.0320	14606781D-01	6.243519059	852D-01	-7.9177115	23053D-02
	5	1.3015	54943312D-01	-9.725337184	215D-02	9.5085791	66285D-03
	6	-1.2422	33736267D-02	8.700165808	817D-03	-5.6167842	71834D-04
	7	7.9544	35301193D-04	-5.273273516	585D-04	4.2711930	45387D-05
	8	-2.5003	91513086D-05	1.626059504	628D-05	-2.1073065	77342D-06
	E-I	ndex:	3	4		5	
T-Inc	dex:						
	0	1.0927	64777565D+00	-1.657866594	525D-01	1.5423039	56967D-02
	1	1.7753	53255679D-02	2.925284499	345D-02	-4.9337578	46201D-03
	2	-2.1727	78536056D-01	1.779079567	056D-02	-5.9191556	23354D-04
	3	6.9300	42877150D-03	-9.404827643	211D-04	1.0015501	81383D-04
	4	7.7170	02987717D-03	-8.219046168	773D-04	3.4500978	52128D-05
	5	-9.0440	19514499D-04	1.495651404	294D-04	-9.3304958	89321D-06
	6	4.3444	51591441D-05	-1.310415385	953D-05	8.7650922	18798D-07
	7	-3.9901	91176291D-06	7.319258744	806D-07	-2.0979797	73124D-08
	8	2.2781	34731858D-07	-1.867601250	526D-08	-8.8787688	61855D-10
	E-I	ndex:	6	7		8	
T-Inc	dex:						
	0	-8.5962	36746746D-04	2.630726640	545D-05	-3.3985455	38061D-07
	1	3.6281	56323586D-04	-1.299989445	086D-05	1.8563986	34322D-07
	2	-1.8391	76473763D-06	5.227710471	502D-07	-7.9726392	17563D-09
	3	-1.4210	63531104D-05	9.098399911	722D-07	-1.9246158	37222D-08
	4	3.1278	88270655D-06	-3.185873097	827D-07	7.3747504	30973D-09
	5	-3.9458	98698541D-07	5.543052440	997D-08	-1.3610673	07243D-09
	6	5.2841	31939957D-08	-6.565852326	841D-09	1.5871258	61820D-10
	7	-6.2676	87595428D-09	5.231170570	451D-10	-1.1557800	84007D-11
	8	2.9740	65900351D-10	-1.882199061	890D-11	3.7749902	90039D-13
Max.	rel.	Error:	8.2940 %				

Mean rel. Error: 3.7511 %

10.14 Reaction 2.3.7A0 $N^+ + e \to N$

electron cooling rate due to recombination of N^+ ions [eV * cm**3/s], ADAS 96 One must subtract: 14.53 eV per recombination to turn ADAS radiation rate into electron cooling (or heating) rate. Hence: the quantity "PRB" given here happens to be the radiation loss only. Note: these ADAS "PRB" rates include Bremsstrahlung.

E	E-Ind	ex:	0		1		2
T-Inc	lex:						
	0	-2.5868	20731518D+01	-3.773	123878982D-04	7.	482871509909D-02
	1	4.4003	57172984D-01	-5.955	879689023D-02	-6.	069655421640D-02
	2	1.5239	69394400D+00	3.425	371495869D-02	-8.	101981223987D-02
	3	-3.0770	40183629D-01	5.713	803828212D-03	4.	307965640960D-02
	4	-2.4998	58560511D-01	-1.181	574525071D-02	3.	378336563136D-03
	5	1.1228	91964175D-01	4.206	198954046D-03	-4.	429675538662D-03
	6	-1.8454	12035984D-02	-6.674	583671370D-04	8.	097511152946D-04
	7	1.3833	69072901D-03	5.032	061800809D-05	-5.	815584065023D-05
	8	-3.9621	01000292D-05	-1.468	219566959D-06	1.	461427252466D-06
	E-I	ndex:	3		4		5
T-Inc	dex:						
	0	-4.8041	33327132D-02	1.306	447013294D-02	-1.	812654742590D-03
	1	5.1060	07492864D-02	-1.546	284626871D-02	2.	268830444441D-03
	2	4.2794	13046901D-02	-1.024	270007475D-02	1.	316026883921D-03
	3	-3.1159	09800990D-02	8.767	085102681D-03	-1.	239304971154D-03
	4	2.7139	99948320D-03	-1.295	602004725D-03	2.	196982388776D-04
	5	1.1512	15043288D-03	-1.200	389519219D-04	3.	592098287396D-06
	6	-2.4939	73858283D-04	3.804	621927607D-05	-3.	384244902180D-06
	7	1.6582	17707026D-05	-2.328	052761042D-06	1.	932298218606D-07
	8	-3.1961	07515802D-07	2.507	602295919D-08	-5.	676151311100D-11
	E-I	ndex:	6		7		8
T-Inc	dex:						
	0	1.3546	29644171D-04	-5.174	213693006D-06	7.	914218642264D-08
	1	-1.7518	19021358D-04	6.833	826024190D-06	-1.	061582477502D-07
	2	-9.3415	18771019D-05	3.450	572575050D-06	-5.	173974255663D-08
	3	9.3518	00226170D-05	-3.596	490667485D-06	5.	541585525207D-08
	4	-1.8057	78311706D-05	7.263	438826071D-07	-1.	148112128372D-08
	5	2.3323	87839470D-07	-1.879	365909923D-08	3.	676966892592D-10
	6	1.8700	11605909D-07	-6.064	415580300D-09	8.	687600130338D-11
	7	-1.0496	55308155D-08	3.552	860851546D-10	-5.	454408362195D-12
	8	-8.2025	30145299D-11	3.479	987632860D-12	-4.	036153078945D-14
Max.	rel.	Error:	32.2303 %				

Mean rel. Error: 12.2391 %

10.15 Reaction 2.3.8A0 $O^+ + e \rightarrow O$

electron cooling rate due to recombination of O^+ ions [eV * cm**3/s], ADAS 96 One must subtract: 13.62 eV per recombination to turn ADAS radiation rate into electron cooling (or heating) rate. Hence: the quantity "PRB" given here happens to be the radiation loss only. Note: these ADAS "PRB" rates include Bremsstrahlung.

E-In	dex:	0	1		2	
T-Index:						
0	-2.6533	13950168D+01	2.2169258296	589D-02	5.476125200862D-0	3
1	-6.3542	70172271D-02	-2.9703709461	75D-02	-2.924232567362D-0	3
2	1.1362	62534246D+00	-1.6383216182	233D-02	4.543680765812D-0	3
3	-1.2815	99573767D-01	3.8193868249	01D-03	3.005270657055D-0	4
4	-1.9091	97964757D-01	5.7017599394	52D-03	-1.426212735570D-0	3
5	7.2448	41497960D-02	-2.6973176914	99D-03	5.384553818515D-0	4
6	-1.0853	54529891D-02	4.7510061135	648D-04	-9.079081560679D-0	5
7	7.5722	89001622D-04	-3.7804699189	78D-05	7.402729380985D-0	6
8	-2.0416	31801536D-05	1.1383616138	897D-06	-2.361510545802D-0	7
E-I	ndex:	3	4		5	
T-Index:						
0	-4.3149	67559213D-03	1.3086765720	81D-03	-1.736787698498D-0	4
1	1.0815	23218557D-03	-3.5619915313	876D-04	4.308167373509D-0	5
2	8.3720	86622214D-04	-3.3373604819	044D-04	3.545299576488D-0	5
3	-4.8931	23129767D-04	7.5786330305	575D-05	2.917876532730D-0	6
4	-3.1285	36602414D-05	7.2348338210	22D-05	-1.233696295835D-0	5
5	3.5839	12600700D-05	-2.6709903789	94D-05	2.932629504712D-0	6
6	-2.9939	13602201D-06	2.7245690847	01D-06	-9.569324831913D-0	8
7	-2.2448	02134509D-07	-2.9336976080	69D-08	-2.654846978216D-0	8
8	2.4012	45642186D-08	-5.3313619099	37D-09	1.859310874804D-0	9
E-I	ndex:	6	7		8	
T-Index:						
0	1.1439	37144703D-05	-3.4261197532	20D-07	3.343988039951D-0	9
1	-2.4362	89695706D-06	4.5471268902	253D-08	2.943681279832D-1	0
2	-9.1309	86620243D-07	-5.0563775742	243D-08	2.244312734391D-0	9
3	-1.4216	49431925D-06	1.0605287948	829D-07	-2.467404974614D-0	9
4	9.0669	71436761D-07	-3.0769632525	06D-08	3.790588865731D-1	0
5	-7.2878	95559905D-08	-4.5253210220	16D-09	1.980047129074D-1	0
6	-2.9085	78180313D-08	2.7963987550	95D-09	-7.153988149004D-1	1
7	5.4376	29784614D-09	-3.6302826139	09D-10	8.162616568071D-1	2
8	-2.5654	17747456D-10	1.4975997500	14D-11	-3.151739443995D-1	3
Max. rel.	Error:	29.6584 %				

Mean rel. Error: 9.6090 %

11 H.11: Other single polynomial fits

11.1 Reaction 2.2B0 $He + e \rightarrow He^*$, $< de > (T_e) [eV]$,

Electron cooling for neutral and single charged Helium Particles, divided by corresponding collision rates, i.e. the fit here is for the mean electron energy cost per collision [eV]

```
k01.151324376008D+01k1-4.473761205167D+00k21.778986582799D+00k3-6.438551868755D-01k41.608511765799D-01k5-2.421866396738D-02k62.091573687632D-03k7-9.493936758931D-05k81.736942898336D-06
```

11.2 Reaction 2.4B0 $Be + e \to Be^*$, $< de > (T_e) [eV]$,

Electron cooling rates for neutral and single charged Beryllium Particles, divided by corresponding collision rates, i.e. the fit here is for the mean electron energy cost per collision [eV]

```
k01.100391045815D+01k1-5.081216135395D+00k22.036662223616D+00k3-6.960133333130D-01k41.785218452743D-01k5-2.998205644075D-02k63.046320376267D-03k7-1.693432568467D-04k83.950464677598D-06
```

11.3 Reaction 2.5B0 $B + e \rightarrow B^*$, $\langle de \rangle (T_e) [eV]$

Electron cooling rates for neutral and single charged Boron Particles, divided by corresponding collision rates, i.e. the fit here is for the mean electron energy cost per collision [eV]

```
k07.978054620918D+00k1-2.341359084919D+00k28.199491879599D-01k3-4.624629728853D-01k41.778831014506D-01k5-3.767862190039D-02k64.410579417779D-03k7-2.699007579966D-04k86.760485583089D-06
```


Electron Temperature (eV)

11.4 Reaction 2.6B0 $C + e \rightarrow C^*$, $\langle de \rangle (T_e) [eV]$

Electron cooling rates for neutral and single charged Carbon Particles, divided by corresponding collision rates, i.e. the fit here is for the mean electron energy cost per collision [eV]. Currently: constant, = ionisation potential of Carbon = 11.30 eV

```
k0 2.424802725729D+00 k1 0.000000000D+00 k2 0.000000000D+00
k3 0.000000000D+00 k4 0.00000000D+00 k5 0.000000000D+00
k6 0.000000000D+00 k7 0.00000000D+00 k8 0.000000000D+00
Max. rel. Error: .0000 %
Mean rel. Error: .0000 %
```

11.5 Reaction 2.7B0 $N + e \rightarrow N^*$, $\langle de \rangle (T_e) [eV]$

Electron cooling rates for neutral Nitrogen particles, divided by corresponding collision rates, i.e. the fit here is for the mean electron energy cost per collision [eV]. Currently: constant, = ionisation potential of Nitrogen = 14.534 eV

```
k0 2.676490732000D+00 k1 0.0000000000D+00 k2 0.0000000000D+00
k3 0.000000000D+00 k4 0.000000000D+00 k5 0.0000000000D+00
k6 0.000000000D+00 k7 0.00000000D+00 k8 0.000000000D+00
Max. rel. Error: .0000 %
Mean rel. Error: .0000 %
```

11.6 Reaction 2.10B0 $Ne + e \rightarrow Ne^*$, $\langle de \rangle (T_e) [eV]$

Electron cooling rates for neutral and single charged Neon Particles, divided by corresponding collision rates, i.e. the fit here is for the mean electron energy cost per collision [eV]

```
k0 1.059049152999D+01 k1 -5.769454465431D+00 k2 2.125621468764D+00
k3 -6.517811286454D-01 k4 1.883422085531D-01 k5 -3.905034526242D-02
k6 4.823070375814D-03 k7 -3.148120306333D-04 k8 8.365625760942D-06
Max. rel. Error: .9028 %
Mean rel. Error: .5524 %
```

11.7 Reaction 2.18B0 $Ar + e \to Ar^*$, $< de > (T_e) [eV]$

Electron cooling rates for neutral and single charged Argon Particles, divided by corresponding collision rates, i.e. the fit here is for the mean electron energy cost per collision [eV] here use constant ionisation potential $DeltaE_e = I_p = 15.7596$ eV.

k0 2.757449703000D+00 k1 0.000000000D+00 k2 0.000000000D+00 k3 0.000000000D+00 k4 0.00000000D+00 k5 0.000000000D+00 k6 0.000000000D+00 k7 0.00000000D+00 k8 0.000000000D+00 Max. rel. Error: .0000 % Mean rel. Error: .0000 %

Electron Temperature (eV)

11.8 Reaction 2.0b $p + H_2(v = 0) \rightarrow H_2^+ + ...$, Ratio H_2^+/H_2

gain of H_2^+ : production by CX (ion conversion, proton impact) on cold (0.1 eV) $H_2(0)$, vibr. ground state only. Only dependence on one temperature T_p .

loss of H_2^+ : coll. rad. model for H_2, H_2^+ , Sawada, Fujimoto, [7], electron impact dissociative recombination, excitation and ionization. Total loss: electron density independent.

Note: the contribution 2.0a to this ratio from electron impact processes leading to H_2^+ is electron density dependent, because the effective electron impact ionisation is density dependent. This contribution to the ratio is given in the next chapter under the "double-polynomial fits".

```
k0 -8.061954078771D+00 k1 2.475896585902D+00 k2 -2.933737852849D+00
k3 1.492083638260D+00 k4 -3.461597813263D-01 k5 3.266006392880D-02
k6 1.357009637322D-03 k7 -5.021441756376D-04 k8 2.737802193621D-05
Max. rel. Error: 1.3369 %
Mean rel. Error: .8127 %
```

11.9 Reaction 2.0c $p + H_2(v) \rightarrow H_2^+ + ...$, Ratio H_2^+/H_2

gain of H_2^+ : coll. model for vibr. excitation, Greenland, Reiter, [16]), and then: H_2^+ production by CX (ion conversion, proton impact) on these $H_2(v)$. The density dependence on vibrational distribution P(v) of $H_2(v)$ vanishes for $n_e = n_p$. Only dependence on one temperature for $T_e = T_p$.

loss of H_2^+ : coll. rad. model for H_2, H_2^+ , Sawada, Fujimoto, [7], electron impact dissociative recombination, excitation and ionization. Total loss: electron density independent.

Assumptions:

 $E_{H2} = 0.1$ eV, $T_i = T_e$, vibrational distribution P(v) in electr. ground state of H_2 with no coupling to B,C states, hence: also gain rate of H_2^+ due to this process is independent of n_e . B,C coupling to vibr. states is non-linear in density and would hence make this ratio density dependent.

```
k0 -5.281428900665D+00 k1 3.115995571855D+00 k2 -3.690629726865D+00
k3 1.448918180601D+00 k4 -3.928689243481D-01 k5 1.236809448625D-01
k6 -2.877121006548D-02 k7 3.391113110854D-03 k8 -1.521565312043D-04
Max. rel. Error: 9.3977 %
Mean rel. Error: 5.6685 %
```


11.10 Reaction 4.0a $H_2 + H_2^+ \to H_3^+ + H$, Ratio H_3^+/H_2

Fit for ln(RATIO), defined such that $n_{H_3^+}/n_{H_2} = \text{RATIO} \times n_{H_2^+}/n_e$ Ratio of densities: $n_{H_3^+}/n_{H_2} = \text{Ratio of production rate constant to destruction rate coefficient} \times n_{H_2^+}/n_e$.

Production of H_3^+ from $H_2(v)$: rate constant obtained from HYDHEL rate coefficient for $H_2^+ + H_2(v) \rightarrow H_3^+ + H$ evaluated at $T_{H_2} = T_{H_2^+} = 0.1$ eV, $\approx 1.160947956e - 9$.

Destruction of H_3^+ : diss. recombination (DR) from HYDHEL, 2.2.15, vs. T_e . Used here: algebraic expression from original rate constant and fit of ln(DR rate coef.) for this ln(RATIO).

k0	-3.57130000000e+00	k1 4.05007	3042947e-01 k2	-1.018733477232e-08
kЗ	1.695586285687e-08	k4 -1.56431	1217508e-10 k5	-1.979725412288e-09
k6	4.395545994733e-10	k7 -3.58492	6377078e-11 k8	1.024189019465e-12

11.11 Reaction 7.0a $e + H_2(v) \rightarrow H^- + H$, Ratio H^-/H_2 from DA

Ratio of densities: n_{H^-}/n_{H_2} . vibr. distribution P(v) of $H_2(v)$: coll. model for vibr. excitation, Greenland, Reiter, [16]

Vibrational distribution $H_2(v)$ evaluated at $E_{H_2} = 0.1eV$, $T_p = T_e$ and $n_p = n_e$. Production of H^- from $H_2(v)$: Dissociative attachment on $H_2(v) : e + H_2(v) \rightarrow H^- + H$ Destruction of H^- : electron detachment, proton MN, with $E_{H^-} = 0.1$ and $T_p = T_e$ and $n_p = n_e$.

```
k0 -6.001820741967D+00 k1 1.247273997745D+00 k2 -2.753387653632D+00
k3 2.274419556537D-01 k4 1.148400271668D-02 k5 8.614331916062D-02
k6 -3.482537437480D-02 k7 4.822974299102D-03 k8 -2.291190247346D-04
Max. rel. Error: 23.4821 %
Mean rel. Error: 10.7677 %
```

11.12 Reaction 7.0b $e + H_2(0) \rightarrow H^- + H$, Ratio H^-/H_2 from DA

same as 7.0a, but DA (diss. attachment) only from vibr. ground state Ratio of densities: n_{H^-}/n_{H_2} Production of H^- from $H_2(v = 0)$: Dissociative attachment on $H_2(v = 0)$: $e + H_2(0) \rightarrow H^- + H$ Destruction of H^- : electron detachment, proton MN, with $E_{H^-} = 0.1$ and $T_p = T_e$ and $n_p = n_e$. k0 -1.608434690479D+01 k1 2.105039374877D+00 k2 -2.553803267076D+00

```
k3 7.038135447597D-01 k4 -6.586584264400D-02 k5 -2.548302462129D-03
k6 2.922944743984D-04 k7 8.800611380131D-05 k8 -7.939105674896D-06
Max. rel. Error: 3.3989 %
Mean rel. Error: 1.0220 %
```


Electron Temperature (eV)

12 H.12: Other double polynomial fits

12.1 Reaction 2.1.5 $H + e \leftrightarrow H^+ + 2e$, Ratio $H^+/H(1)$

This ratio provides the collisional radiative equilibrium ion density, for a given ground state atom density. In CR equilibrium this ratio is a function of T_e and n_e .

```
From 0 = n_1 \times \langle s_{ion} \rangle - n^+ \times \langle \alpha_{rec} \rangle.
Assumed: n^+ = n_e
```

	E-Ir	ndex:	0		1		2
T-Inde	ex:						
	0	-3.8852	296435411D+00	-5.697	204983970D-02	7.33	2383617797D-02
	1	1.5054	87187018D+01	4.633	572829771D-04	-1.70	2732444633D-03
	2	-6.7491	91912028D+00	1.050	145613783D-03	-3.14	8776304951D-03
	3	2.2122	21660002D+00	4.854	461323593D-03	-2.45	2783916892D-03
	4	-5.2579	81277508D-01	-3.179	654723425D-03	1.76	7567981601D-03
	5	8.8244	11449640D-02	9.193	475524397D-04	-4.29	9802583958D-04
	6	-9.7993	869577387D-03	-1.679	454700153D-04	7.38	1643118061D-05
	7	6.4139	37652029D-04	1.902	440743752D-05	-9.87	5692439849D-06
	8	-1.8611	14574375D-05	-9.394	367819466D-07	5.89	3327001637D-07
	E-Ir	ndex:	3		4		5
T-Inde	ex:						
	0	-3.5051	83129037D-02	8.175	768579910D-03	-1.02	5860190568D-03
	1	1.8828	368187070D-03	-6.728	098565933D-04	1.13	3241004935D-04
	2	1.5947	04172137D-03	-3.246	647453262D-04	3.18	4754694533D-05
	3	4.0642	257852894D-04	-2.059	459670150D-05	-2.35	8171220598D-06
	4	-3.8390	01285389D-04	4.783	673711689D-05	-3.37	8269018931D-06
	5	6.2480	27250326D-05	-4.077	787495573D-06	1.12	4935475483D-07
	6	-7.8659	67145477D-06	-4.674	862715791D-08	4.74	4742742259D-08
	7	1.7342	207080274D-06	-1.760	833256154D-07	1.55	1629723045D-08
	8	-1.4573	328885095D-07	2.193	301182972D-08	-2.24	8254389232D-09
	E-Ir	ndex:	6		7		8
T-Inde	ex:						
	0	7.0410	06112962D-05	-2.467	291455100D-06	3.43	6102553376D-08
	1	-9.7351	91629933D-06	4.053	170686858D-07	-6.46	3282471161D-09
	2	-1.3876	556614654D-06	1.600	623293301D-08	2.72	2493472041D-10
	3	3.4886	598891258D-07	-1.422	059161908D-08	1.69	8254518458D-10
	4	9.5116	536577030D-08	6.913	540712148D-10	-5.48	3090178167D-11
	5	1.1401	16701448D-08	-1.211	498169926D-09	3.02	0216342872D-11
	6	-4.1277	05769609D-09	2.185	243304602D-10	-4.84	8384547542D-12
	7	-9.4326	583181108D-10	2.682	232500047D-11	-2.21	6051536502D-13
	8	1.3989	063108397D-10	-4.493	865381320D-12	5.59	0467018306D-14
Max.	rel.	Error:	.9684 %				

12.2 Reaction 2.1.5a $H + e \rightarrow H^+ + 2e$, Ratio H(3)/H(1)

E-	-Index:	0	1	2
T-Index	:			
0	-3.082	2877684472D+01	9.740982428834D-01	2.693447564427D-02
1	1.18	7030265272D+01	1.968338090648D-02	-2.495504765088D-02
2	-5.889	9482037865D+00	-8.737684945730D-03	9.951688266911D-03
3	2.01	7399399792D+00	-1.014609925009D-02	1.040081859210D-02
4	-5.303	3360302839D-01	3.297808176838D-03	-2.712205422397D-03
5	1.080	0451047951D-01	9.673290806118D-04	4 -1.096708705743D-03
6	-1.555	5010466762D-02	-5.167168286670D-04	4.637911190482D-04
7	1.32	7158680898D-03	7.389473703435D-05	-5.797555862425D-05
8	-4.872	2105203992D-05	-3.537584073064D-06	5 2.453443334473D-06
E-	-Index:	3	4	5
T-Index	:			
0	-9.004	4934091051D-03	1.222843687947D-03	-5.210804049741D-05
1	1.123	3130855030D-02	-2.651909936461D-03	3.534709147248D-04
2	-5.241	1271640755D-03	1.372483328336D-03	-1.917275090304D-04
3	-3.478	8025606446D-03	5.572774095384D-04	4 -4.848784231802D-05
4	8.454	4526208306D-04	-1.362168127545D-04	1.306146151315D-05
5	3.872	2258199271D-04	-6.353971343367D-05	5.417022322731D-06
6	-1.380	0893374707D-04	1.849429028886D-05	-1.166761555949D-06
7	1.440)341699187D-05	-1.290902554237D-00	-4.889963932464D-09
8	-4.745	5956710582D-07	5.546604517157D-09	9 7.579547673173D-09
E	-Index:	6	7	8
T-Index	:			
0	-2.739	9765256223D-06	2.927097984040D-0	7 -6.646459819509D-09
1	-2.632	2450715422D-05	9.987762315441D-07	7 -1.501421276021D-08
2	1.441	1627470961D-05	-5.481720522735D-07	8.264009775214D-09
3	2.410	6915703008D-06	-6.658457254421D-08	8 8.215818515744D-10
4	-7.772	2290534634D-07	2.655224800515D-08	-3.968977724198D-10
5	-2.470)245979511D-07	5.722044899754D-09	9 -5.443566855045D-11
6	2.955	5124264492D-08	3.184408123607D-11	-8.216232831023D-12
7	7.390)396686250D-09	-4.052521721349D-10	6.720841155202D-12
8	-8.635	5578634097D-10	3.738695038824D-11	-5.757075610089D-13

Max.	rel.	Error:	3.7804	00
Mean	rel.	Error:	1.3368	00

Electron Temperature (eV)

Reaction 2.1.5b $H + e \rightarrow H^+ + 2e$, Ratio H(2)/H(1)12.3

E-	-Index:	0	1	2
T-Index:	:			
0	-2.888	782240542D+01	9.694042304562D-01	4.613129045722D-02
1	9.909	537514500D+00	-4.163537878599D-02	2.444011013342D-02
2	-4.942	743781185D+00	1.230545313063D-02	-1.289174377763D-02
3	1.715	668267417D+00	3.034149311755D-02	-1.837812030403D-02
4	-4.508	004155190D-01	-1.136449435241D-02	7.857406065923D-03
5	9.042	516000563D-02	-2.874540451423D-03	1.787805444265D-03
6	-1.280	973933282D-02	1.947546784046D-03	-1.325209820376D-03
7	1.084	341450206D-03	-3.175349945580D-04	2.227323600480D-04
8	-3.974	359134401D-05	1.688199339120D-05	-1.209472946500D-05
E-	-Index:	3	4	5
T-Index:	:			
0	-2.216	757216719D-02	5.067711671376D-03	-6.212032986616D-04
1	-5.092	551836572D-03	4.080645015829D-04	-5.739581031596D-06
2	4.174	980751883D-03	-5.559754475561D-04	2.207616832672D-05
3	3.719	122644080D-03	-2.039974521144D-04	-2.170634046629D-05
4	-1.818	309410916D-03	1.348196284756D-04	7.621772971297D-06
5	-4.049	163510078D-04	3.839701084642D-05	-1.182790529172D-06
6	3.200	749637228D-04	-3.075854301471D-05	4.485031199179D-07
7	-5.559	573928329D-05	5.656373947352D-06	-1.236115053324D-07
8	3.100	021285561D-06	-3.323560174565D-07	9.896407186442D-09
E-	-Index:	6	7	8
T-Index:	:			
0	4.172	445968364D-05	-1.439572350231D-06	1.978486731178D-08
1	-6.441	112682031D-07	1.766524953307D-08	4.500335193180D-11
2	1.604	359947467D-06	-1.668549821257D-07	3.956288361818D-09
3	3.319	046346231D-06	-1.530562339677D-07	2.467744887550D-09
4	-1.742	105663717D-06	9.539025646066D-08	-1.764749848063D-09
5	-3.224	230256996D-08	2.293257666191D-09	-2.626033062059D-11
6	1.187	820950781D-07	-7.725204735890D-09	1.455730327605D-10
7	-1.829	679294498D-08	1.312011360384D-09	-2.576831583186D-11
8	8.003	219743811D-10	-6.578827971726D-11	1.343525928267D-12

Max.	rel.	Error:	5.0202	00
Mean	rel.	Error:	.9593	0/0

323

Electron Temperature (eV)

12.4 Reaction 2.1.5c $H + e \rightarrow H^+ + 2e$, Ratio H(4)/H(1)

E-1	Index:	0	1	2
T-Index:				
0	-3.121	459339796D+01	8.335828009713D-	01 2.325042085123D-01
1	1.250	950592132D+01	9.112878380113D-	03 -5.491646502669D-02
2	-6.229	984587067D+00	-1.938627422961D-	02 1.621303063286D-02
3	2.142	105600364D+00	3.084489232048D-	02 -3.147946146487D-03
4	-5.615	155300856D-01	-5.885518785970D-	03 -1.131771898094D-03
5	1.127	449459065D-01	-6.211271050025D-	03 3.856805502108D-03
6	-1.590	343046823D-02	2.950230045038D-	03 -1.748272049931D-03
7	1.333	705010633D-03	-4.583201098446D-	04 2.858630200307D-04
8	-4.836	027605927D-05	2.417569815070D-	05 -1.585276481393D-05
E-I	Index:	3	4	5
T-Index:				
0	-1.096	388203376D-01	2.434624647621D-	02 -2.848412091044D-03
1	2.972	045500915D-02	-6.752777629102D-	03 7.907482466413D-04
2	-6.819	605362801D-03	1.639046907231D-	03 -2.316409264833D-04
3	-4.981	563534979D-03	1.797076203455D-	03 -2.547644660956D-04
4	2.277	414510956D-03	-7.295707497520D-	04 1.047093315160D-04
5	-9.720	154554360D-04	1.201895430371D-	04 -7.956678504065D-06
6	3.838	584264558D-04	-3.212460389716D-	05 -8.181068284295D-08
7	-6.739	012881651D-05	6.684315041032D-	06 -1.703080933280D-07
8	4.013	119711268D-06	-4.619672863742D-	07 2.215787076654D-08
E-1	Index:	6	7	8
T-Index:				
0	1.789	669578362D-04	-5.712451213773D-	06 7.267386885023D-08
1	-5.078	726612521D-05	1.694110618282D-	06 -2.296731891384D-08
2	1.859	544292047D-05	-7.663932535000D-	07 1.248233937322D-08
3	1.790	413918002D-05	-6.225635876900D-	07 8.589352663796D-09
4	-7.734	966472367D-06	2.868598630187D-	07 -4.235795995646D-09
5	2.942	004754571D-07	-6.030861909870D-	09 5.715848860621D-11
6	1.721	805311242D-07	-9.730371684031D-	09 1.730299677672D-10
7	-1.655	594650506D-08	1.235894145239D-	09 -2.408500349383D-11
8	2.731	478375019D-11	-3.750344543532D-	11 9.061707694269D-13

Max.	rel.	Error:	3.6808	00
Mean	rel.	Error:	1.2901	9

Electron Temperature (eV)

E-	Index:	0		1		2
T-Index:						
0	-3.126	718125624D+01	9.282945	460974D-01	1.0702	13380676D-01
1	1.2813	374709913D+01	3.573873	112144D-02	-4.8727	01879146D-02
2	-6.3804	408105491D+00	-1.144110	981890D-03	-4.6805	98150266D-05
3	2.191	577061685D+00	-5.161589	020256D-03	6.4396	56957369D-03
4	-5.751	755938054D-01	1.676622	419964D-03	-1.5685	01026478D-03
5	1.1574	406495600D-01	1.486290	009897D-04	-1.4047	65081110D-04
6	-1.631	671197369D-02	-2.016003	370833D-04	1.6392	22741263D-04
7	1.362	647208936D-03	3.901702	147732D-05	-3.1411	40575728D-05
8	-4.9088	354946631D-05	-2.325049	769834D-06	1.8889	30116590D-06
E-	Index:	3		4		5
T-Index:						
0	-5.9848	835557747D-02	1.574482	420977D-02	-2.1528	03383431D-03
1	2.1223	340688681D-02	-4.335261	058803D-03	4.5110	00731668D-04
2	4.8993	399906199D-04	-1.730051	136321D-04	2.0451	11743029D-05
3	-2.5951	193985854D-03	5.083896	758770D-04	-5.0014	75048416D-05
4	5.2350)42780927D-04	-8.901350	181088D-05	8.4375	62876296D-06
5	1.9534	433357615D-05	3.171136	646292D-06	-1.2811	35706652D-06
6	-3.782	479181914D-05	2.829273	502486D-06	1.6455	29677700D-07
7	7.810	730453019D-06	-7.640509	497691D-07	9.3573	72398314D-09
8	-4.9702	298877362D-07	5.607762	235203D-08	-2.2324	80288100D-09
E-	Index:	6		7		8
T-Index:						
0	1.5334	450613139D-04	-5.416190	220272D-06	7.5030	92506245D-08
1	-2.514	757812007D-05	7.098607	959133D-07	-7.9481	98678409D-09
2	-4.7800)97207035D-07	-3.664829	135622D-08	1.4357	04784493D-09
3	2.3788	856833473D-06	-4.662729	327187D-08	1.8857	07833825D-10
4	-4.722	754735716D-07	1.525662	957088D-08	-2.2773	73255316D-10
5	1.5393	182389681D-07	-7.795475	709363D-09	1.4082	03935795D-10
6	-3.8440	013350899D-08	2.070018	927471D-09	-3.5689	96816514D-11
7	3.3989	945819263D-09	-2.120439	941817D-10	3.6431	40818164D-12
8	-6.0950)37813579D-11	6.718495	301125D-12	-1.2299	67242093D-13

Max.	rel.	Error:	2.8664	00
Mean	rel.	Error:	1.0041	00

Electron Temperature (eV)
12.6 Reaction 2.1.5e $H + e \rightarrow H^+ + 2e$, Ratio H(6)/H(1)

E	-Index:	0	1	2
T-Index	:			
0	-3.1187	88806329D+01	1.051705868661D+00	-6.954764617920D-02
1	1.3003	65034969D+01	5.806024278787D-02	-7.054107872877D-02
2	-6.4646	11656902D+00	-3.350148712230D-02	3.809632279775D-02
3	2.1986	90942590D+00	-1.651116960139D-02	1.248202030331D-02
4	-5.7621	98964354D-01	8.782966049217D-03	-7.253814512300D-03
5	1.1904	59835777D-01	7.937734220940D-04	-3.032198147605D-04
6	-1.7581	72528529D-02	-8.425168421647D-04	4.935184501531D-04
7	1.5406	71110406D-03	1.322737632505D-04	-7.161027491097D-05
8	-5.7824	68318198D-05	-6.483373521666D-06	3.088146690349D-06
E	-Index:	3	4	5
T-Index	:			
0	2.6123	29534702D-02	-3.911384137475D-03	1.474794675693D-04
1	3.2098	14487839D-02	-7.336538391803D-03	8.838327301328D-04
2	-1.6635	74690203D-02	3.667522832624D-03	-4.409479869479D-04
3	-3.6000	08781362D-03	5.273464947078D-04	-4.137511227236D-05
4	2.4344	17487959D-03	-4.385057360151D-04	4.589037396076D-05
5	-6.6936	27833492D-05	4.755833322780D-05	-8.654363224389D-06
6	-8.0206	37279277D-05	-2.254322145665D-06	1.858918078917D-06
7	9.1201	31097155D-06	1.138969748088D-06	-3.791832116704D-07
8	-1.7043	70060355D-07	-1.258928004543D-07	2.744344149529D-08
E	-Index:	6	7	8
T-Index	:			
0	9.1917	57017392D-06	-7.898231632650D-07	1.514512376570D-08
1	-5.7790	85565904D-05	1.935287412436D-06	-2.603161887414D-08
2	2.9750	48782418D-05	-1.054940416948D-06	1.523660684271D-08
3	1.5537	74051571D-06	-1.704433673171D-08	-2.016881015852D-10
4	-2.7856	68187173D-06	9.065547432614D-08	-1.223436753078D-09
5	7.3036	64535216D-07	-2.952279140710D-08	4.597194098628D-10
6	-1.9707	36415814D-07	8.619751903229D-09	-1.383868509607D-10
7	3.5960	45684588D-08	-1.495930494169D-09	2.332244458469D-11
8	-2.3578	27363714D-09	9.371149524100D-11	-1.424213663602D-12

Max.	rel.	Error:	5.6136	00
Mean	rel.	Error:	1.7770	00

12.7 Reaction 2.1.5tot $H + e \rightarrow H^+ + 2e$, Ratio H(tot)/H(1)

total density (ground plus all excited states) in CR equilibrium with ground state

E	E-Index:	0	1	2
T-Index:	:			
(9.99	9989080920D-01	6.569869814870D-04	-6.526259178085D-04
1	L -6.68	34079057216D-06	-1.624733380895D-03	1.517116722391D-03
	2 2.55	53992642225D-05	9.833706477844D-04	-8.771533719662D-04
	3 -2.46	52557791473D-05	-2.342847322381D-04	2.116654525863D-04
4	1 1.06	52360801108D-05	2.225391064535D-05	-2.995563308037D-05
[5 -2.39	9855499712D-06	2.478808045973D-06	1.242643822457D-06
(5 2.95	51154702233D-07	-7.469982004941D-07	1.518536644908D-07
-	7 -1.87	1893412626D-08	5.751651874704D-08	-1.380451507029D-08
8	3 4.79	96659338151D-10	-1.452959768161D-09	2.101916949778D-10
E	E-Index:	3	4	5
T-Index:	:			
(2.44	16820545529D-04	-4.633538453818D-05	4.889372584120D-06
1	L -5.19	06975095555D-04	8.835186629866D-05	-8.286820244724D-06
	2 2.69	94565448733D-04	-3.889200026191D-05	2.928290705068D-06
	3 -5.53	3211626824D-05	5.123221852559D-06	-1.729804749149D-08
4	1 8.27	/3895035263D-06	-6.797808694765D-07	-1.060219799928D-08
[5 -5.87	4504858843D-07	4.859497595281D-08	1.114394044002D-09
(5 7.88	3226202848D-09	-1.005021139591D-09	-2.177196303683D-10
-	7 -9.79	9681363679D-10	4.054138156358D-10	-2.970144566810D-11
8	3 1.21	3701692902D-10	-3.377976381012D-11	3.362497319640D-12
E	E-Index:	6	7	8
T-Index:	:			
() -2.91	7482144379D-07	9.209996969945D-09	-1.195587997940D-10
-	L 4.37	8814547750D-07	-1.223407550017D-08	1.405657502664D-10
2	2 -1.16	59351655337D-07	2.258524229896D-09	-1.460715455401D-11
3	3 -2.42	26972326758D-08	1.404805094637D-09	-2.540724522759D-11
Z	4 3.47	6416204584D-09	-1.330157773056D-10	1.424915474012D-12
[5 -8.12	29340876771D-11	-1.183776577049D-11	5.125710307402D-13
(5 5.31	3468965034D-12	1.675867714679D-12	-6.770309443179D-14
-	7 1.61	9425683239D-12	-1.268121213878D-13	3.934356277466D-15

8 -1.798937732279D-13 6.521970562366D-15 -1.251030581090D-16

331

12.8 Reaction 2.1.5de $H + e \rightarrow H^+ + 2e$, < de > [eV]

E-	Index:	0	1			2
T-Index:						
0	7.845	107077886D+00	-4.1583886299	94D-02	2.06068	1712432D-02
1	-4.270	502285463D+00	9.5059577718	815D-02	-7.67360	2080150D-02
2	1.726	068286328D+00	-4.5225193863	379D-02	5.15428	7556942D-02
3	-3.652	415321353D-01	-5.3490084039	944D-03	-1.08934	5117269D-02
4	3.713	344797329D-02	9.5501548528	851D-03	-1.13778	2108759D-03
5	-1.816	044037023D-04	-2.8675872024	99D-03	8.35445	3807701D-04
6	-3.430	690631609D-04	3.9098988725	586D-04	-1.33750	3951808D-04
7	3.098	356603724D-05	-2.5598856252	243D-05	9.07788	6701887D-06
8	-8.899	184097510D-07	6.5194661679	72D-07	-2.26825	1226270D-07
E-	Index:	3	4			5
T-Index:						
0	-8.052	322446345D-03	1.3616169072	232D-03	-1.42651	3742220D-04
1	2.563	880114503D-02	-3.8214017989	42D-03	2.93755	1907788D-04
2	-1.720	715317463D-02	2.2906899770	061D-03	-1.25360	6753443D-04
3	4.775	945182204D-03	-6.4672283127	94D-04	2.97548	9992699D-05
4	-3.721	823938539D-04	7.4198315653	375D-05	-3.80955	2723616D-06
5	-8.073	915024648D-05	3.1967293522	202D-06	-4.57779	6946576D-08
6	1.863	239051629D-05	-1.4624577587	89D-06	6.10222	9658187D-08
7	-1.331	114942698D-06	1.0941199604	69D-07	-4.76306	0764998D-09
8	3.160	102832021D-08	-2.3666227763	876D-09	9.02875	7163018D-11
E-	Index:	6	7			8
T-Index:						
0	9.199	187026673D-06	-3.6261264257	44D-07	6.52664	9455096D-09
1	-1.081	310544107D-05	1.2918956856	595D-07	1.06848	4717217D-09
2	-1.280	245967862D-08	2.5929865437	/81D-07	-7.11337	8488276D-09
3	8.057	527653614D-07	-1.1893854059	32D-07	2.98217	1776258D-09
4	-9.060	932716087D-08	1.5805360076	594D-08	-4.32076	0123314D-10
5	-5.069	290362681D-10	-2.7857298654	99D-10	1.59376	2976817D-11
6	2.554	338381631D-10	-9.8909350025	52D-11	1.77032	8452101D-12
7	-9.336	950682103D-12	8.0934642882	205D-12	-1.76757	4119215D-13
8	1.044	083905543D-12	-2.0663927926	522D-13	4.43632	4698144D-15

Max.	rel.	Error:	.4629	00
Mean	rel.	Error:	.0970	00

6	•	5	2	6	6	4	9	4	5	5	0	9	6	D	_	0	9
1	•	0	6	8	4	8	4	7	1	7	2	1	7	D	_	0	9
 7	•	1	1	3	3	7	8	4	8	8	2	7	6	D	_	0	9
2	•	9	8	2	1	7	1	7	7	6	2	5	8	D	_	0	9
 4	•	3	2	0	7	6	0	1	2	3	3	1	4	D	_	1	0
1	•	5	9	3	7	6	2	9	7	6	8	1	7	D	_	1	1
1	•	7	7	0	3	2	8	4	5	2	1	0	1	D	_	1	2
 1	•	7	6	7	5	7	4	1	1	9	2	1	5	D	_	1	3
4	•	4	3	6	3	2	4	6	9	8	1	4	4	D	_	1	5

Electron Temperature (eV)

12.9 Reaction 2.1.50 $H + e \rightarrow H^+ + 2e$, $\langle de \rangle [eV]$ Ly-opaque

Lyman opaque

E-I	ndex: 0	1	2
T-Index:			
0	4.257426092590D+00	-2.648139307081D-01	2.747475375517D-01
1	-1.580642905913D+00	1.856918325247D-01	-1.887867610999D-01
2	9.487720032428D-01	-4.334108248024D-02	4.027363438413D-02
3	-3.653667544231D-01	1.938361132039D-03	-1.064922255960D-03
4	9.142288235830D-02	6.321600657670D-04	-1.359591518986D-04
5	-1.446402551044D-02	-2.277509541327D-04	-1.939963902602D-05
6	1.384901599216D-03	4.074186530390D-05	1.262940841492D-06
7	-7.297260412218D-05	-3.278960026730D-06	5.700992619392D-08
8	1.620578859074D-06	9.263823594567D-08	1.592211120194D-09
E-I	ndex: 3	4	5
T-Index:			
0	-1.211356030412D-01	2.685695232533D-02	-3.317777605290D-03
1	8.363647099141D-02	-1.868059156820D-02	2.327504355627D-03
2	-1.875679395058D-02	4.434521459505D-03	-5.945647526149D-04
3	7.959030639825D-04	-2.528345636722D-04	5.007272230577D-05
4	5.074526064710D-06	-3.035134696595D-06	-2.203465100709D-06
5	2.365267620753D-05	-2.398473162099D-06	3.489675236875D-07
6	-3.631085495565D-06	4.137564902109D-07	-2.971694422141D-08
7	2.493062937307D-07	-3.179509396878D-08	1.585728061318D-09
8	-9.298947595442D-09	1.468230792208D-09	-9.887260958280D-11
E-I	ndex: 6	7	8
T-Index:			
0	2.278436663051D-04	-8.091967627921D-06	1.156866070535D-07
1	-1.605612738266D-04	5.703707563566D-06	-8.131849775947D-08
2	4.346897926519D-05	-1.605515516330D-06	2.346223121561D-08
3	-4.662162321782D-06	1.981562216998D-07	-3.155996422050D-09
4	3.653404338885D-07	-1.942106127435D-08	3.499018522662D-10
5	-3.942216779052D-08	2.001379932680D-09	-3.673145766979D-11
6	1.954467664699D-09	-8.738736712781D-11	1.665200022479D-12
7	-2.359672833575D-11	-4.475930371767D-13	7.240045137258D-15
8	2.798900106658D-12	-1.040603787711D-14	-5.219184133080D-16
Max. rel.	Error: .4321 %		
Mean rel.	Error: .0858 %		

Electron Temperature (eV)

12.10 Reaction 2.1.8 $H^+ + e \leftrightarrow H(1s)$, Ratio $H(1)/H^+$

This ratio provides the collisional radiative equilibrium ground state atom density, for a given ion density.

From $0 = n_1 \times \langle s_{ion} \rangle - n^+ \times \langle \alpha_{rec} \rangle$. Assumed: $n^+ = n_e$. This is the inverse ratio of the ratio H⁺/H given above.

E-II	ndex: 0	1	2
T-Index:			
0	3.884817920291D+00	5.748230037228D-02	-7.354743589465D-02
1	-1.505405435407D+01	-2.069666264052D-03	2.740273217181D-03
2	6.752413643513D+00	-2.852568692095D-03	2.645950103684D-03
3	-2.218947925718D+00	3.880371810496D-04	2.448954939235D-03
4	5.306456586404D-01	-1.106924750936D-03	-1.425570179604D-03
5	-8.996474445862D-02	8.001173589203D-04	1.442342394885D-04
6	1.012370581895D-02	-1.970308892236D-04	1.763054900761D-05
7	-6.725100993525D-04	2.003187510884D-05	-2.805603265326D-06
8	1.980680600260D-05	-7.148042140142D-07	5.062324995954D-08
E-I:	ndex: 3	4	5
T-Index:			
0	3.514369843739D-02	-8.200095897737D-03	1.029247980732D-03
1	-2.232044284757D-03	7.372183809405D-04	-1.199006377953D-04
2	-1.418041310973D-03	3.361254031169D-04	-3.854655884633D-05
3	-6.306614528176D-04	2.629206773651D-05	6.811979362899D-06
4	5.100161790571D-04	-6.541482923176D-05	3.819981137349D-06
5	-6.628089424783D-05	7.250593421266D-06	-4.680128307062D-07
6	-2.918830286653D-06	1.005848267335D-06	-7.444889071158D-08
7	5.969286375471D-07	-1.181102409670D-07	3.398470038793D-09
8	3.373896520254D-09	-1.875159711383D-09	7.447934965772D-10
E-I	ndex: 6	7	8
T-Index:			
0	-7.065616546499D-05	2.476181590024D-06	-3.448732313124D-08
1	1.010186897559D-05	-4.156554445603D-07	6.576866918837D-09
2	2.077865905425D-06	-4.493493845615D-08	1.680184085191D-10
3	-8.395863513859D-07	3.306347645323D-08	-4.092185917718D-10
4	-9.078967708851D-08	7.126270754412D-10	-1.502691682691D-11
5	2.975843593936D-08	-1.562087549982D-09	3.533269604119D-11
6	-2.195532523309D-09	3.847295886912D-10	-1.006718276842D-11
7	8.756896081564D-10	-7.247037436751D-11	1.603229219763D-12
8	-9.983397630247D-11	5.334255622655D-12	-1.003858224247D-13
Max. rel.	Error: .9699 %		
Mean rel.	Error: .4163 %		

12.11 Reaction 2.1.8a $H^+ + e \rightarrow H(1s)$, Ratio $H(3)/H^+$

T-Index: 0 -3.02656773773D+01 1.15258371942600 1 -8.879460687468D-01 -5.351933360860D-02 4.426984905627D-02 2 -2.779342631813D-02 -2.871588085187D-03 2.404285503458D-04 4 1.822980963695D-03 -1.575168978328D-06 8.405772103417D-04 5 -2.196477309909D-04 5.06626030625D-04 -5.971643097799D-04 6 3.323843511157D-05 -1.520492801515D-0 4.2812322614617D-04 7 -1.697007294106D-06 1.825841763069D-05 -1.220563921933D-05 8 -5.916439943353D-08 -8.242186020597D-07 4.677827163183D-07 E-Index: 3 4 5 T-Index: 0 7.198684018769D-02 -1.490875604355D-02 1.619553420918D-03 1 -1.852578901204D-02 3.331452439870D-03 -2.948572788751D-04 2 -9.056841023031D-04 3.563549006757D-04 -5.590965690725D-05 3 -8.226476286514D-05 2.960920971970D-05 -8.086208258569D-06 4 -3.464740688021D-04 5.922304252082D-05 -4.850028146748D-06 5 2.105198711062D-04 -3.609362517850D-05 -4.850028146748D-06 6 -3.517980076344D-05 4.42795818863D-6 -2.493221748446D-07 7 2.198069639127D-06 -6.705985847102D-09 -4.128988875743D-08 8 -4.300266775823D-08 -1.512563397687D-08 4.068624995447D-09 2 -9.0567597004D-06 -1.48582457939D-07 -4.3288451607010 4 0.9269115359815D-05 2.618073045777D-66 -2.835709536455D-08 1 1.169406889954D-05 -1.253572620707 -1.946226380509D-09 3 9.143236603084D-07 -4.32628542963D-08 -1.886497676134D-09 2 4.196575697004D-06 -1.48582457939D-07 -1.946226380509D-09 3 9.143236603084D-07 -4.32628542963D-08 -1.88649476134D-09 2 4.19657569704D-06 -1.48582457939D-07 -1.946226380509D-09 3 9.143236603084D-07 -4.3268542963D-08 -1.886491676134D-09 2 4.19657569704D-06 -1.48582457939D-07 -1.946226380509D-09 3 9.143236603084D-07 -4.3268542963D-08 -1.452884116070D-10 4 2.164045324446D-07 -6.474547723428D-09 -1.54230735749D-10 5 -1.881415491252D-07 5.487390918519D-09 -7.088510716926D-11 7 5.37301338853BD-09 -2.844239825756D-10 5.51697387161D-12 8 -4.168331974260D-10 2.004403028395D-11 -3.695127505869D-13	E-	Index:	0	1	2
0 -3.026567737773D+01 1.152583719426D+00 -1.626038509544D-01 1 -8.87946068746BD-01 -5.35193336086DD-02 4.426984905627D-02 2 -2.779342631813D-02 6.030457249067D-03 1.515441331512D-03 3 -1.196375890811D-02 -2.871588085187D-03 2.404285503458D-04 4 1.822980963695D-03 -1.575168978328D-06 8.405772103417D-04 5 -2.196477309909D-04 5.066260303625D-04 -5.971643097799D-04 6 3.323843511157D-05 -1.520492801515D-04 1.281232614617D-04 7 -1.697007294106D-06 1.825841763069D-05 -1.220563921933D-05 8 -5.916439943353D-08 -8.242186020597D-07 4.677827163183D-07 E-Index: 3 4 5 T-Index: 0 7.198684018769D-02 -1.490875604355D-02 1.619553420918D-03 1 -1.852578901204D-02 3.331452439870D-03 -2.948572788751D-04 4 -3.464740688021D-04 5.922304252082D-05 -8.066208258569D-06 4 -3.464740688021D-04 5.922304252082D-05 -4.850028146748D-06 5 2.105198711062D-04 -3.609362517850D-05 3.423756972171D-06 6 -3517980076344D-05 4.427958188863D-06 -2.493221748446D-07 7 2.198069639127D-06 -6.705985847102D-09 -4.182988875743D-08 8 -4.300266775823D-08 -1.512563397687D-08 4.068624995447D-09 E-Index: 6 7 8 T-Index: 0 -9.269115359815D-05 2.618073045777D-06 -2.835709536455D-08 1 1.16940688954D-05 -1.253572620552D-07 1.94626386509D-09 3 9.14323660304D-07 -4.36285542963D-08 7.45288416070D-10 4 2.164045324446D-07 -6.474547723428D-09 1.9462838851743D-08 8 -4.30026675582D-05 5.4673045777D-06 -2.835709536455D-08 1 1.16940688954D-07 -4.36285542963D-08 7.45288541607D-10 4 2.164045324446D-07 -5.474547723428D-09 1.946426380509D-09 3 9.14323660304D-07 -4.36285542963D-08 7.45288541607D-10 4 2.164045324446D-07 -5.474547723428D-09 1.56823417385D-10 5 -1.851415491252D-07 5.487390918519D-09 -7.088510716926D-11 7 5.373013388538D-09 -2.84423825750-10 5.516973870161D-12 8 -4.168331974260D-10 2.004403028395D-11 -3.695127505869D-13	T-Index:				
1 -8.879460687468D-01 -5.351933360860D-02 4.426984905627D-02 2 -2.779342631813D-02 6.030457249067D-03 1.515441331512D-03 3 -1.196375890811D-02 -2.871588085187D-03 2.404285503458D-04 4 1.822980963695D-03 -1.575168978328D-06 8.405772103417D-04 5 -2.196477309909D-04 5.066260303625D-04 -5.971643097799D-04 6 3.323843511157D-05 -1.520492801515D-04 1.281232614617D-04 7 -1.697007294106D-06 1.825841763069D-05 -1.220563921933D-05 8 -5.916439943353D-08 -8.242186020597D-07 4.677827163183D-07 E-Index: 3 4 5 7 -1.852578901204D-02 3.331452439870D-03 -2.948572788751D-04 2 -9.056841023031D-04 3.563549006757D-04 -5.590965690725D-05 3 -8.226476286514D-05 2.960920971970D-05 -8.86208258569D-06 4 -3.464740688021D-04 -3.60362517850-05 3.423756972171D-06 6 -3.517980076344D-05 4.427958188663D-06 -2.493221748446D-07 7 2.198069639127D-06 -6.70598547102D-09 -4.128988875743D-08 <td>0</td> <td>-3.026</td> <td>567737773D+01</td> <td>1.152583719426D-</td> <td>-00 -1.626038509544D-01</td>	0	-3.026	567737773D+01	1.152583719426D-	-00 -1.626038509544D-01
2 -2.779342631813D-02 6.030457249067D-03 1.515441331512D-03 3 -1.196375890811D-02 -2.871588085187D-03 2.404285503458D-04 4 1.822980963695D-03 -1.575168978328D-06 8.405772103417D-04 5 -2.19647730909D-04 5.066260303625D-04 -5.97164309779D-04 6 3.323843511157D-05 -1.520492801515D-04 1.281232614617D-04 7 -1.697007294106D-06 1.825841763069D-05 -1.220563921933D-05 8 -5.916439943353D-08 -8.242186020597D-07 4.677827163183D-07 E-Index: 3 4 5 T-Index: 0 7.198684018769D-02 -1.490875604355D-02 1.619553420918D-03 1 -1.852578901204D-02 3.331452439870D-03 -2.948572788751D-04 2 -9.056841023031D-04 3.563549006757D-04 -5.590965690725D-05 3 -8.226476286514D-05 2.960920971970D-05 -8.086208258569D-06 4 -3.464740688021D-04 5.922304252082D-05 -4.850028146748D-06 5 2.105198711062D-04 -3.609362517850D-05 3.423756972171D-06 6 -3.517980076344D-05 4.427958188863D-06 -2.493221748446D-07 7 2.198069639127D-06 -6.705985847102D-09 -4.12898875743D-08 8 -4.300266775823D-08 -1.512563397687D-08 4.068624995447D-09 E-Index: 6 7 8 T-Index: 0 -9.269115359815D-05 2.618073045777D-06 -2.835709536455D-08 1 1.169406889954D-05 -1.253572620552D-07 -1.886947675134D-09 2 4.196575697004D-06 -1.482582457939D-07 1.946426380509D-09 3 9.143236603084D-07 -4.362855429636D-08 7.452885416070D-10 4 2.164045324446D-07 -6.474547723428D-09 1.56823417385D-10 5 -1.851415491252D-07 5.487390918519D-09 -7.088510716926D-11 7 5.373013388538D-09 -2.844239825756D-10 5.516973870161D-12 8 -4.168331974260D-10 2.004403028395D-11 -3.695127505869D-13	1	-8.879	460687468D-01	-5.351933360860D-	-02 4.426984905627D-02
3 -1.196375890811D-02 -2.871588085187D-03 2.404285503458D-04 4 1.822980963695D-03 -1.575168978328D-06 8.405772103417D-04 5 -2.19647730990PD-04 5.066260303625D-04 -5.971643097799D-04 6 3.323843511157D-05 -1.520492801515D-04 1.281232614617D-04 7 -1.697007294106D-06 1.825841763069D-05 -1.220563921933D-05 8 -5.916439943353D-08 -8.242186020597D-07 4.677827163183D-07 E-Index: 3 4 5 7 -1.852578901204D-02 3.331452439870D-03 -2.948572788751D-04 2 -9.056841023031D-04 3.563549006757D-04 -5.590965690725D-05 3 -8.226476286514D-05 2.960920971970D-05 -8.086208258569D-06 4 -3.464740688021D-04 5.922304252082D-05 -4.850028146748D-06 5 2.105198711062D-04 -3.609362517850D-05 3.423756972171D-06 6 -3.517980076344D-05 4.427958188863D-06 -2.493221748446D-07 7 2.198069639127D-06 -6.705985847102D-09 -4.12898875743D-08 8 -4.300266775823D-08 -1.51253372620552D-07 -1.886947676134	2	-2.779	342631813D-02	6.030457249067D-	-03 1.515441331512D-03
4 1.822980963695D-03 -1.575168978328D-06 8.405772103417D-04 5 -2.196477309909D-04 5.066260303625D-04 -5.971643097799D-04 6 3.323843511157D-05 -1.520492801515D-04 1.281232614617D-04 7 -1.697007294106D-06 1.825841763069D-05 -1.220563921933D-05 8 -5.916439943353D-08 -8.242186020597D-07 4.677827163183D-07 E-Index: 3 4 5 T-Index: 0 7.198684018769D-02 -1.490875604355D-02 1.619553420918D-03 1 -1.852578901204D-02 3.331452439870D-03 -2.948572788751D-04 2 -9.056841023031D-04 3.563549006757D-04 -5.590965690725D-05 3 -8.226476286514D-05 2.960920971970D-05 -8.086208258669D-06 4 -3.464740688021D-04 5.922304252082D-05 -4.850028146748D-06 5 2.105198711062D-04 -3.609362517850D-05 3.423756972171D-06 6 -3.517980076344D-05 -1.512563397687D-08 4.068624995447D-09 8 -4.300266775823D-08 -1.512563397687D-08 4.068624995447D-09 2 1.169406889954D-05 -1.253572620552D-07	3	-1.196	375890811D-02	-2.871588085187D-	-03 2.404285503458D-04
5 -2.196477309909D-04 5.066260303625D-04 -5.971643097799D-04 6 3.323843511157D-05 -1.520492801515D-04 1.281232614617D-04 7 -1.697007294106D-06 1.825841763069D-05 -1.220563921933D-05 8 -5.916439943353D-08 -8.242186020597D-07 4.677827163183D-07 E-Index: 3 4 5 0 7.198684018769D-02 -1.490875604355D-02 1.619553420918D-03 1 -1.852578901204D-02 3.331452439870D-03 -2.948572788751D-04 2 -9.056841023031D-04 3.563549006757D-04 -5.590965690725D-05 3 -8.226476286514D-05 2.960920971970D-05 -8.086208258569D-06 4 -3.464740688021D-04 5.922304252082D-05 -4.850028146748D-06 5 2.105198711062D-04 -3.609362517850D-05 3.423756972171D-06 6 -3.517980076344D-05 4.427958188863D-06 -2.493221748446D-07 7 2.198069639127D-06 -6.705985841702D-09 -4.12889875743D-08 8 -4.300266775823D-08 -1.512563397687D-08 -1.866947676134D-09 1 1.69406889954D-05 -1.253572620552D-07 -1.8869	4	1.822	980963695D-03	-1.575168978328D-	-06 8.405772103417D-04
6 3.323843511157D-05 -1.520492801515D-04 1.281232614617D-04 7 -1.697007294106D-06 1.825841763069D-05 -1.220563921933D-05 8 -5.916439943353D-08 -8.242186020597D-07 4.677827163183D-07 E-Index: 3 4 5 T-Index: 0 7.198684018769D-02 -1.490875604355D-02 1.619553420918D-03 1 -1.852578901204D-02 3.331452439870D-03 -2.948572788751D-04 2 -9.056841023031D-04 3.563549006757D-04 -5.590965690725D-05 3 -8.226476286514D-05 2.960920971970D-05 -8.086208258569D-06 4 -3.464740688021D-04 5.922304252082D-05 -4.850028146748D-06 5 2.105198711062D-04 -3.60936251785DD-05 3.423756972171D-06 6 -3.517980076344D-05 4.427958188863D-06 -2.493221748446D-07 7 2.198069639127D-06 -6.705985847102D-09 -4.12898875743D-08 8 -4.300266775823D-05 2.618073045777D-06 -2.835709536455D-08 1 1.169406889954D-05 -1.253572620552D-07 -1.886947676134D-09 2 4.196575697004D-06 -1.482582457393D-0	5	-2.196	477309909D-04	5.066260303625D-	-04 -5.971643097799D-04
7 -1.697007294106D-06 1.825841763069D-05 -1.220563921933D-05 8 -5.916439943353D-08 -8.242186020597D-07 4.677827163183D-07 E-Index: 3 4 5 7 -1.852578901204D-02 3.331452439870D-03 -2.948572788751D-04 2 -9.056841023031D-04 3.563549006757D-04 -5.590965690725D-05 3 -8.226476286514D-05 2.960920971970D-05 -8.086208258569D-06 4 -3.464740688021D-04 5.922304252082D-05 -4.850028146748D-06 5 2.105198711062D-04 -3.609362517850D-05 3.423756972171D-06 6 -3.517980076344D-05 4.427958188863D-06 -2.493221748446D-07 7 2.198069639127D-06 -6.705985847102D-09 -4.128988875743D-08 8 -4.300266775823D-08 -1.512563397687D-08 4.068624995447D-09 1 1.169406889954D-05 -1.253572620552D-07 -1.886947676134D-09 2 4.196575697004D-06 -1.482582457939D-07 1.946426380509D-09 3 9.143236603084D-07 -6.474547723428D-09 1.56823417385D-10 2 1.61694045324446D-07 -6.474547723428D-09 1.56823417385D-10	6	3.323	843511157D-05	-1.520492801515D-	-04 1.281232614617D-04
8 -5.916439943353D-08 -8.242186020597D-07 4.677827163183D-07 E-Index: 3 4 5 T-Index: 0 7.198684018769D-02 -1.490875604355D-02 1.619553420918D-03 1 -1.852578901204D-02 3.331452439870D-03 -2.948572788751D-04 2 -9.056841023031D-04 3.563549006757D-04 -5.590965690725D-05 3 -8.226476286514D-05 2.960920971970D-05 -8.086208258569D-06 4 -3.464740688021D-04 5.922304252082D-05 -4.850028146748D-06 5 2.105198711062D-04 -3.609362517850D-05 3.423756972171D-06 6 -3.517980076344D-05 4.42795818863D-06 -2.493221748446D-07 7 2.198069639127D-06 -6.705985847102D-09 -4.128988875743D-08 8 -4.300266775823D-08 -1.512563397687D-08 4.068624995447D-09 8 -4.3002667758915D-05 2.618073045777D-06 -2.835709536455D-08 1 1.169406889954D-05 -1.253572620552D-07 -1.886947676134D-09 2 4.196575697004D-06 -1.482582457939D-07 1.946426380509D-09 3 9.143236603084D-07 -6.474547723428D-09	7	-1.697	007294106D-06	1.825841763069D-	-05 -1.220563921933D-05
E-Index: 3 4 5 T-Index: 0 7.198684018769D-02 -1.490875604355D-02 1.619553420918D-03 1 -1.852578901204D-02 3.331452439870D-03 -2.948572788751D-04 2 -9.056841023031D-04 3.563549006757D-04 -5.590965690725D-05 3 -8.226476286514D-05 2.960920971970D-05 -8.086208258569D-06 4 -3.464740688021D-04 5.922304252082D-05 -4.850028146748D-06 5 2.105198711062D-04 -3.609362517850D-05 3.423756972171D-06 6 -3.517980076344D-05 4.427958188863D-06 -2.493221748446D-07 7 2.198069639127D-06 -6.705985847102D-09 -4.12898875743D-08 8 -4.300266775823D-08 -1.512563397687D-08 4.068624995447D-09 E-Index: 6 7 8 T-Index: 0 -9.269115359815D-05 2.618073045777D-06 -2.835709536455D-08 1 0.169406889954D-05 -1.253572620552D-07 1.9866947676134D-09 2 4.196575697004D-06 -1.482582457939D-07 1.946426380509D-09 3 9.143236603084D-07 -4.362855429636D-08 7.452885416070D-10 4 2.164045324446D-07 -6.474547723428D-09 1.156823417385D-10 5 -1.851415491252D-07 5.487390918519D-09 -7.088510716926D-11 6 4.694709505540D-10 5.338069108949D-10 -1.542307935794D-11 7 5.373013388538D-09 -2.844239825756D-10 5.516973870161D-12 8 -4.168331974260D-10 2.004403028395D-11 -3.695127505869D-13	8	-5.916	439943353D-08	-8.242186020597D-	-07 4.677827163183D-07
T-Index: 0 7.198684018769D-02 -1.490875604355D-02 1.619553420918D-03 1 -1.852578901204D-02 3.331452439870D-03 -2.948572788751D-04 2 -9.056841023031D-04 3.563549006757D-04 -5.590965690725D-05 3 -8.226476286514D-05 2.960920971970D-05 -8.086208258569D-06 4 -3.464740688021D-04 5.922304252082D-05 -4.850028146748D-06 5 2.105198711062D-04 -3.609362517850D-05 3.423756972171D-06 6 -3.517980076344D-05 4.427958188863D-06 -2.493221748446D-07 7 2.198069639127D-06 -6.705985847102D-09 -4.128988875743D-08 8 -4.300266775823D-08 -1.512563397687D-08 4.068624995447D-09 E-Index: 6 7 8 T-Index: 0 -9.269115359815D-05 2.618073045777D-06 -2.835709536455D-08 1 1.169406889954D-05 -1.253572620552D-07 -1.886947676134D-09 2 4.196575697004D-06 -1.482582457939D-07 1.946426380509D-09 3 9.143236603084D-07 -4.362855429636D-08 7.452885416070D-10 4 2.164045324446D-07 -6.474547723428D-09 1.156823417385D-10 5 -1.851415491252D-07 5.487390918519D-09 -7.088510716926D-11 6 4.694709505540D-10 5.338069108949D-10 -1.542307935794D-11 7 5.373013388538D-09 -2.844239825756D-10 5.516973870161D-12 8 -4.168331974260D-10 2.004403028395D-11 -3.695127505869D-13	E-	Index:	3	4	5
0 7.198684018769D-02 -1.490875604355D-02 1.619553420918D-03 1 -1.852578901204D-02 3.331452439870D-03 -2.948572788751D-04 2 -9.056841023031D-04 3.563549006757D-04 -5.590965690725D-05 3 -8.226476286514D-05 2.960920971970D-05 -8.086208258569D-06 4 -3.464740688021D-04 5.922304252082D-05 -4.850028146748D-06 5 2.105198711062D-04 -3.609362517850D-05 3.423756972171D-06 6 -3.517980076344D-05 4.427958188863D-06 -2.493221748446D-07 7 2.198069639127D-06 -6.705985847102D-09 -4.128988875743D-08 8 -4.300266775823D-08 -1.512563397687D-08 4.068624995447D-09 8 -4.300266775823D-05 2.618073045777D-06 -2.835709536455D-08 1 1.169406889954D-05 -1.253572620552D-07 -1.886947676134D-09 2 4.196575697004D-06 -1.482582457939D-07 1.946426380509D-09 3 9.143236603084D-07 -4.362855429636D-08 7.452885416070D-10 4 2.164045324446D-07 -6.474547723428D-09 1.156823417385D-10 5 -1.851415491252D-07 5.487390	T-Index:				
1 -1.852578901204D-02 3.331452439870D-03 -2.948572788751D-04 2 -9.056841023031D-04 3.563549006757D-04 -5.590965690725D-05 3 -8.226476286514D-05 2.960920971970D-05 -8.086208258569D-06 4 -3.464740688021D-04 5.922304252082D-05 -4.850028146748D-06 5 2.105198711062D-04 -3.609362517850D-05 3.423756972171D-06 6 -3.517980076344D-05 4.427958188863D-06 -2.493221748446D-07 7 2.198069639127D-06 -6.705985847102D-09 -4.128988875743D-08 8 -4.300266775823D-08 -1.512563397687D-08 4.068624995447D-09 8 -4.300266775823D-05 2.618073045777D-06 -2.835709536455D-08 1 1.169406889954D-05 -1.253572620552D-07 -1.886947676134D-09 2 4.196575697004D-06 -1.482582457939D-07 1.946426380509D-09 3 9.143236603084D-07 -4.362855429636D-08 7.452885416070D-10 4 2.164045324446D-07 -6.474547723428D-09 1.156823417385D-10 5 -1.851415491252D-07 5.487390918519D-09 -7.088510716926D-11 6 4.694709505540D-10 5.338669	0	7.198	684018769D-02	-1.490875604355D-	-02 1.619553420918D-03
2 -9.056841023031D-04 3.563549006757D-04 -5.590965690725D-05 3 -8.226476286514D-05 2.960920971970D-05 -8.086208258569D-06 4 -3.464740688021D-04 5.922304252082D-05 -4.850028146748D-06 5 2.105198711062D-04 -3.609362517850D-05 3.423756972171D-06 6 -3.517980076344D-05 4.427958188863D-06 -2.493221748446D-07 7 2.198069639127D-06 -6.705985847102D-09 -4.128988875743D-08 8 -4.300266775823D-08 -1.512563397687D-08 4.068624995447D-09 E-Index: 6 7 8 T-Index: 0 -9.269115359815D-05 2.618073045777D-06 -2.835709536455D-08 1 1.169406889954D-05 -1.253572620552D-07 -1.886947676134D-09 2 4.196575697004D-06 -1.482582457939D-07 1.946426380509D-09 3 9.143236603084D-07 -4.362855429636D-08 7.452885416070D-10 4 2.164045324446D-07 -6.474547723428D-09 1.156823417385D-10 5 -1.851415491252D-07 5.487390918519D-09 -7.088510716926D-11 6 4.694709505540D-10 5.338069108949D-10	1	-1.852	578901204D-02	3.331452439870D-	-03 -2.948572788751D-04
3 -8.226476286514D-05 2.960920971970D-05 -8.086208258569D-06 4 -3.464740688021D-04 5.922304252082D-05 -4.850028146748D-06 5 2.105198711062D-04 -3.609362517850D-05 3.423756972171D-06 6 -3.517980076344D-05 4.427958188863D-06 -2.493221748446D-07 7 2.198069639127D-06 -6.705985847102D-09 -4.128988875743D-08 8 -4.300266775823D-08 -1.512563397687D-08 4.068624995447D-09 E-Index: 6 7 8 T-Index: 0 -9.269115359815D-05 2.618073045777D-06 -2.835709536455D-08 1 1.169406889954D-05 -1.253572620552D-07 -1.886947676134D-09 2 4.196575697004D-06 -1.482582457939D-07 1.946426380509D-09 3 9.143236603084D-07 -4.362855429636D-08 7.452885416070D-10 4 2.164045324446D-07 -6.474547723428D-09 1.156823417385D-10 5 -1.851415491252D-07 5.487390918519D-09 -7.088510716926D-111 6 4.694709505540D-10 5.338069108949D-10 -1.542307935794D-11 7 5.373013388538D-09 -2.844239825756D-10	2	-9.056	841023031D-04	3.563549006757D-	-04 -5.590965690725D-05
4 -3.464740688021D-04 5.922304252082D-05 -4.850028146748D-06 5 2.105198711062D-04 -3.609362517850D-05 3.423756972171D-06 6 -3.517980076344D-05 4.427958188863D-06 -2.493221748446D-07 7 2.198069639127D-06 -6.705985847102D-09 -4.128988875743D-08 8 -4.300266775823D-08 -1.512563397687D-08 4.068624995447D-09 E-Index: 6 7 8 T-Index: 0 -9.269115359815D-05 2.618073045777D-06 -2.835709536455D-08 1 1.169406889954D-05 -1.253572620552D-07 -1.886947676134D-09 2 4.196575697004D-06 -1.482582457939D-07 1.946426380509D-09 3 9.143236603084D-07 -4.362855429636D-08 7.452885416070D-10 4 2.164045324446D-07 -6.474547723428D-09 1.156823417385D-10 5 -1.851415491252D-07 5.487390918519D-09 -7.088510716926D-11 6 4.694709505540D-10 5.338069108949D-10 -1.542307935794D-11 7 5.373013388538D-09 -2.844239825756D-10 5.516973870161D-12 8 -4.168331974260D-10 2.004403028395D-11 <	3	-8.226	476286514D-05	2.960920971970D-	-05 -8.086208258569D-06
5 2.105198711062D-04 -3.609362517850D-05 3.423756972171D-06 6 -3.517980076344D-05 4.427958188863D-06 -2.493221748446D-07 7 2.198069639127D-06 -6.705985847102D-09 -4.128988875743D-08 8 -4.300266775823D-08 -1.512563397687D-08 4.068624995447D-09 E-Index: 6 7 8 T-Index: 0 -9.269115359815D-05 2.618073045777D-06 -2.835709536455D-08 1 1.169406889954D-05 -1.253572620552D-07 -1.886947676134D-09 2 4.196575697004D-06 -1.482582457939D-07 1.946426380509D-09 3 9.143236603084D-07 -4.362855429636D-08 7.452885416070D-10 4 2.164045324446D-07 -6.474547723428D-09 1.156823417385D-10 5 -1.851415491252D-07 5.487390918519D-09 -7.088510716926D-11 6 4.694709505540D-10 5.338069108949D-10 -1.542307935794D-11 7 5.373013388538D-09 -2.844239825756D-10 5.516973870161D-12 8 -4.168331974260D-10 2.004403028395D-11 -3.695127505869D-13	4	-3.464	740688021D-04	5.922304252082D-	-05 -4.850028146748D-06
6 -3.517980076344D-05 4.427958188863D-06 -2.493221748446D-07 7 2.198069639127D-06 -6.705985847102D-09 -4.128988875743D-08 8 -4.300266775823D-08 -1.512563397687D-08 4.068624995447D-09 E-Index: 6 7 8 T-Index: 0 -9.269115359815D-05 2.618073045777D-06 -2.835709536455D-08 1 1.169406889954D-05 -1.253572620552D-07 -1.886947676134D-09 2 4.196575697004D-06 -1.482582457939D-07 1.946426380509D-09 3 9.143236603084D-07 -4.362855429636D-08 7.452885416070D-10 4 2.164045324446D-07 -6.474547723428D-09 1.156823417385D-10 5 -1.851415491252D-07 5.487390918519D-09 -7.088510716926D-11 6 4.694709505540D-10 5.338069108949D-10 -1.542307935794D-11 7 5.373013388538D-09 -2.844239825756D-10 5.516973870161D-12 8 -4.168331974260D-10 2.004403028395D-11 -3.695127505869D-13	5	2.105	198711062D-04	-3.609362517850D-	-05 3.423756972171D-06
7 2.198069639127D-06 -6.705985847102D-09 -4.128988875743D-08 8 -4.300266775823D-08 -1.512563397687D-08 4.068624995447D-09 E-Index: 6 7 8 T-Index: 0 -9.269115359815D-05 2.618073045777D-06 -2.835709536455D-08 1 1.169406889954D-05 -1.253572620552D-07 -1.886947676134D-09 2 4.196575697004D-06 -1.482582457939D-07 1.946426380509D-09 3 9.143236603084D-07 -4.362855429636D-08 7.452885416070D-10 4 2.164045324446D-07 -6.474547723428D-09 1.156823417385D-10 5 -1.851415491252D-07 5.487390918519D-09 -7.088510716926D-11 6 4.694709505540D-10 5.338069108949D-10 -1.542307935794D-11 7 5.373013388538D-09 -2.844239825756D-10 5.516973870161D-12 8 -4.168331974260D-10 2.004403028395D-11 -3.695127505869D-13	6	-3.517	980076344D-05	4.427958188863D-	-06 -2.493221748446D-07
8 -4.300266775823D-08 -1.512563397687D-08 4.068624995447D-09 E-Index: 6 7 8 T-Index: 0 -9.269115359815D-05 2.618073045777D-06 -2.835709536455D-08 1 1.169406889954D-05 -1.253572620552D-07 -1.886947676134D-09 2 4.196575697004D-06 -1.482582457939D-07 1.946426380509D-09 3 9.143236603084D-07 -4.362855429636D-08 7.452885416070D-10 4 2.164045324446D-07 -6.474547723428D-09 1.156823417385D-10 5 -1.851415491252D-07 5.487390918519D-09 -7.088510716926D-11 6 4.694709505540D-10 5.338069108949D-10 -1.542307935794D-11 7 5.373013388538D-09 -2.844239825756D-10 5.516973870161D-12 8 -4.168331974260D-10 2.004403028395D-11 -3.695127505869D-13	7	2.198	069639127D-06	-6.705985847102D-	-09 -4.128988875743D-08
E-Index:678T-Index:0-9.269115359815D-052.618073045777D-06-2.835709536455D-0811.169406889954D-05-1.253572620552D-07-1.886947676134D-0924.196575697004D-06-1.482582457939D-071.946426380509D-0939.143236603084D-07-4.362855429636D-087.452885416070D-1042.164045324446D-07-6.474547723428D-091.156823417385D-105-1.851415491252D-075.487390918519D-09-7.088510716926D-1164.694709505540D-105.338069108949D-10-1.542307935794D-1175.373013388538D-09-2.844239825756D-105.516973870161D-128-4.168331974260D-102.004403028395D-11-3.695127505869D-13	8	-4.300	266775823D-08	-1.512563397687D-	-08 4.068624995447D-09
T-Index: 0 -9.269115359815D-05 2.618073045777D-06 -2.835709536455D-08 1 1.169406889954D-05 -1.253572620552D-07 -1.886947676134D-09 2 4.196575697004D-06 -1.482582457939D-07 1.946426380509D-09 3 9.143236603084D-07 -4.362855429636D-08 7.452885416070D-10 4 2.164045324446D-07 -6.474547723428D-09 1.156823417385D-10 5 -1.851415491252D-07 5.487390918519D-09 -7.088510716926D-11 6 4.694709505540D-10 5.338069108949D-10 -1.542307935794D-11 7 5.373013388538D-09 -2.844239825756D-10 5.516973870161D-12 8 -4.168331974260D-10 2.004403028395D-11 -3.695127505869D-13	E-	-Index:	6	7	8
0-9.269115359815D-052.618073045777D-06-2.835709536455D-0811.169406889954D-05-1.253572620552D-07-1.886947676134D-0924.196575697004D-06-1.482582457939D-071.946426380509D-0939.143236603084D-07-4.362855429636D-087.452885416070D-1042.164045324446D-07-6.474547723428D-091.156823417385D-105-1.851415491252D-075.487390918519D-09-7.088510716926D-1164.694709505540D-105.338069108949D-10-1.542307935794D-1175.373013388538D-09-2.844239825756D-105.516973870161D-128-4.168331974260D-102.004403028395D-11-3.695127505869D-13	T-Index:				
11.169406889954D-05-1.253572620552D-07-1.886947676134D-0924.196575697004D-06-1.482582457939D-071.946426380509D-0939.143236603084D-07-4.362855429636D-087.452885416070D-1042.164045324446D-07-6.474547723428D-091.156823417385D-105-1.851415491252D-075.487390918519D-09-7.088510716926D-1164.694709505540D-105.338069108949D-10-1.542307935794D-1175.373013388538D-09-2.844239825756D-105.516973870161D-128-4.168331974260D-102.004403028395D-11-3.695127505869D-13	0	-9.269	115359815D-05	2.618073045777D-	-06 -2.835709536455D-08
24.196575697004D-06-1.482582457939D-071.946426380509D-0939.143236603084D-07-4.362855429636D-087.452885416070D-1042.164045324446D-07-6.474547723428D-091.156823417385D-105-1.851415491252D-075.487390918519D-09-7.088510716926D-1164.694709505540D-105.338069108949D-10-1.542307935794D-1175.373013388538D-09-2.844239825756D-105.516973870161D-128-4.168331974260D-102.004403028395D-11-3.695127505869D-13	1	1.169	406889954D-05	-1.253572620552D-	-07 -1.886947676134D-09
39.143236603084D-07-4.362855429636D-087.452885416070D-1042.164045324446D-07-6.474547723428D-091.156823417385D-105-1.851415491252D-075.487390918519D-09-7.088510716926D-1164.694709505540D-105.338069108949D-10-1.542307935794D-1175.373013388538D-09-2.844239825756D-105.516973870161D-128-4.168331974260D-102.004403028395D-11-3.695127505869D-13	2	4.196	575697004D-06	-1.482582457939D-	-07 1.946426380509D-09
42.164045324446D-07-6.474547723428D-091.156823417385D-105-1.851415491252D-075.487390918519D-09-7.088510716926D-1164.694709505540D-105.338069108949D-10-1.542307935794D-1175.373013388538D-09-2.844239825756D-105.516973870161D-128-4.168331974260D-102.004403028395D-11-3.695127505869D-13	3	9.143	236603084D-07	-4.362855429636D-	-08 7.452885416070D-10
5-1.851415491252D-075.487390918519D-09-7.088510716926D-1164.694709505540D-105.338069108949D-10-1.542307935794D-1175.373013388538D-09-2.844239825756D-105.516973870161D-128-4.168331974260D-102.004403028395D-11-3.695127505869D-13	4	2.164	045324446D-07	-6.474547723428D-	-09 1.156823417385D-10
64.694709505540D-105.338069108949D-10-1.542307935794D-1175.373013388538D-09-2.844239825756D-105.516973870161D-128-4.168331974260D-102.004403028395D-11-3.695127505869D-13	5	-1.851	415491252D-07	5.487390918519D-	-09 -7.088510716926D-11
75.373013388538D-09-2.844239825756D-105.516973870161D-128-4.168331974260D-102.004403028395D-11-3.695127505869D-13	6	4.694	709505540D-10	5.338069108949D-	-10 -1.542307935794D-11
8 -4.168331974260D-10 2.004403028395D-11 -3.695127505869D-13	7	5.373	013388538D-09	-2.844239825756D-	-10 5.516973870161D-12
	8	-4.168	331974260D-10	2.004403028395D-	-11 -3.695127505869D-13

Max.	rel.	Error:	4.5193	00
Mean	rel.	Error:	.9402	0 0

Electron Temperature (eV)

12.12 Reaction 2.1.8b $H^+ + e \rightarrow H(1s)$, Ratio $H(2)/H^+$

E-	-Index:	0	1	2
T-Index:	:			
0	-3.115	038577088D+01	9.264747680865D-01	1.116069825638D-01
1	-8.266	322399304D-01	-5.055344435832D-03	-5.172879304080D-03
2	-1.958	933034940D-02	1.996587961213D-02	-1.406505755991D-02
3	-1.098	097104386D-02	-8.026613963832D-03	2.384792377395D-03
4	2.240	953060530D-03	6.216308441596D-04	4.708126181720D-04
5	-4.287	502766451D-04	1.030957503524D-03	-8.066658779253D-04
6	2.695	143837765D-05	-3.813692505803D-04	2.807631048773D-04
7	4.431	006229058D-06	4.875879498318D-05	-3.657593211279D-05
8	-4.836	943342929D-07	-2.119652719791D-06	1.615837004793D-06
E-	-Index:	3	4	5
T-Index:	:			
0	-4.999	361806664D-02	1.110692800547D-02	-1.318266873039D-03
1	-2.471	719625656D-04	2.512113939106D-04	-4.782708408420D-05
2	6.003	957672996D-03	-1.118685805994D-03	1.071846833065D-04
3	2.913	902175387D-04	-3.137930614752D-04	6.113629942161D-05
4	-3.710	502524841D-04	1.004704612837D-04	-1.265344424602D-05
5	1.874	529789965D-04	-9.988538268116D-06	-1.920784234786D-06
6	-6.603	768771619D-05	4.665491245671D-06	3.297381117360D-07
7	9.282	643997639D-06	-9.265752285496D-07	1.709073955313D-08
8	-4.302	365964264D-07	5.056403909495D-08	-2.595051961188D-09
E-	-Index:	6	7	8
T-Index:	:			
0	8.540	286307962D-05	-2.815699854432D-06	3.675943603675D-08
1	3.802	889409563D-06	-1.453090712874D-07	2.181183016555D-09
2	-5.066	273468359D-06	9.656495668618D-08	-2.071395871695D-10
3	-5.318	038556138D-06	2.186221742805D-07	-3.426977855059D-09
4	7.996	838066338D-07	-2.418791195391D-08	2.661640394733D-10
5	3.024	841319851D-07	-1.543862403318D-08	2.709969256279D-10
6	-6.616	004144573D-08	3.369760494944D-09	-5.636580218277D-11
7	3.122	103721669D-09	-1.967871537035D-10	3.230724672289D-12
8	3.213	236793835D-11	1.140062879563D-12	-1.343611820864D-14

Max.	rel.	Error:	3.9289	00
Mean	rel.	Error:	.5704	0/0

Electron Temperature (eV)

12.13 Reaction 2.1.8c $H^+ + e \rightarrow H(1s)$, Ratio $H(4)/H^+$

E	-Index:	0	1	2
T-Index	:			
0	-2.953	191910521D+01	9.871472575458D-01	8.335595020148D-03
1	-9.556	069945203D-01	-3.479296508982D-02	3.951762140637D-02
2	-3.712	742175485D-02	3.782567517335D-02	-3.658223474024D-02
3	-9.582	306874061D-03	-1.030473600466D-02	8.044191938471D-03
4	1.337	505622469D-03	3.261828837170D-04	5.825308847532D-04
5	-2.564	587290898D-04	1.167215404726D-04	-2.625484568114D-04
6	1.083	049171042D-04	2.603250284906D-05	-2.172994325710D-05
7	-1.652	237169896D-05	-8.358946327039D-06	9.583200142966D-06
8	7.926	514417410D-07	5.226431312203D-07	-6.190692135710D-07
- 3	-Index:	3	4	5
T-Index	:	-	-	-
0	1.287	791418429D-02	-6.337729479020D-03	1.170329931626D-03
1	-2.556	830678726D-02	7.040128215489D-03	-9.992314993605D-04
2	1.632	735440252D-02	-3.401365727621D-03	3.765651076870D-04
3	-3.131	290915260D-03	5.532459754610D-04	-4.812308414974D-05
4	-3.168	083167077D-04	7.594919813871D-05	-9.295628844487D-06
5	1.297	679885878D-04	-2.681169439239D-05	2.486736935154D-06
6	2.967	532719536D-06	-1.552348470032D-07	9.914557379237D-08
7	-3.107	547721696D-06	5.261339241776D-07	-6.078003254539D-08
8	2.129	711932150D-07	-3.682886859964D-08	3.943673329206D-09
E·	-Index:	6	7	8
T-Index	:			
0	-1.003	471065764D-04	4.052095946656D-06	-6.254934022483D-08
1	7.419	247879214D-05	-2.738645028702D-06	3.973261293345D-08
2	-2.252	802392381D-05	6.849333710573D-07	-8.279262117799D-09
3	1.952	561489849D-06	-2.606240633525D-08	-1.668491146428D-10
4	6.041	299678217D-07	-1.989967163130D-08	2.616873567872D-10
5	-9.162	513063487D-08	2.197291562634D-10	3.883962188438D-11
6	-1.959	030711680D-08	1.270158481004D-09	-2.671947435341D-11
7	4.857	708161457D-09	-2.162490178679D-10	3.822243417577D-12
8	-2.753	763204013D-10	1.095025653423D-11	-1.798235585379D-13

Max.	rel.	Error:	3.8778	90
Mean	rel.	Error:	.7384	00

Electron Temperature (eV)

12.14 Reaction 2.1.8d $H^+ + e \rightarrow H(1s)$, Ratio $H(5)/H^+$

E-1	Index:	0	1	2
T-Index:				
0	-2.896	620907578D+01	8.263162726911D	-01 2.453412310701D-01
1	-1.020	472386996D+00	6.774681712067D	-02 -9.359887389995D-02
2	-3.909	076727301D-02	9.233229043428D	-03 -6.811898776723D-03
3	-8.108	346091837D-03	-1.114009915066D	-02 7.784902980212D-03
4	1.019	109955231D-03	2.143186124447D	-03 -7.445628503896D-04
5	-3.832	012105835D-04	7.665209835422D	-04 -6.615105657343D-04
6	2.074	862770456D-04	-4.323660314654D	-04 3.084220743425D-04
7	-3.467	034971602D-05	7.046871983203D	-05 -5.074193286238D-05
8	1.826	483263765D-06	-3.843166437506D	-06 2.864841439776D-06
E-1	Index:	3	4	5
T-Index:				
0	-1.095	918159657D-01	2.352340764192D	-02 -2.606799746665D-03
1	3.777	179622766D-02	-7.435824927042D	-03 7.370730125395D-04
2	5.541	316826680D-03	-1.652672599440D	-03 2.451627952732D-04
3	-3.103	060845765D-03	6.334549501483D	-04 -7.027215944854D-05
4	-4.194	692950067D-06	5.637881977255D	-05 -1.207354069047D-05
5	2.344	290799663D-04	-4.452581583360D	-05 4.741482394533D-06
6	-8.589	872787033D-05	1.127548136764D	-05 -6.664466414066D-07
7	1.398	275288859D-05	-1.748270612401D	-06 8.910652633496D-08
8	-8.177	688767346D-07	1.076944846317D	-07 -6.310685093478D-09
E-I	Index:	6	7	8
T-Index:				
0	1.550	006217168D-04	-4.720230271207D	-06 5.795820807765D-08
1	-3.773	216809044D-05	9.378701533392D	-07 -8.638031636714D-09
2	-1.885	289195306D-05	7.183528697382D	-07 -1.073414499710D-08
3	4.215	222394060D-06	-1.276305499861D	-07 1.520731912855D-09
4	1.096	969913038D-06	-4.657703480617D	-08 7.564520027104D-10
5	-2.779	296405890D-07	8.321497480007D	-09 -9.899754662843D-11
6	6.572	553261299D-09	8.982707823537D	-10 -2.633081356088D-11
7	6.037	786936012D-10	-2.111950717307D	-10 5.235642212608D-12
8	6.366	831945852D-11	8.080764312523D	-12 -2.351015375046D-13

Max.	rel.	Error:	5.3024	00
Mean	rel.	Error:	.9480	00

Electron Temperature (eV)

12.15 Reaction 2.1.8e $H^+ + e \rightarrow H(1s)$, Ratio $H(6)/H^+$

E-	Index:	0	1	2
T-Index:				
0	-2.8531	34339900D+01	1.025762058140D+00	4.820359378086D-02
1	-1.0573	84296999D+00	-1.367338116022D-02	-3.351784927664D-02
2	-4.3571	29898325D-02	-7.394478242994D-03	2.206668060201D-02
3	-1.0220	68439636D-02	8.205900215515D-03	-9.593969669623D-03
4	2.2408	69860862D-03	-2.398078272359D-03	2.119411722051D-03
5	-2.8456	20700011D-04	1.159424639874D-04	-6.688436690039D-05
6	1.0564	61895367D-04	6.774788436258D-05	-6.199652445552D-05
7	-1.9243	52018053D-05	-1.263343934006D-05	1.111364886603D-05
8	1.0833	97517395D-06	6.663341827792D-07	-5.889621084106D-07
E-	Index:	3	4	5
T-Index:				
0	-3.8823	58720615D-02	1.237087286269D-02	-1.764105210919D-03
1	2.3916	18457883D-02	-7.152556397423D-03	9.907047976258D-04
2	-1.0406	68635206D-02	2.383766498799D-03	-2.822620365202D-04
3	3.1869	17464795D-03	-4.976528642770D-04	3.877389269379D-05
4	-5.5666	86572310D-04	5.664600566222D-05	-5.658026509008D-07
5	2.2768	86525280D-06	2.992207488831D-06	-6.105459843829D-07
6	1.9132	73349345D-05	-2.523727510933D-06	1.167652225992D-07
7	-3.2555	26057721D-06	4.051238507748D-07	-1.532222680198D-08
8	1.7378	55470748D-07	-2.223530055553D-08	9.525747219138D-10
E-	Index:	6	7	8
T-Index:				
0	1.2624	54385864D-04	-4.469205240312D-06	6.250167666694D-08
1	-6.9787	76837879D-05	2.446946729997D-06	-3.400752053390D-08
2	1.7919	03200774D-05	-5.823791297469D-07	7.631403828079D-09
3	-1.4461	34439476D-06	1.918944143993D-08	6.658988931422D-11
4	-2.8181	55986041D-07	1.813752401935D-08	-3.433445792332D-10
5	5.2037	93299428D-08	-2.092865649431D-09	3.247676557005D-11
6	2.4651	31736062D-09	-3.635425072620D-10	8.132197656808D-12
7	-8.1185	97627154D-10	7.842131310409D-11	-1.656179057643D-12
8	3.1845	40505918D-11	-3.747826185419D-12	8.214908508402D-14

Max.	rel.	Error:	2.9379	00
Mean	rel.	Error:	.6634	00

12.16 Reaction 2.1.8tot $H^+ + e \rightarrow H(1s)$, Ratio $H(tot)/H^+$

E-	-Index:	0	1		2
T-Index:					
0	-2.2356	24329253D+01	9.7631455218	33D-01	1.918330680061D-02
1	-1.4399	34055420D+00	-2.5194019230	47D-02	3.585508737762D-03
2	1.0602	15606120D-03	-1.1188724640	44D-03	1.720136583820D-03
3	2.2444	12354881D-03	-6.7044759904	51D-04 -0	6.699472886502D-04
4	5.9827	36693346D-05	1.2081701530	71D-06	1.246488800870D-04
5	-8.4668	61405156D-05	3.5612083970	89D-05 -1	1.494745309621D-05
6	1.1750	99184836D-05	-4.8225158401	60D-06	7.839022932286D-07
7	-7.0230	31296681D-07	2.9489381106	45D-07 -	5.225388371277D-08
8	1.6092	49642095D-08	-8.8451424661	59D-09 3	3.899049823853D-09
E-	-Index:	3	4		5
T-Index:					
0	-4.6912	59242713D-03	6.2883510297	02D-04 -5	5.107818695069D-05
1	-3.6068	55133841D-04	2.0981394987	92D-05	4.491184999788D-07
2	-5.6314	47161500D-04	1.1079416900	49D-04 -1	1.324767192387D-05
3	3.0848	92726230D-04	-6.3928796622	68D-05	7.279340567526D-06
4	-4.3115	35218313D-05	7.6378927845	84D-06 -	7.417970337062D-07
5	6.0083	86349890D-07	3.2916521989	45D-07 -	7.214543918759D-08
6	3.3106	41902198D-07	-9.6361535577	10D-08	1.224666378778D-08
7	-4.4188	89088947D-09	-5.7551728522	33D-10 2	2.933776480728D-10
8	-1.4177	59796908D-09	4.2249026099	44D-10 -0	6.257737712706D-11
E-	-Index:	6	7		8
T-Index:					
0	2.5112	51181976D-06	-6.8777407368	99D-08 8	8.022672312302D-10
1	-1.7489	05208728D-07	1.0960790386	65D-08 -2	2.309525766240D-10
2	9.2841	21363830D-07	-3.5209650654	56D-08	5.652221180618D-10
3	-4.7300	61277373D-07	1.6504282486	05D-08 -2	2.440356698087D-10
4	4.0870	03980074D-08	-1.1047373521	97D-09	9.985107172732D-12
5	6.5817	60780626D-09	-3.3421773307	08D-10	7.477370951765D-12
6	-9.0098	24883694D-10	4.4850573524	49D-11 -1	1.092334989093D-12
7	-2.5132	82999634D-11	7.4021085478	60D-14 3	3.356083702441D-14
8	4.5622	27755580D-12	-1.3945855202	43D-13	9.622937037320D-16

Max. rel. Error: 3.0878 % Mean rel. Error: 0.2211 %

12.17 Reaction 2.1.8de $H^+ + e \rightarrow H(1s)$, $\langle de \rangle + 13.6 \ [eV]$

electron energy loss (radiative) due to one effective recombination. 13.6 eV (ionization potential) has to be subtracted, which may render the total electron loss negative, i.e., make it a gain. June17: Fit range extended from 0.1-1e3 to 0.1-2e4

E-I	Index: 0	1	2
T-Index:			
0	2.665899500132D+00	6.909524133474D-03	-1.016251787345D-02
1	3.234097857001D-02	-1.342936828253D-03	2.649709301973D-03
2	1.839736371673D-02	-4.543287906774D-04	4.049474254061D-04
3	1.721979500535D-02	-2.420941858648D-04	1.070964671190D-04
4	-1.634188788045D-06	1.272188632742D-04	-9.608788872527D-05
5	-1.354019822678D-03	5.547796579740D-06	1.885659127034D-06
6	3.103952150736D-04	-7.717377610260D-06	4.450028524311D-06
7	-2.813815821385D-05	1.049652451777D-06	-6.757200946909D-07
8	9.248132243469D-07	-4.314339279524D-08	2.916075421796D-08
E-1	Index: 3	4	5
T-Index:			
0	4.785952485138D-03	-1.111528620197D-03	1.389338869715D-04
1	-1.417016315380D-03	3.507678014757D-04	-4.569145026078D-05
2	-9.053523602330D-05	1.610290448013D-06	2.067872533338D-06
3	-9.886490927616D-06	-1.137795705868D-06	2.009074194306D-07
4	2.503871421337D-05	-2.776557044750D-06	8.202377087937D-08
5	-1.899847063838D-06	3.608820989932D-07	-1.820175080726D-08
6	-8.590535929797D-07	6.494073446907D-08	-1.005495853368D-09
7	1.536224332903D-07	-1.526291610537D-08	5.443143280155D-10
8	-7.087510165394D-09	7.772501731042D-10	-3.490536063716D-11
E-1	Index: 6	7	8
T-Index:			
0	-9.560728735427D-06	3.390700499449D-07	-4.846257262550D-09
1	3.245267105321D-06	-1.188371670550D-07	1.758631015908D-09
2	-2.955908411210D-07	1.631510169903D-08	-3.250767238535D-10
3	-5.336134881504D-09	-2.995961467613D-10	1.244053679153D-11
4	8.526944203010D-09	-7.591463931965D-10	1.735202334766D-11
5	-1.160792778179D-09	1.375444359851D-10	-3.427633513798D-12
6	-7.157425528109D-11	1.695155282725D-12	2.341575042551D-14
7	1.259157231611D-11	-1.469505460319D-12	3.084731172193D-14
8	-1.453313559078D-13	6.474896531735D-14	-1.572212991946D-15
Max. rel	. Error: 0.331E+01 %		

Mean rel. Error: 0.927E+00 %

12.18 Reaction 2.1.80 $H^+ + e \rightarrow H(1s)$, $\langle de \rangle + 13.6 \ [eV]$ Ly-opaque

electron energy loss (radiative) due to one effective recombination event. 13.6 eV (ionization potential) has to be subtracted, which may render the total electron loss negative, i.e., make it a gain.

E-	Index:	0	1	2
T-Index:				
0	3.3327	760890904D+00	2.276467542533D-02	-3.375104085272D-02
1	2.0956	507992432D+00	2.149640996135D-01	-2.163109435324D-01
2	-7.7182	235594111D-03	5.342318925152D-02	-3.826264614382D-02
3	-2.7960	28848568D-01	-5.076194843679D-02	4.211090303923D-02
4	4.1140)54656028D-02	1.167368824693D-03	-2.634010977122D-03
5	1.3790)31566337D-02	4.766103150116D-03	-3.140405264654D-03
6	-4.4428	327387044D-03	-1.168245938217D-03	8.103728635753D-04
7	4.4664	108723499D-04	1.067947114632D-04	-7.426869611152D-05
8	-1.5508	352684757D-05	-3.448224819513D-06	2.365214591310D-06
E-	Index:	3	4	5
T-Index:				
0	1.5332	294583406D-02	-2.993999791570D-03	2.625217527284D-04
1	8.5138	301946679D-02	-1.708115211759D-02	1.908032465874D-03
2	9.8485	556553690D-03	-1.198540836499D-03	7.289210776603D-05
3	-1.3433	364231895D-02	2.197734625605D-03	-2.020807399429D-04
4	1.5408	328008778D-03	-3.888233553638D-04	5.009886243915D-05
5	6.6690)70177773D-04	-4.301617499659D-05	-3.131696299090D-06
6	-1.9534	137642437D-04	1.957310765780D-05	-4.682020227901D-07
7	1.8194	120479360D-05	-1.913117253436D-06	6.213331827001D-08
8	-5.7043	392451980D-07	5.826373961407D-08	-1.634950425947D-09
E-	Index:	6	7	8
T-Index:				
0	-7.8026	560138687D-06	-1.578343346285D-07	8.885318650802D-09
1	-1.1918	327223971D-04	3.886108418638D-06	-5.149798003444D-08
2	-1.8868	329891317D-06	-4.065327740691D-09	7.815045054601D-10
3	1.0494	175835680D-05	-2.854931151940D-07	3.138820449657D-09
4	-3.4543	361952343D-06	1.217245343098D-07	-1.725312803637D-09
5	5.9059	01174405D-07	-3.001019530996D-08	5.223614921536D-10
6	-5.6278	362273723D-08	4.147493653191D-09	-8.140380486253D-11
7	3.6464	125627446D-09	-3.215059278414D-10	6.559359042393D-12
8	-1.3925	55515521D-10	1.101965822929D-11	-2.192243607759D-13
Max. rel	. Error:	17.4151 %		

Mean rel. Error: 7.1827 %

12.19 Reaction 2.2a $e + He \rightarrow He^*$ Ratio He(6)/He(1)

 3^1S state reduced population coefficients, formulation II, Coupling to groundstate, [20]. For 728 nm line: $\rightarrow 2^1P$, A(6,4)=1.810629e7, dE=1.7023 eV

	E-Ir	ndex:	0	1			2
T-Inde	ex:						
	0	-4.31131	5252344D+01	1.06878832	24945D+00	4.60781	6591604D-01
	1	2.22772	27400968D+01	2.53324678	34559D-02	-4.17164	2913247D-01
	2	-1.09252	26995496D+01	-3.14757084	44629D-02	1.87531	0957896D-01
	3	3.45521	2456083D+00	-1.38948610)7084D-02	-4.06389	9942293D-02
	4	-7.37401	5718678D-01	2.24293323	13868D-02	-2.42075	6303296D-03
	5	1.03862	3596715D-01	-8.57206300	66145D-03	3.32417	3037175D-03
	6	-9.19295	6530427D-03	1.4559045	53910D-03	-6.67359	5425546D-04
	7	4.61674	2167799D-04	-1.16032888	33781D-04	5.53482	9062629D-05
	8	-1.00126	50661416D-05	3.5427575	76830D-06	-1.68545	8944344D-06
	E-Ir	ndex:	3	4			5
T-Inde	ex:						
	0	-2.28851	6993884D-01	4.9344427	52394D-02	-5.60458	4821093D-03
	1	1.61579	9989993D-01	-2.65892354	46753D-02	2.20843	9837134D-03
	2	-6.25040	0889583D-02	7.9176851	75679D-03	-4.07265	0465024D-04
	3	1.51648	86061778D-02	-1.62432628	36753D-03	3.32336	7272941D-05
	4	-1.57697	0797070D-03	2.29610394	41475D-04	-2.79344	1980969D-06
	5	-2.35162	8215299D-04	-3.80599580	68992D-06	-3.85617	8638492D-07
	6	7.62212	1272510D-05	-2.41497263	18793D-06	3.14595	6146766D-08
	7	-6.62320	9681071D-06	1.39632919	96910D-07	1.64446	3329342D-08
	8	1.88063	31768107D-07	2.03649609	93646D-09	-1.44921	9917820D-09
	E-Ir	ndex:	6	7			8
T-Inde	ex:						
	0	3.43822	26618132D-04	-1.07712882	21245D-05	1.35227	6198706D-07
	1	-9.43167	2141577D-05	1.86218058	38113D-06	-1.13211	4188246D-08
	2	4.54625	8048294D-06	2.3652131	57088D-07	-4.97626	8161753D-09
	3	2.72218	86667141D-06	-9.01776003	18097D-08	-4.90417	8184171D-10
	4	-4.15246	51824776D-07	-6.24122380)8031D-09	8.06857	4923944D-10
	5	6.20951	9268505D-08	1.44191174	48739D-09	-1.31697	8098635D-10
	6	-3.35684	7387494D-09	-3.69759458	37912D-11	7.24008	8197508D-12
	7	-9.79206	57155585D-10	2.16494353	31687D-11	-2.80077	8214544D-13
	8	8.94452	4915556D-11	-2.16920005	58693D-12	1.81759	0942107D-14
Max. r	el.	Error:	4.7466 %				

Mean rel. Error: 1.8012 %

12.20 Reaction 2.2b $e + He \rightarrow He^*$ Ratio He(7)/He(1)

 3^3S state, reduced population coefficients, formulation II, Coupling to groundstate, [20]. For 706 nm line: $\rightarrow 2^3P$, A(7,5)=2.76441e7, dE =1.75437 eV

	E-Ir	ndex:	0		1			2
T-Inde	ex:							
	0	-4.00796	50997971D+01	9.0	344466440961	0-01	1.16511	L1771540D-01
	1	2.14486	53586125D+01	1.9	474854680690	0-01	-1.30106	57140494D-01
	2	-1.06242	24949389D+01	-2.0	368653555131	0-01	1.50261	L9709740D-01
	3	3.27444	10069862D+00	6.0	029178506350	0-02	-4.50055	59725551D-02
	4	-6.91027	70587692D-01	-5.7	78030255527[0-03	6.13391	L9377226D-03
	5	9.69645	55049644D-02	-3.6	158382613040	0-04	-5.59176	51507584D-04
	6	-8.55841	L9026409D-03	1.3	728630712370	0-04	3.07951	L9906206D-05
	7	4.29959	01264600D-04	-1.3	521778867180	0-05	1.36334	17413015D-06
	8	-9.39679	94815079D-06	5.0	815684113640	0-07	-1.91862	22684719D-07
	E-Ir	ndex:	3		4			5
T-Inde	ex:							
	0	-2.59750)4506357D-02	1.4	395111907420	0-04	5.73511	L3536484D-04
	1	-1.13417	74339750D-03	8.9	34529257747[0-03	-1.67226	54590109D-03
	2	-2.43559	98894352D-02	2.9	599943949681	0-04	2.08733	36754163D-04
	3	5.47301	L4417323D-03	9.9	129317022660	0-05	-3.12181	L5866488D-05
	4	-1.56991	L3055752D-04	-1.0	688306460031	0-04	5.59133	39866244D-06
	5	3.46844	12843104D-05	-7.7	73486473364[0-06	2.26913	35973852D-06
	6	-1.10917	74473451D-05	3.7	665775883190	0-06	-4.51713	37662136D-07
	7	1.82395	56910222D-07	-1.4	825301064340	0-07	6.08446	52068041D-09
	8	4.59752	29153937D-08	-7.0	855469735951	0-09	1.41154	17564036D-09
	E-Ir	ndex:	6		7			8
T-Inde	ex:							
	0	-7.13608	32319245D-05	3.3	628636364231	0-06	-5.62972	21496083D-08
	1	1.29034	16463406D-04	-4.5	79314176342[0-06	6.16497	74848265D-08
	2	-1.61934	16650396D-05	3.8	596849103850	0-07	-1.22636	54851070D-09
	3	-4.97004	12343218D-07	1.5	75739269032[0-07	-4.43437	71121129D-09
	4	4.54639	93179958D-07	-4.5	804712944320	80-0	1.08077	71415075D-09
	5	-1.87952	28911353D-07	6.9	069663942180	0-09	-1.11257	70278287D-10
	6	1.59162	25909374D-08	3.6	229767671800	0-11	-6.00247	7025919D-12
	7	1.50909	97136492D-09	-1.1	961277397280	0-10	2.32088	37234439D-12
	8	-1.63158	36971717D-10	7.8	937288659100	0-12	-1.31110)9499334D-13
Max.	rel.	Error:	5.3070 %					

Mean rel. Error: 1.9605 %

12.21 Reaction 2.2c $e + He \rightarrow He^*$ Ratio He(8)/He(1)

 3^1P state, reduced population coefficients, formulation II, Coupling to groundstate, [20]. For 501 nm line: $\rightarrow 2^1S$, A(8,2)=1.35143E7, dE = 2.47126 eV

E-I	ndex:	0	1	2
T-Index:				
0	-4.65339	7136053D+01	1.061565404274D+00	1.538213466570D-01
1	2.34104	0126523D+01	-2.338924405778D-01	-1.620037152343D-01
2	-1.13949	8311209D+01	3.614149800761D-01	1.852266870603D-02
3	3.61477	3239756D+00	-2.470591133234D-01	1.639517537700D-02
4	-7.80214	7409864D-01	9.652798837959D-02	-1.139696161330D-02
5	1.12973	1936040D-01	-2.211800736270D-02	3.415302206693D-03
6	-1.04600	3037564D-02	2.894859026350D-03	-5.216830627677D-04
7	5.56614	6923182D-04	-1.990551598260D-04	3.914361279505D-05
8	-1.28779	7826551D-05	5.559558313857D-06	-1.141508901494D-06
E-I	ndex:	3	4	5
T-Index:				
0	-4.96077	6358631D-02	3.721007453372D-03	4.129592286060D-04
1	7.07913	8649586D-02	-1.107648995898D-02	7.955218807596D-04
2	-2.00222	7448100D-02	2.516435028232D-03	-8.077169032818D-05
3	4.99621	3760875D-03	-6.235419082909D-04	5.622895177211D-06
4	-8.18856	4258666D-04	1.489938947126D-04	-1.639651945413D-06
5	5.78868	0997946D-06	-1.848630429871D-05	-2.817393417179D-07
6	1.47682	1784698D-05	1.555280785423D-06	2.630583281095D-08
7	-1.46122	5058243D-06	-1.566386546423D-07	1.078484737480D-08
8	3.75571	4180141D-08	8.635247245624D-09	-9.744421400623D-10
E-I	ndex:	6	7	8
T-Index:				
0	-7.59544	1650236D-05	3.938916077091D-06	-6.904203416831D-08
1	-2.49297	9564442D-05	1.479965187751D-07	5.129381943121D-09
2	-3.27933	7614319D-06	2.317424648906D-07	-3.212001663062D-09
3	1.14983	3159917D-06	-1.744164295894D-09	-1.271403337443D-09
4	-1.09973	6125961D-07	-1.622513539030D-08	7.323542946653D-10
5	6.18110	7684745D-08	1.189086401587D-09	-1.030873863310D-10
6	-8.33594	9262711D-09	5.417107113342D-11	6.544932959532D-12
7	-2.07396	7263488D-10	1.158671282787D-11	-4.346356593657D-13
8	4.96518	6141757D-11	-1.582356159149D-12	2.463828951285D-14
Max. rel.	Error:	4.4334 %		
Mean rel.	Error:	1.0452 %		

12.22 Reaction 2.2d $e + He \rightarrow He^*$ Ratio He(10)/He(1)

 3^1D state, reduced population coefficients, formulation II, Coupling to groundstate, [20]. For 667 nm line: $\rightarrow 2^1P$, A(10,4)=6.27547e7, dE = 1.8561 eV

E-I	ndex:	0	1	2
T-Index:				
0	-4.38746	2178720D+01	1.297729348975D+00	2.171426368859D-01
1	2.23189	7245990D+01	-7.254021696102D-02	-2.818676964157D-01
2	-1.10384	0904811D+01	8.933431516828D-03	1.084333935229D-01
3	3.43967	8364969D+00	8.110861039861D-03	-1.419780536561D-02
4	-7.19437	9330234D-01	-7.617376918719D-03	-7.804052035737D-04
5	9.97754	1313333D-02	2.492457513616D-03	4.151471795535D-04
6	-8.74489	9237837D-03	-3.818311009548D-04	-5.656979814142D-05
7	4.36445	8313084D-04	2.772577703683D-05	4.646402252581D-06
8	-9.42093	8125153D-06	-7.681794402039D-07	-1.810036079763D-07
E-I	ndex:	3	4	5
T-Index:				
0	-1.22726	7686184D-01	2.684569500768D-02	-3.084104019669D-03
1	1.28342	6585873D-01	-2.558157078407D-02	2.736593361910D-03
2	-4.64022	5933795D-02	8.670127027232D-03	-8.320926095332D-04
3	6.15994	2757994D-03	-1.210673774922D-03	1.034347467373D-04
4	2.60501	6526459D-04	3.287984864674D-05	-4.952370009630D-06
5	-1.78793	4297272D-04	7.093030346467D-06	1.042617033617D-06
6	2.86416	8088776D-05	-1.737189312029D-06	-1.314488727944D-07
7	-2.63047	0520737D-06	2.699291231064D-07	-6.034998122757D-09
8	1.04636	6140500D-07	-1.472124741829D-08	9.766999701447D-10
E-I	ndex:	6	7	8
T-Index:				
0	1.92733	0419368D-04	-6.192457335223D-06	8.013020564099D-08
1	-1.62590	0542113D-04	5.035250553353D-06	-6.326313962119D-08
2	4.25848	7531484D-05	-1.078934966891D-06	1.012644792468D-08
3	-3.46195	4139324D-06	-8.569915050105D-09	2.035476745628D-09
4	-6.88794	1807259D-08	2.782454606073D-08	-8.823571239501D-10
5	-7.28253	3905038D-08	-7.826443302463D-10	9.734519877427D-11
6	1.51546	6306533D-08	-2.609983592228D-10	-5.766562927060D-12
7	-2.77775	2615430D-10	-1.005417881311D-12	5.711155616810D-13
8	-4.08994	7705610D-11	1.537624472911D-12	-3.487131096914D-14
Max. rel.	Error:	4.2913 %		
Mean rel.	Error:	1.0561 %		

12.23 Reaction 2.2e $e + He \rightarrow He^*$ Ratio He(16)/He(1)

 4^1D state, reduced population coefficients, formulation II, Coupling to groundstate, [20]. For 492 nm line: $\rightarrow 2^1P$, A(16,4)=1.95062E7, dE = 2.5183 eV

I	E-Index:	0	1	2
T-Inde:	х:			
(0 -4.4718	383009004D+01	1.379902734939D+00	-1.588304426869D-02
	1 2.3018	303742916D+01	-4.112391837175D-01	4.020010647943D-02
4	2 -1.1422	290678089D+01	2.325073124471D-01	-2.363867774084D-02
	3 3.5845	520289665D+00	-9.292301814148D-02	1.399795303239D-02
4	4 -7.5887	759927163D-01	2.769660867165D-02	-5.996411152428D-03
1	5 1.0719	981413506D-01	-5.846876265058D-03	1.730779175387D-03
(6 -9.6238	307639587D-03	7.555908490695D-04	-2.665737696024D-04
	7 4.9384	146976776D-04	-5.141246970493D-05	1.928578993317D-05
8	8 -1.0979	930969158D-05	1.395884806885D-06	-5.127774120276D-07
Ι	E-Index:	3	4	5
T-Inde:	x :			
(0 1.1020)05327143D-03	-2.776453047428D-03	5.951669267394D-04
	1 -7.0838	381196314D-03	3.184653460498D-03	-5.939046552980D-04
4	2 2.1838	367697930D-04	-5.291800815389D-04	1.705675041358D-04
	3 1.2299	903491947D-04	-5.697630240547D-05	-2.236164784844D-05
4	4 4.9939	998679121D-05	7.400566057679D-05	-3.844211220285D-06
!	5 -1.1937	787781320D-04	-6.321252008286D-06	5.997152437237D-07
(6 2.8404	184021461D-05	-8.190964593875D-07	3.074212731682D-08
	7 -2.1726	561190110D-06	5.852557117498D-08	9.693636966803D-10
8	8 4.6226	555761109D-08	2.165754381744D-09	-5.193903473398D-10
I	E-Index: 6		7	8
T-Inde:	х:			
(0 -5.4383	344417754D-05	2.323368482605D-06	-3.790056253508D-08
-	1 4.9588	374975704D-05	-1.935263751082D-06	2.888456240999D-08
4	2 -1.6242	226089828D-05	6.305375766051D-07	-8.706585722074D-09
	3 2.5314	155667103D-06	-7.702409620971D-08	4.463396284857D-10
4	4 5.2103	309715124D-08	-6.836232292167D-09	2.958879358471D-10
1	5 -1.506	763120215D-08	1.252708957129D-09	-4.685561440635D-11
	6 -3.5827	721370055D-09	8.034963393881D-11	9.950344146148D-13
	7 7.9705	509295800D-12	-1.219308703370D-12	-3.005051437224D-14
8	8 3.1498	343951988D-11	-9.361514367135D-13	1.191949633363D-14
Max. re	el. Error:	3.6319 %		

Mean rel. Error: 1.2457 %

12.24 Reaction 2.3.2a $e + He^+ \rightarrow He^*$ Ratio $He(6)/He^+$

 3^1S state reduced population coefficients, formulation II, Coupling to He⁺, [20]. For 728 nm line: $\rightarrow 2^1P$, A(6,4)=1.810629e7, dE=1.7023 eV

E-I	ndex: 0	1	2
T-Index:			
0	-3.216150314541D+01	1 1.017126728848D+00	2.503192212525D-01
1	2.472997234218D+00	0 -6.604244815764D-01	4.447853197254D-01
2	-7.273641530992D+00	0 6.512267559345D-01	-3.697133484751D-01
3	6.312899128558D+00	O -3.221127513661D-01	1.407336611903D-01
4	-2.475271968793D+00	9.628490082958D-02	-3.860831119148D-02
5	5.141511842314D-01	1 -1.679217364205D-02	6.622911077550D-03
6	-5.911906094824D-02	2 1.521368851222D-03	-4.758101424176D-04
7	3.565096703678D-03	3 -5.540747253127D-05	-4.988643158537D-06
8	-8.814835329708D-0	5 1.000054107875D-07	1.442316009145D-06
E-I	ndex: 3	4	5
T-Index:			
0	-1.573779795630D-01	4.193259536500D-02	-5.714327145825D-03
1	-1.373512721569D-01	1 2.642773580772D-02	-3.333243832771D-03
2	8.180617352023D-02	2 -1.194178092608D-02	1.504343740838D-03
3	-1.575910145395D-02	2 -4.261270008957D-04	1.160434934873D-04
4	4.321891266732D-03	3 1.535428208875D-04	-5.462458572233D-05
5	-1.141504489899D-03	3 1.088062290891D-04	-6.933905317108D-06
6	9.243986342244D-0	5 -1.491809640805D-05	1.546659340673D-06
7	4.349712967453D-0	6 -5.545082995129D-07	3.861187877207D-08
8	-5.722874156419D-0	7 9.632513971858D-08	-9.509739163118D-09
E-I	ndex: 6	7	8
T-Index:			
0	4.136519317417D-04	4 -1.509799360230D-05	2.184621419674D-07
1	2.515045346534D-04	4 -1.007775905926D-05	1.635743918463D-07
2	-1.333316361152D-04	4 6.445989555292D-06	-1.234698479875D-07
3	2.714541315649D-0	6 -8.940705316636D-07	2.952675110887D-08
4	2.756655915997D-0	6 6.165051309359D-08	-5.082966020137D-09
5	3.178875894924D-0	7 -2.390667896507D-08	8.828419978172D-10
6	-7.331886684615D-08	8 2.614867580638D-09	-7.330106832639D-11
7	-4.023931989434D-0	9 1.812490590825D-10	-1.428342946112D-12
8	6.381564120008D-10	-2.352182090998D-11	3.197916618777D-13
Max. rel.	Error: 23.9646 %		
Mean rel.	Error: 6.2722 %		

12.25 Reaction 2.3.2b $e + He^+ \rightarrow He^*$ Ratio $He(7)/He^+$

 3^3S state, reduced population coefficients, formulation II, Coupling to He⁺, [20]. For 706 nm line: $\rightarrow 2^3P$, A(7,5)=2.76441e7, dE =1.75437 eV

E-I	ndex:	0	1		2	
T-Index:						
0	-3.021804	030158D+01	1.1308483346	51D+00	-1.0737404	64502D-01
1	3.523368	969674D+00	-5.4783780255	13D-01	6.4584171	20865D-01
2	-8.974598	355857D+00	3.77821641862	22D-01	-5.0819282	17917D-01
3	7.635897	546212D+00	-9.1474036281	79D-02	1.6620780	21034D-01
4	-3.000303	742731D+00	-9.00219487692	28D-03	-1.8631051	19205D-02
5	6.285699	508085D-01	9.4169087963	40D-03	-3.0388669	15586D-03
6	-7.304205	616620D-02	-1.98976658173	15D-03	1.1444749	05838D-03
7	4.453488	758391D-03	1.8213082926	97D-04	-1.2409088	29743D-04
8	-1.113155	471497D-04	-6.26678120760	01D-06	4.6739053	17880D-06
E-I	ndex:	3	4		5	
T-Index:						
0	4.970170	535549D-02	-1.16523996784	44D-02	1.5103130	83106D-03
1	-2.735061	111112D-01	5.46201222433	37D-02	-5.8695319	56065D-03
2	2.064807	405621D-01	-3.53291257603	39D-02	3.0816087	67454D-03
3	-7.412844	397846D-02	1.06437882110	00D-02	-5.8131096	20435D-04
4	1.464638	881441D-02	-1.98259887664	41D-03	5.2794452	00867D-05
5	-1.322561	156054D-03	2.3905868230	75D-04	-8.3066401	46040D-06
6	-3.560089	264490D-05	-1.20153863664	49D-05	1.4118235	44331D-06
7	1.602474	940002D-05	-6.17111556880	05D-07	-8.1469179	89801D-08
8	-8.353650	874253D-07	6.59965741973	19D-08	2.4165564	83484D-10
E-I	ndex:	6	7		8	
T-Index:						
0	-1.081306	838597D-04	3.98042006300	02D-06	-5.8656119	60494D-08
1	3.455835	282567D-04	-1.05150491804	41D-05	1.2970011	61406D-07
2	-1.414786	677129D-04	3.27574781408	89D-06	-3.1198682	49308D-08
3	1.147245	647095D-06	8.40979470342	28D-07	-1.8237407	55654D-08
4	6.867272	943685D-06	-4.73078897690	09D-07	8.0260493	28029D-09
5	-7.306589	669632D-07	5.26669101368	85D-08	-8.1172146	75526D-10
6	-6.030271	577709D-08	1.8156419137	53D-09	-4.6710558	88097D-11
7	1.133396	885188D-08	-5.82050553600	00D-10	1.1630647	37956D-11
8	-3.847614	776613D-10	2.3913473754	46D-11	-4.8509423	77843D-13
Max. rel.	Error: 2	3.6466 %				
Mean rel.	Error:	6.3388 %				

12.26 Reaction 2.3.2c $e + He^+ \rightarrow He^*$ Ratio $He(8)/He^+$

 3^1P state, reduced population coefficients, formulation II, Coupling to He⁺, [20]. For 501 nm line: $\rightarrow 2^1S$, A(8,2)=1.35143E7 dE = 2.47126 eV

E-1	Index:	0	1	2	
T-Index:					
0	-3.4455	572948968D+01	1.137519254060	+00 -1.2041586098	91D-01
1	2.7752	136339237D+00	-4.4876735678581	0-01 4. 0375159040	78D-01
2	-9.4828	306590562D+00	5.618314205781	0-01 -3.91416860853	19D-01
3	8.7534	415720243D+00	-3.569019076961	0-01 1.75391014624	47D-01
4	-3.5779	960912550D+00	1.343719586718	0-01 -5.42318662643	16D-02
5	7.7063	325166736D-01	-2.9521444520371	0-02 1.11101896108	35D-02
6	-9.158	735526626D-02	3.6286374589351	0-03 -1.29195972042	25D-03
7	5.6935	572104634D-03	-2.2885317785070	7.30273651313	18D-05
8	-1.4478	322452674D-04	5.723900429738	0-06 -1.45564886888	37D-06
E-1	Index:	3	4	5	
T-Index:					
0	5.5183	321955152D-02	-1.275404675701	1.5679466435	90D-03
1	-1.5050)32740194D-01	3.1055450969400	-02 -3.89152700489	98D-03
2	1.1759	987658408D-01	-2.0212069670231	2.4409695669	17D-03
3	-3.6670)84372893D-02	2.8544224469111	-03 -1.6603053340	54D-04
4	9.5598	362125182D-03	-9.162545378146	-05 -8.0326112951	51D-05
5	-2.1470)01210922D-03	7.9770078977190	9-05 8.6259841355	51D-06
6	2.7359	972256964D-04	-1.9386458624201	6.8533433037	12D-07
7	-1.5328	378284339D-05	1.2339594422531	-06 -9.08174679592	21D-08
8	2.4451	L07599088D-07	-1.001706708366	1.0730207227	99D-09
E-1	Index:	6	7	8	
T-Index:					
0	-1.0045	500270631D-04	3.1780384289721	-06 -3.9361215329	59D-08
1	2.8540)40739913D-04	-1.113667661675	0-05 1.7724013269	73D-07
2	-1.9192	209138406D-04	8.3529228489711	0-06 -1.48399543718	35D-07
3	1.7635	502677889D-05	-1.3120052584331	0-06 3.37328987572	24D-08
4	5.6290)40165925D-06	-5.258717216470	-08 -3.15124288688	36D-09
5	-7.6996	661573237D-07	7.5428135468220	5.03438282848	37D-10
6	-3.7499	930108264D-08	3.4064833899111	-09 -1.1044132758	74D-10
7	7.6123	336214085D-09	-4.2875243047391	9.94450180363	30D-12
8	-1.8187	784682827D-10	1.208359092107	-2.8083440249	57D-13
Max. rel.	Error:	25.0250 %			

Mean rel. Error: 6.9230 %

12.27 Reaction 2.3.2d $e + He^+ \rightarrow He^*$ Ratio $He(10)/He^+$

 3^1D state, reduced population coefficients, formulation II, Coupling to He⁺, [20]. For 667 nm line: $\rightarrow 2^1P$, A(10,4)=6.27547e7, dE = 1.8561 eV

E-I	ndex: 0		1	2
T-Index:				
0	-3.192508131	204D+01	7.730604480077D-0	1 3.913705333191D-01
1	2.828623875	5238D+00	3.043166975331D-0	1 -5.394294436435D-01
2	-1.094286352	2161D+01	4.449752413106D-0	1 5.999182478623D-02
3	1.052099366	5893D+01	-7.603297466416D-0	1 3.020794746641D-01
4	-4.404840999	9690D+00	3.789883977105D-0	1 -1.864822739530D-01
5	9.659859829	9733D-01	-8.886124374969D-02	2 4.574019828906D-02
6	-1.164625241	195D-01	1.078353226216D-02	2 -5.432191040269D-03
7	7.324584132	2923D-03	-6.529437247704D-0-	4 3.049402440492D-04
8	-1.880391228	3394D-04	1.553160134143D-0	5 -6.266500198751D-06
E-I	ndex: 3		4	5
T-Index:				
0	-1.895103722	2167D-01	4.458135648534D-02	2 -5.670836879252D-03
1	3.196979542	2189D-01	-7.857255265840D-02	2 9.520006805526D-03
2	-2.102789422	2795D-01	6.659906282329D-02	2 -8.539428018247D-03
3	1.669978165	5448D-02	-2.112215942331D-02	2 3.118385995004D-03
4	2.327397267	7002D-02	1.834729531187D-0	3 -4.527735068892D-04
5	-7.557858145	5939D-03	1.796130918335D-0	4 2.396527075095D-05
6	8.888503829	029D-04	-2.025043121277D-0	5 -2.255417061932D-06
7	-3.985563239	078D-05	-2.090429714735D-0	6 4.928756876729D-07
8	3.268393543	3240D-07	2.036815496667D-0	7 -2.933925056569D-08
E-I	ndex: 6		7	8
T-Index:				
0	3.963745460)112D-04	-1.424905218920D-0	5 2.052965619067D-07
1	-6.049392469	9505D-04	1.923558499837D-0	5 -2.397863109992D-07
2	5.302906384	1868D-04	-1.548203816799D-0	5 1.630918993190D-07
3	-1.871228014	1319D-04	4.525444542407D-0	6 -2.484052167901D-08
4	2.215031871	253D-05	-3.969555753912D-0	9 -1.502410481834D-08
5	5.050715387	7567D-07	-1.944403098333D-0	7 6.132124950693D-09
6	-1.681357574	1652D-07	2.937982495017D-0	8 -8.509572249650D-10
7	-8.155554263	3527D-09	-1.366419067606D-0	9 4.898820258533D-11
8	1.198416940	0460D-09	5.339525486382D-12	2 -9.014052780522D-13
Max. rel.	Error: 28.7	7561 %		
Mean rel.	Error: 8.5	5118 %		

12.28 Reaction 2.3.2e $e + He^+ \rightarrow He^*$ Ratio $He(16)/He^+$

 $4^{1}D$ state, reduced population coefficients, formulation II, Coupling to He⁺, [20]. For 492 nm line: $\rightarrow 2^{1}P$, A(16,4)=1.95062E7, dE = 2.5183 eV

E-I	ndex: 0		1	2
T-Index:				
0	-3.18848257390)5D+01	8.610245311120D-01	-7.871637904226D-02
1	9.93387903093	12D-01	2.266459651326D+00	-9.472857315400D-01
2	-7.48654616220)3D+00	-3.150308486050D+00	1.212822565689D+00
3	7.8346522127	56D+00	1.901758352641D+00	-6.605089155304D-01
4	-3.34799014932	24D+00	-6.248586863904D-01	2.007495980841D-01
5	7.3668868738	64D-01	1.190475683473D-01	-3.602551009154D-02
6	-8.86405776398	30D-02	-1.309846016686D-02	3.760565403015D-03
7	5.55525668318	30D-03	7.711297791954D-04	-2.099326142463D-04
8	-1.42105256633	31D-04	-1.878580877217D-05	4.822799528233D-06
E-I	ndex: 3		4	5
T-Index:				
0	1.00769181452	20D-01	-3.094881651282D-02	4.360394656253D-03
1	1.59001086182	27D-01	-1.031249533204D-02	-2.061971584679D-04
2	-2.0395035410	59D-01	1.940627970159D-02	-1.269842997337D-03
3	9.1503279908	78D-02	-6.639386857171D-03	3.547850561263D-04
4	-2.34231320483	30D-02	1.172376176842D-03	-2.311168366669D-05
5	3.7685694858	92D-03	-1.588304810091D-04	-2.066241218916D-07
6	-3.7066544582	46D-04	1.841194915725D-05	-4.050823848900D-07
7	1.99696056062	23D-05	-1.358423173826D-06	7.836592920988D-08
8	-4.43357194613	31D-07	4.149590065641D-08	-3.556757547808D-09
E-I	ndex: 6		7	8
T-Index:				
0	-3.14529263823	12D-04	1.131115258763D-05	-1.610863865001D-07
1	6.4548141291	54D-05	-3.308023119594D-06	5.784207966726D-08
2	6.69073763843	10D-05	-2.294961757856D-06	3.201017904975D-08
3	-2.52126611273	31D-05	1.253726502750D-06	-2.225943158869D-08
4	3.0965079437	57D-06	-2.590646481613D-07	5.452184158491D-09
5	-2.28063423173	39D-07	3.149850598031D-08	-6.947518389720D-10
6	3.72974961553	30D-08	-2.770965878183D-09	4.800254654826D-11
7	-4.7622153281	92D-09	1.745304400761D-10	-1.658813624438D-12
8	2.0269233841	62D-10	-5.318966772198D-12	2.100743151512D-14
Max. rel.	Error: 37.793	11 %		
Mean rel.	Error: 6.922	27 8		

12.29 Reaction 2.3.9a $He(1s^21S) + e \rightarrow He^+(1s) + 2e < de > [eV]$

electron energy loss (radiative plus potential) due to one effective ionization.

E-I	Index:	0	1		2
T-Index:					
0	6.833	598031940D+00	-2.581591750171	D-01 3.002724	552043D-01
1	-3.963	803034848D+00	1.083742817806	D-01 -2.185819	272140D-01
2	2.340	984418775D+00	7.960301860904	D-02 -2.380541	593246D-02
3	-8.720	605342433D-01	-2.187065734893	D-02 4.335409	780587D-02
4	2.151	914370389D-01	-2.025747886335	D-02 -6.222418	098960D-03
5	-3.480	057305671D-02	1.039843241545	D-02 -1.466657	569917D-03
6	3.519	085971631D-03	-1.896269271396	D-03 4.723390	036919D-04
7	-2.005	331697724D-04	1.550021181454	D-04 -4.460430	898110D-05
8	4.890	032176597D-06	-4.783948237900	D-06 1.434239	402361D-06
E-1	Index:	3	4		5
T-Index:					
0	-1.562	968002089D-01	3.804132257792	D-02 -4.819950	771068D-03
1	1.380	891687214D-01	-3.493851885048	D-02 4.336864	850281D-03
2	-2.233	168326792D-02	8.567898287243	D-03 -1.135198	845537D-03
3	-9.017	359555794D-03	4.146449794934	D-04 2.229593	8440360D-05
4	2.872	369142740D-03	-3.563116903860	D-04 2.183046	296448D-05
5	-1.004	362351325D-04	2.650562392977	D-05 -1.006835	018389D-06
6	-4.170	965146914D-05	1.520955505512	D-06 -1.199396	957406D-07
7	4.727	045263171D-06	-1.341691381461	D-07 -9.067558	155258D-09
8	-1.408	579120961D-07	-2.631952383725	D-09 1.504095	408373D-09
E-1	Index:	6	7		8
T-Index:					
0	3.251	351974739D-04	-1.108119967409	D-05 1.502088	801630D-07
1	-2.788	751037407D-04	8.919934156922	D-06 -1.121476	6666732D-07
2	6.881	062206346D-05	-1.901589536293	D-06 1.850790	588779D-08
3	-1.237	210702996D-06	-5.350049703101	D-08 2.614670	721314D-09
4	-8.649	474896814D-07	2.477033243810	D-08 -3.749285	231265D-10
5	-7.916	173274377D-08	7.346267688694	D-09 -1.619067	607087D-10
6	2.102	619442307D-08	-1.402551865343	D-09 3.013612	509314D-11
7	2.537	560484891D-10	3.296713149429	D-11 -1.211004	021082D-12
8	-1.050	110011758D-10	2.672317014529	D-12 -1.734344	850181D-14

Max.	rel.	Error:	4.8670	00
Mean	rel.	Error:	.4586	00

Electron Temperature (eV)

12.30 Reaction 2.3.13a $e + He^+(1s) \rightarrow He(1s^21S) + hv < de > +24.58 [eV]$

electron energy loss (radiative plus potential) due to one effective recombination. 24.586 eV (ionization potential) has to be subtracted, which may render the total electron loss negative, i.e., make it a gain.

	E-I1	ndex:	0		1		2
T-Inde	ex:						
	0	3.4339	13136981D+00	-4.838	8690601594D-03	-3	3.012005651151D-03
	1	3.5719	41963713D-01	1.366	5702629693D-01	. 4	1.305394970015D-03
	2	-1.8782	17847962D+00	-2.687	159886881D-01	. 3	8.681576112685D-02
	3	2.4248	02386624D+00	1.668	3555927113D-01	1	.489289566691D-02
	4	-1.1674	89860199D+00	-3.968	312198499D-02	-5	5.806242392586D-03
	5	2.7852	16165202D-01	2.794	413323851D-03	; 3	8.748295131357D-03
	6	-3.5498	70765089D-02	3.061	971808105D-04	-6	5.964994225616D-04
	7	2.3250	06625009D-03	-5.536	5285155093D-05	5 5	5.514149047897D-05
	8	-6.1670	11906326D-05	2.237	779310326D-06	5 -1	.602672918010D-06
	E-I1	ndex:	3		4		5
T-Inde	ex:						
	0	4.8975	30083159D-03	-1.501	012076471D-03	3 1	.946127138348D-04
	1	-2.5426	92753033D-02	8.618	3718418466D-03	-1	.155324896611D-03
	2	4.4046	90243381D-03	-4.417	465105562D-03	6	5.541649981092D-04
	3	5.0271	12091534D-03	2.212	2796313573D-04	-6	5.372305615527D-05
	4	-1.1572	60624154D-03	9.661	422893980D-05	5 -7	7.830966474304D-06
	5	-7.9907	78489925D-05	-5.166	5337856831D-06	5 5	5.389604603452D-07
	6	3.5966	56976635D-05	1.433	3564986542D-07	1	.512821193564D-08
	7	-2.5128	92127544D-06	-2.280)106015151D-07	1 1	.957605446858D-08
	8	3.2995	38986852D-08	1.871	390766422D-08	-1	.821480547627D-09
	E-I1	ndex:	6		7		8
T-Inde	ex:						
	0	-1.2795	26998241D-05	4.198	3553031308D-07	-5	5.453125267641D-09
	1	7.5884	74563611D-05	-2.435	5602148969D-06	5 3	3.048074124737D-08
	2	-4.0625	14764122D-05	1.126	5080643711D-06	5 -1	.084879079455D-08
	3	1.6467	88579650D-06	1.017	675408347D-07	-3	8.909525540561D-09
	4	1.2218	18458812D-06	-7.525	537630546D-08	1	.491574341448D-09
	5	-5.8195	08932994D-08	1.849)145077320D-09	-1	.280524821596D-12
	6	-1.8003	99945032D-08	1.587	416635024D-09) -3	8.976884843047D-11
	7	1.1713	29251871D-09	-1.635	594061798D-10) 4	1.324427772952D-12
	8	1.8682	29185881D-11	4.166	5329792374D-12	-1	.347143462455D-13
Max.	rel.	Error:	22.5154 %				

12.31 Reaction 2.6A0 $C + e \rightarrow C^+ + 2e < de > [eV]$

electron energy loss (radiative+potential) due to one effective ionization.

	E-In	dex:	0		1			2	
T-Inde	ex:								
	0	9.4980	32398433D+00	-1.8	19265937462	2D+00	5.7963	34400549	2D-01
	1	-2.3163	70818977D+00	-1.9	12413251967	'D+00	5.6392	26685606	5D-01
	2	2.3207	04120275D+00	7.5	93550209141	D-01	-2.3847	73175104	4D-01
	3	-1.4234	69978730D+00	-3.8	88330744867	'D-02	1.8687	78228992	5D-02
	4	4.4417	10451586D-01	-1.4	08402765701	D-02	4.6092	27142567	2D-04
	5	-8.1981	34345687D-02	3.8	16981348123	3D-03	-1.2010	04138856	9D-04
	6	9.0253	43419623D-03	-5.9	56250281350	D-04	3.4606	58514151	8D-05
	7	-5.4214	08064934D-04	5.2	42557410997	'D-05	-5.6602	29006013	4D-06
	8	1.3586	91589766D-05	-1.8	45719396806	5D-06	2.7988	35432343	0D-07
	E-In	dex:	3		4			5	
T-Inde	ex:								
	0	-9.8762	25428908D-02	7.9	23470670427	'D-03	-1.8897	75840002	9D-04
	1	-7.5025	44061825D-02	4.3	01133626753	3D-03	1.2638	32129712	8D-04
	2	3.5138	74434013D-02	-2.7	22831770062	2D-03	5.2619	93699270	1D-05
	3	-2.5164	67231041D-03	1.8	15314237493	3D-04	-3.7760	9491479	4D-07
	4	-5.5958	71698878D-05	1.1	72374862061	D-05	-1.4278	37673268	5D-06
	5	-9.0496	12725058D-06	-2.8	23320281538	3D-07	1.8561	L0005099	9D-07
	6	8.8730	65193751D-07	-1.7	86247323757	'D-07	6.5799	94742743	3D-09
	7	2.9343	30556330D-07	5.2	02583801575	D-09	-2.6318	33536020	3D-09
	8	-2.4399	78518785D-08	7.0	04344333195	5D-10	1.0002	27241589	7D-10
	E-In	dex:	6		7			8	
T-Inde	ex:								
	0	-1.0229	04037358D-05	5.8	40788152953	3D-07	-6.3757	73679913	9D-09
	1	-3.4273	10072061D-05	1.8	85339856267	'D-06	-3.5053	35227604	7D-08
	2	6.8800	39401864D-06	-4.5	36973415974	D-07	7.6878	32975230	7D-09
	3	-3.9363	36799962D-07	-1.1	80564243948	3D-08	1.2777	73190025	5D-09
	4	-4.7401	52838620D-08	1.5	12393664320)D-08	-5.9031	L0994309	1D-10
	5	-1.5443	65666000D-09	-1.2	78608019932	2D-09	6.0835	54901054	6D-11
	6	2.9004	58497992D-11	4.1	57695298962	2D-12	-1.5184	13598175	6D-12
	7	1.5398	92599330D-10	-6.0	42934507312	2D-13	-4.2986	52417298	5D-14
	8	-9.0233	25396014D-12	1.6	68395598922	2D-13	7.4571	15625713	7D-16
Max. 1	rel.	Error:	10.0848 %						

Mean	rel.	Error:	3.3383	00

Electron ionisation and cooling rates for neutral and single

12.32 Reaction 2.3.6A0 $C^+ + e \rightarrow C < de > +11.3 [eV]$

electron energy loss (radiative) due to one effective recombination. For the total electron energy loss, 11.3 eV (potential) have to be subtracted, which may render the loss negative, i.e., make it a gain.

	E-Ir	ndex:	0		1		2
T-Inde	ex:						
	0	6.45362	8189480D+00	-3.411959	121202D+00	1.02760	1643412D+00
	1	5.56625	7359499D+00	-2.827487	978046D+00	1.32358	1114195D+00
	2	7.02314	4782419D-02	-8.719987	617388D-01	2.67632	1249963D-01
	3	-1.61243	4026349D-01	1.081834	795086D-01	-7.11665	3339183D-02
	4	6.53956	2167664D-02	4.139385	617180D-02	2.76916	2614331D-03
	5	-2.20644	2445551D-02	-7.840262	448517D-03	-9.99567	5347671D-04
	6	2.87192	0422343D-03	8.502276	174927D-04	1.25150	7934880D-04
	7	-1.54915	6846628D-04	-6.373587	175654D-05	-3.12972	1638855D-06
	8	3.27892	4523113D-06	1.670923	171850D-06	8.55467	6549572D-08
	E-Ir	ndex:	3		4		5
T-Inde	∋x:						
	0	-1.50128	4760092D-01	9.016194	688684D-03	2.23857	1380263D-04
	1	-3.32226	2917492D-01	4.865809	696737D-02	-4.34370	9230425D-03
	2	-2.64301	1608926D-02	5.658846	165674D-04	1.41367	2739471D-04
	3	7.68821	5878015D-03	-5.493080	299892D-04	3.49720	9232351D-05
	4	5.69153	2547205D-04	-1.149074	252290D-04	4.80742	3173738D-06
	5	5.04463	3066348D-05	4.715897	395507D-06	-9.15458	3868877D-08
	6	-1.23495	2236991D-05	-9.240109	636586D-08	4.24863	4746180D-08
	7	3.33553	8428637D-07	2.604300	994523D-08	-3.07063	5332640D-09
	8	-3.20540	9357745D-08	4.814828	405950D-09	-5.33284	9014591D-10
	E-Ir	ndex:	6		7		8
T-Inde	∋x:						
	0	-5.98355	6406852D-05	2.938264	102004D-06	-4.86534	6084259D-08
	1	2.32414	5347640D-04	-6.832076	246100D-06	8.46650	7036184D-08
	2	-1.46822	7303594D-05	5.744169	024370D-07	-8.23711	1069147D-09
	3	-2.06480	8887243D-06	7.798853	036278D-08	-1.20624	8775248D-09
	4	2.19341	8042952D-07	-1.995457	258897D-08	3.57586	1953373D-10
	5	-4.81841	8728971D-08	2.776256	710020D-09	-3.69409	9060448D-11
	6	-2.04542	0857293D-10	-3.406586	578331D-11	-7.20453	7382726D-13
	7	1.09705	6113387D-11	2.734596	577436D-12	2.33555	3372556D-14
	8	3.76288	5118005D-11	-1.334245	563205D-12	1.72291	4980319D-14
Max. 1	rel.	Error:	9.9451 %				

Mean rel. Error: 4.6015 %

12.33 Reaction 2.2.5a $H_2 + e \rightarrow ... + H(3)$, Ratio $H(3)/H_2$

Multi-step hydrogenic population coefficients Data: K. Sawada, T.Fujimoto [7] Ratio of population coefficients: p(3)/nH2

E-	Index: 0	1	2
T-Index:			
0	-3.843232308973D+01	9.866136797620D-01	-7.630767164474D-04
1	1.763737135501D+01	-7.268396239737D-02	1.044914850159D-01
2	-9.102596461463D+00	6.283138055344D-02	-7.375751509571D-02
3	3.044087169667D+00	-4.582914429668D-02	4.001305352976D-02
4	-6.799512263137D-01	2.529525369912D-02	-1.619747297605D-02
5	1.021208740284D-01	-9.089155747301D-03	4.651977381511D-03
6	-1.027903716284D-02	1.911308645888D-03	-8.844096702821D-04
7	6.460492607832D-04	-2.089424506198D-04	9.480996308587D-05
8	-1.923319726365D-05	9.093882674319D-06	-4.196010732530D-06
E-	Index: 3	4	5
T-Index:			
0	8.463761770878D-03	-3.668738045523D-03	6.470552634326D-04
1	-5.045692652261D-02	1.145016084229D-02	-1.370891627120D-03
2	2.874156352094D-02	-5.093075324948D-03	4.483604397328D-04
3	-1.247549414985D-02	1.733717971265D-03	-1.065732952139D-04
4	3.883454673035D-03	-4.379243673277D-04	2.751938724811D-05
5	-7.719439518973D-04	4.105848834550D-05	-9.791293810522D-07
6	1.045477116614D-04	4.536233386087D-06	-1.259893630895D-06
7	-9.553834264468D-06	-1.115019494878D-06	2.363713809533D-07
8	4.237208860211D-07	5.589085089129D-08	-1.252796449945D-08
E-	Index: 6	7	8
T-Index:			
0	-5.551234542034D-05	2.284493199758D-06	-3.621267376539D-08
1	8.882007338293D-05	-2.941321182498D-06	3.890740158619D-08
2	-1.885697574083D-05	2.852269978935D-07	8.496957677236D-10
3	1.618515118726D-06	9.254848831070D-08	-2.858249742968D-09
4	-1.329060444185D-06	5.670350444090D-08	-1.228700843631D-09
5	2.901690837726D-07	-2.818973160122D-08	7.385401732551D-10
6	2.538253614744D-08	3.282804098763D-09	-1.212274570019D-10
7	-1.107068687207D-08	-5.725981536387D-12	7.272031033863D-12
8	7.329111895115D-10	-1.221514806869D-11	-8.661756397302D-14
Max. rel.	Error: 3.0327 %		

Mean rel. Error: 1.0280 %

12.34 Reaction 2.2.5b $H_2 + e \rightarrow \ldots + H(2)$, Ratio $H(2)/H_2$

Ratio of population coefficients: p(2)/nH2

Multi-step hydrogenic population coefficients Data: K. Sawada, T.Fujimoto [7]

E-	-Index: 0	1	2
T-Index:			
0	-3.709244791220D+01	9.687241476053D-01	3.742262659150D-02
1	1.669985823625D+01	-1.746089790847D-02	2.153832458702D-02
2	-8.309237048353D+00	3.381127410703D-02	-3.556201387754D-02
3	2.657739315672D+00	-8.512812279243D-03	1.196655088860D-02
4	-6.132396646504D-01	-2.552858621025D-03	1.194454859764D-04
5	1.101743243476D-01	1.097984176326D-03	-4.977907148307D-04
6	-1.475653262109D-02	-4.324624980123D-05	-1.194492163554D-07
7	1.224129849314D-03	-1.978420677869D-05	1.695927041869D-05
8	-4.446691780917D-05	1.813978843455D-06	-1.455738811700D-06
E-	-Index: 3	4	5
T-Index:			
0	-1.651081799644D-02	3.565764257714D-03	-4.174591391487D-04
1	-1.090577226038D-02	2.794096310833D-03	-3.908538558075D-04
2	1.407590381030D-02	-2.699474372936D-03	2.742035615058D-04
3	-5.055672344660D-03	9.440106236031D-04	-8.615580226180D-05
4	3.664276773773D-04	-1.108403409912D-04	1.373091515639D-05
5	1.084866241578D-04	-9.612225065207D-06	-3.739409418091D-07
6	-5.135563052511D-06	1.895456383045D-06	-1.588469158937D-07
7	-3.814928055218D-06	2.731245678489D-07	1.634952517283D-09
8	3.749880009743D-07	-3.989523167029D-08	1.603033939474D-09
E-	Index: 6	7	8
T-Index:			
0	2.688883877617D-05	-8.884834785320D-07	1.159228215260D-08
1	2.999154465824D-05	-1.175608698972D-06	1.820253115424D-08
2	-1.469100393011D-05	3.734482260499D-07	-3.177600597413D-09
3	3.725098060685D-06	-5.918174922608D-08	-6.433645161998D-11
4	-9.325142355108D-07	3.763485456338D-08	-7.145755570016D-10
5	1.704997971383D-07	-1.376296741989D-08	3.514893200953D-10
6	-1.145517528846D-08	1.898641500278D-09	-5.838483361781D-11
7	1.312392622432D-10	-1.035003695410D-10	4.030531144035D-12
8	-2.253655572832D-11	2.072693141970D-12	-9.944952208106D-14
Max. rel.	Error: 1.9631 %		
Mean rel.	Error: 0.6656 %		

Electron Temperature (eV)

12.35 Reaction 2.2.5c $H_2 + e \rightarrow \ldots + H(4)$, Ratio $H(4)/H_2$

Ratio of population coefficients: p(4)/nH2

Multi-step hydrogenic population coefficients Data: K. Sawada, T.Fujimoto [7]

E	E-Index:	0	1	2
T-Index	ζ:			
(-3.9123	44526943D+01	9.262202059006D-01	9.389410302438D-02
-	1.7561	97573185D+01	-4.343762540494D-02	6.126434071800D-02
2	2 -8.8866	28104138D+00	2.119621111180D-02	-2.656188467734D-02
	3.0579	10637954D+00	-1.535881342701D-03	2.932875657740D-03
4	4 -7.8352	06514361D-01	-1.389945765942D-03	1.255399530700D-03
ĩ	5 1.5803	08696978D-01	1.928352522209D-04	-3.543899525036D-04
6	5 -2.3536	40097896D-02	4.031200319945D-05	2.846252498973D-05
-	2.1287	43508257D-03	-8.795964786784D-06	-1.512497781432D-06
8	8 -8.2850	77032772D-05	4.111725894460D-07	1.270837350725D-07
I	E-Index:	3	4	5
T-Index	ζ:			
(-4.2649	54883585D-02	9.104064233267D-03	-9.991876289465D-04
-	-3.2429	66270346D-02	8.357146835162D-03	-1.147734080465D-03
	2 1.2275	90202063D-02	-2.719431170815D-03	3.144838167343D-04
	3 -1.1864	97869383D-03	1.497138310345D-04	3.644078028099D-06
4	4 -5.5529	75953317D-04	1.352074320357D-04	-1.821378482602D-05
Į.	1.7505	15375163D-04	-3.621530587129D-05	3.319095280981D-06
(-2.2481	36922616D-05	4.496488473333D-06	-2.595976205911D-07
-	2.2654	70434041D-06	-4.927085512215D-07	3.240824081247D-08
8	3 -1.4049	75048998D-07	3.246838389464D-08	-2.985897409147D-09
I	E-Index:	6	7	8
T-Index	ζ:			
(5.6461	31117170D-05	-1.541734784320D-06	1.563548973536D-08
-	L 8.4918	36730798D-05	-3.177470024031D-06	4.698887012882D-08
2	2 -1.9090	03815732D-05	5.644098554224D-07	-6.240476308631D-09
	3 -2.1087	51238830D-06	1.449614494660D-07	-3.025489423066D-09
2	1.3296	82209766D-06	-4.835654939859D-08	6.736536866134D-10
[5 -1.0247	02456679D-07	-1.838064127165D-09	1.096804376213D-10
6	5 -1.3839	03232721D-08	1.811451752221D-09	-4.443051906110D-11
-	8.7839	96080897D-10	-1.570045781133D-10	3.895723973541D-12
8	9.1490	43474391D-11	1.200102594315D-12	-7.103779862531D-14
Max. re	el. Error:	5.8311 %		

Mean rel. Error: 2.4005 %

Electron Temperature (eV)

12.36 Reaction 2.2.5d $H_2 + e \rightarrow \ldots + H(5)$, Ratio $H(5)/H_2$

Ratio of population coefficients: p(5)/nH2

Multi-step hydrogenic population coefficients Data: K. Sawada, T.Fujimoto [7]

E	E-Ind	lex:	0		1			2
T-Index	х:							
(0 –	3.95141	1187905D+01	9.8	45720830236D	0-01	2.9651	88823982D-02
-	1	1.75422	2947805D+01	8.2	477381584260	0-03	-1.2721	02756074D-02
2	2 -	8.87680	1014058D+00	4.9	012999580770	0-03	-5.2806	18932755D-03
3	3	3.07215	4572289D+00	-1.5	307265697700	0-03	2.6076	05517865D-03
2	4 –	7.85399	9520176D-01	-2.3	456129831610	0-03	2.7011	73976139D-03
ſ	5	1.56750	9317981D-01	8.8	148969429820)-04	-1.0498	15583642D-03
6	6 –	2.31832	5485784D-02	-7.9	939445553870	0-05	7.6008	98233240D-05
-	7	2.09835	5270569D-03	-3.3	87024520670D	0-06	9.2441	62752622D-06
8	8 –	8.20798	3816964D-05	5.5	28578997147D	0-07	-1.0197	16004446D-06
E	E-Inc	lex:	3		4			5
T-Index	х:							
(0 –	1.98869	7872409D-02	5.9	37630704750D	0-03	-8.7916	23431456D-04
-	1	5.50103	8151489D-03	-8.5	66607598092D	0-04	2.1832	52927157D-05
	2	2.31498	0071502D-03	-5.4	78894140036D	0-04	7.1098	25032007D-05
	3 –	1.39656	1346251D-03	3.3	256869004200	0-04	-3.8099	67071864D-05
2	4 -	1.12529	4104660D-03	2.2	96369788655D	0-04	-2.5395	33631356D-05
Į.	5	4.44739	8821903D-04	-9.0	211866991800	0-05	9.5823	38741375D-06
(6 –	2.41144	3826400D-05	2.9	904127296720	0-06	-5.9005	09921306D-08
-	7 –	-5.98289	2783306D-06	1.6	716072814190	0-06	-2.3701	99152045D-07
8	8	5.70660	8511575D-07	-1.4	55207707019D	0-07	1.9227	25997681D-08
I	E-Inc	lex:	6		7			8
T-Index	х:							
(0	6.45316	1013676D-05	-2.2	82669216724D	0-06	3.1139	68814246D-08
-	1	5.32620	8461631D-06	-4.2	213602536000	0-07	8.8380	98533169D-09
2	2 -	4.62867	2509606D-06	1.3	14409444715D	0-07	-1.1082	56720247D-09
	3	1.97386	3091768D-06	-3.7	101629445120	0-08	2.4416	17394808D-11
2	4	1.54989	0921198D-06	-4.8	22256530984D	0-08	5.7956	55841101D-10
	5 -	5.22419	5972980D-07	1.3	130515929400	9-08	-1.0879	86680607D-10
6	6 -	-2.09920	5652655D-08	1.7	160780638960)-09	-3.7429	56025175D-11
-	7	1.82282	2435371D-08	-7.1	486002462110	0-10	1.0957	60653021D-11
8	8 –	1.37570	9745925D-09	5.0	28096539680D	0-11	-7.2538	32666784D-13
Max. re	el. E	Crror:	5.8770 %					

Mean rel. Error: 2.4838 %

Electron Temperature (eV)

12.37 Reaction 2.2.5e $H_2 + e \rightarrow \ldots + H(6)$, Ratio $H(6)/H_2$

Ratio of population coefficients: p(6)/nH2

Multi-step hydrogenic population coefficients Data: K. Sawada, T.Fujimoto [7]

E-I	ndex:	0	1	2
T-Index:				
0	-3.97637	5830432D+01	1.080938475473D+00	-1.041552669840D-01
1	1.75539	06272137D+01	1.997928889454D-02	-1.798710059345D-02
2	-8.85963	30135249D+00	-2.504982400656D-02	2.543100868921D-02
3	3.07606	56110143D+00	-7.835891215709D-03	3.545212479895D-03
4	-7.84352	23260590D-01	5.646209832689D-03	-3.561003903809D-03
5	1.56155	53501837D-01	7.187156275750D-04	-5.963069173321D-04
6	-2.33241	4342207D-02	-7.250674775397D-04	5.042502000331D-04
7	2.15267	4655984D-03	1.218456761872D-04	-8.096427977714D-05
8	-8.60204	8471984D-05	-6.415059271451D-06	4.107777281787D-06
E-I	ndex:	3	4	5
T-Index:				
0	4.59709	0039926D-02	-9.342295727179D-03	9.308478102486D-04
1	7.52511	1338364D-03	-1.729122256079D-03	1.982524112989D-04
2	-1.06606	51134667D-02	2.308937441320D-03	-2.749941500007D-04
3	-3.50953	86109581D-05	-2.051879002933D-04	4.063170393346D-05
4	8.14022	29792921D-04	-8.180427544392D-05	3.613298743897D-06
5	1.75740	0200541D-04	-2.144818777523D-05	7.661627732789D-07
6	-1.27901	8270105D-04	1.377362109836D-05	-4.685940627108D-07
7	1.92540	4378767D-05	-1.822283216087D-06	2.708967643411D-08
8	-9.15425	58157002D-07	7.217533878534D-08	1.433836277468D-09
E-I	ndex:	6	7	8
T-Index:				
0	-4.99055	51313939D-05	1.412124656401D-06	-1.686977249955D-08
1	-1.10009	0823914D-05	2.783571526155D-07	-2.545786068789D-09
2	1.84404	17875979D-05	-6.611108809876D-07	9.857959406283D-09
3	-3.58086	5956702D-06	1.526795464151D-07	-2.489702863615D-09
4	-5.51493	37069176D-08	1.282783100756D-09	-7.929654586724D-11
5	7.41386	50626664D-08	-7.230260739451D-09	1.670076436316D-10
6	-2.75231	0640534D-08	2.519485275718D-09	-5.096968024103D-11
7	6.89790	0227166D-09	-4.409727389145D-10	7.792707281870D-12
8	-5.34062	26613072D-10	2.786970513377D-11	-4.532087311135D-13
Max. rel.	Error:	7.8110 %		
Mean rel.	Error:	3.3876 %		

12.38 Reaction 2.2.5fl $H_2 + e \rightarrow ... + H_2(N = 3, Triplet)$

Normalized emissivity: $H2(N = 3, Triplet)/H_2/n_e * 2/9 * 2E7$ Fulcher emissivity, cm^3/s . relative 2/9: statistical weight of upper d (Pi) triplet state amongst all N=3 triplet states. 2E7: approx. Fulcher Aik coeff for $N = 3 : d \rightarrow N = 2 : a$ transition in triplet system.

Multi-step hydrogenic molecule population coefficients Data: K.Sawada, T.Fujimoto [7]

	E-I	index:	0	1			2
T-Ind	dex:						
	0	-3.504	557850421D+01	9.3446983409	87D-02	-1.262393	982454D-01
	1	1.265	185253675D+01	3.4645891803	343D-01	-1.897206	206043D-01
	2	-5.915	984508527D+00	-4.7708357793	343D-01	2.383409	770393D-01
	3	1.567	639302331D+00	3.3901002804	27D-01	-1.091189	901772D-01
	4	-2.590	628281288D-01	-1.3932576703	814D-01	3.068867	791726D-02
	5	2.135	659024123D-02	3.3929160310	88D-02	-5.998734	336944D-03
	6	2.0672	218294860D-04	-4.7984739175	584D-03	7.772903	414015D-04
	7	-1.751	915106668D-04	3.6198875624	38D-04	-5.646895	975370D-05
	8	9.203	730354946D-06	-1.1195728865	51D-05	1.591317	926643D-06
	E-I	ndex:	3	4			5
T-Ind	dex:						
	0	5.8773	352224633D-02	-1.3022611165	596D-02	1.540680	462958D-03
	1	5.862	703454732D-02	-1.0951885201	45D-02	1.183240	573644D-03
	2	-6.570	429435087D-02	1.1147754528	853D-02	-1.070181	983249D-03
	3	1.814	682024195D-02	-2.2955113234	93D-03	1.728358	529303D-04
	4	-1.552	484350393D-03	1.6485652523	82D-05	-2.120282	511290D-06
	5	-1.441	720545043D-04	3.4917126655	534D-05	3.814455	169266D-06
	6	5.391	904676009D-05	-6.5447451670	97D-06	-9.545517	784441D-07
	7	-7.783	493080968D-06	1.3298422089	29D-06	-2.466307	689654D-08
	8	4.9412	214511748D-07	-1.1190358405	84D-07	1.039673	602122D-08
	E-I	index:	6	7			8
T-Ino	dex:						
	0	-1.002	500011070D-04	3.3434044848	895D-06	-4.450494	173734D-08
	1	-7.027	920699731D-05	2.1111517049	019D-06	-2.487468	982378D-08
	2	5.325	609368599D-05	-1.1882669880	02D-06	7.422508	082261D-09
	3	-3.8393	135008823D-06	-1.8580932629	88D-07	7.490073	429227D-09
	4	-7.719	566036043D-07	9.8935540387	92D-08	-2.773366	208727D-09
	5	-4.033	028965823D-07	4.6483799590	66D-09	2.007004	276332D-10
	6	1.0653	338439445D-07	-2.6022642233	822D-09	-2.414058	704987D-12
	7	-9.313	819595092D-10	-9.9798679074	32D-11	5.230579	069087D-12
	8	-7.005	564197388D-10	3.1833434146	521D-11	-6.155115	004501D-13
Max	rol	Frror.	2 1211 2				

12.39 Reaction 2.2.5fu $H_2 + e \rightarrow ... + H_2(N = 3, Triplet, d - state)$

redone March 18, fit range 0.1 to 1e4 eV.

Ratio $H_2(N = 3, Triplet)/H_2 * 2/9$, 2/9 stat. weight to reduce N=3 state to d-state upper Fulcher population coefficient. Triplet d-state, $A_{Fulch} \approx 2.43E7$ (priv. com. D.W.) for radiative d-triplet to a-triplet transitions.

Multi-step hydrogenic molecule population coefficients Data: K.Sawada, T.Fujimoto [7]

E-1	Index: 0		1		2	
T-Index:						
0	-3.3544890601	65D+01	1.468103242439	D+00 -	-4.64630749	9703D-01
1	1.2777390866	85D+01	3.336987615778	D-01 -	-2.66211067	4962D-01
2	-6.1003613440	44D+00	-1.199272310765	D+00	7.90334300	9701D-01
3	1.6687347404	01D+00	7.492770342809	D-01 -	-3.44960221	7244D-01
4	-2.9951982694	49D-01 ·	-2.252050456671	D-01	5.13646063	4062D-02
5	3.3620686123	17D-02	4.204168766681	D-02 -	-2.88725647	0209D-03
6	-2.1196434210	70D-03	-5.136593278645	D-03	3.02122442	7790D-04
7	5.7641018941	51D-05	3.665248081377	D-04 -	-5.59190981	4617D-05
8	-7.5561593158	10D-08	-1.116271612850	D-05	3.02945307	8051D-06
E-]	Index: 3		4		5	
T-Index:						
0	1.9175942720	36D-01 ·	-3.914204712405	D-02	4.40513627	3290D-03
1	8.9770433373	17D-02	-1.465813195424	D-02	1.29594158	2003D-03
2	-2.2773393493	00D-01	3.517830118856	D-02 -	-3.08663820	9564D-03
3	7.4276346809	32D-02	-9.056373914556	D-03	6.16859687	8350D-04
4	-8.2896009470	12D-04	-9.842202184975	D-04	1.56914748	8627D-04
5	-1.9919268192	07D-03	4.475984672915	D-04 -	-4.33033862	7262D-05
6	1.4659964919	81D-04	-1.802283714021	D-05 -	-6.40615391	9161D-09
7	1.1088687202	06D-05	-3.651785291583	D-06	5.70962279	1954D-07
8	-1.0327564176	61D-06	2.547765262252	D-07 -	-3.28109994	7589D-08
E-]	Index: 6		7		8	
T-Index:						
0	-2.7848276101	73D-04	9.205781819517	D-06 -	-1.23456397	1007D-07
1	-6.2945102478	71D-05	1.558832548058	D-06 -	-1.50579681	0383D-08
2	1.5086168922	74D-04	-3.741483445376	D-06	3.54836912	1880D-08
3	-1.8589793588	27D-05	-1.756205740430	D-08	8.60009998	3333D-09
4	-1.2639630135	77D-05	5.424603147976	D-07 -	-9.42704964	1092D-09
5	2.5949914605	44D-06	-9.710865279198	D-08	1.63529965	8521D-09
6	5.8078323469	07D-08	-1.194710140642	D-09 -	-2.07405276	9889D-11
7	-4.0026650734	83D-08	1.260114477597	D-09 -	-1.42178547	0367D-11
8	2.1427462576	16D-09	-6.776734606365	D-11	8.20757798	4364D-13
Max. rel.	Error: 0.14	5E+02 %				

12.40 Reaction 2.2.5we $H_2 + e \rightarrow ... + H_2(N = 2, Singlet C)$

Ratio $H_2(N = 2, Singlet C - state)/H_2$

upper Werner band population coefficient. Singlet C-state, $A_{Werner} \approx 1.04E9$ (priv. com. D.W.) Multi-step hydrogenic molecule population coefficients Data: K.Sawada, T.Fujimoto [7]

E-I	ndex:	0	1	2
T-Index:				
0	-3.59364	9328832D+01	8.308979586264D-01	1.868771272352D-01
1	1.35899	6226939D+01	1.144733915906D-01	-7.166182521067D-02
2	-5.73447	1422048D+00	-2.150843448759D-02	-3.824097076465D-02
3	1.46741	8653563D+00	-2.501578958293D-03	2.923616954773D-02
4	-2.18811	9913056D-01	1.995231637494D-03	-6.640370721872D-03
5	1.40629	7652325D-02	-6.783126412988D-04	7.510665534693D-04
6	5.56112	9014609D-04	1.351258986187D-04	-5.745270250733D-05
7	-1.32703	6442082D-04	-1.315685619246D-05	3.749140942633D-06
8	5.38679	1451187D-06	4.829742920546D-07	-1.381191058408D-07
E-I:	ndex:	3	4	5
T-Index:				
0	-8.31952	1746811D-02	1.822290028150D-02	-2.139848284025D-03
1	3.56194	0208530D-02	-8.730170894414D-03	1.111181710062D-03
2	8.09063	2884354D-03	-3.760749351686D-04	-8.428342936127D-05
3	-7.00605	5255923D-03	9.723873035654D-04	-6.790200414082D-05
4	9.38820	9633191D-04	-1.188419004204D-04	8.205572285784D-06
5	4.25248	4681099D-05	-1.045078968002D-05	1.071348879998D-06
6	-1.35999	5374888D-05	1.767498689737D-06	-1.033888505778D-07
7	4.21460	9548524D-07	4.105679338979D-08	-1.391632590311D-08
8	1.76047	2357584D-08	-8.302282439471D-09	1.229878733295D-09
E-I	ndex:	6	7	8
T-Index:				
0	1.36316	6907638D-04	-4.410389531348D-06	5.649304185589D-08
1	-7.56816	5245508D-05	2.610898259323D-06	-3.590058481557D-08
2	1.33262	8938065D-05	-7.119317923666D-07	1.326801124893D-08
3	1.27054	1815502D-06	6.913679414367D-08	-2.456304218566D-09
4	-4.66186	0601440D-08	-1.560880825875D-08	4.036797301220D-10
5	-8.63920	8387211D-08	3.008291257423D-09	-2.251160398320D-11
6	2.68122	3177046D-09	1.999325699443D-10	-1.047788129925D-11
7	1.39588	5069414D-09	-8.052768706091D-11	1.889487362615D-12
8	-9.66536	1477916D-11	4.462593169355D-12	-8.850565688461D-14
Max. rel.	Error:	0.115E+02 %		
Mean rel.	Error:	0.299E+01 %		

12.41 Reaction 2.2.5ly $H_2 + e \rightarrow ... + H_2(N = 2, Singlet B)$

Ratio $H_2(N = 2, Singlet B - state)/H_2$

upper Lyman band population coefficient. Singlet B-state, $A_{Lyman} \approx 0.84E9$ (priv. com. D.W.) Multi-step hydrogenic molecule population coefficients Data: K.Sawada, T.Fujimoto [7]

E-I	ndex:	0	1	2
T-Index:				
0	-3.397850	0573163D+01	1.006056939133D+00	-1.202042794510D-02
1	1.19616	7467450D+01	1.019392480038D-01	-3.246741602640D-02
2	-5.552980	0751071D+00	-2.182674613256D-01	1.310622385883D-01
3	1.71051	7188280D+00	1.056574565611D-01	-7.126216596227D-02
4	-3.699083	3854427D-01	-8.996140369756D-03	8.169425385102D-03
5	5.450770	0431960D-02	-5.497328775049D-03	3.109194223938D-03
6	-5.114378	8920377D-03	1.574026731653D-03	-9.964122308190D-04
7	2.718181	1436155D-04	-1.570909362877D-04	1.033573137707D-04
8	-6.182952	2661054D-06	5.533588242821D-06	-3.725344805031D-06
E-I	ndex:	3	4	5
T-Index:				
0	4.355523	3162462D-03	-6.382190527349D-04	3.974915237112D-05
1	3.508265	5857386D-04	1.382009361884D-03	-2.488403752281D-04
2	-3.383652	2044906D-02	4.052689315875D-03	-2.098203509930D-04
3	2.13753	1087390D-02	-2.874452928505D-03	1.560319164372D-04
4	-3.936780	0405633D-03	6.865779069553D-04	-4.267656587715D-05
5	-3.22624	7705626D-04	-2.485199148367D-05	4.187303245886D-06
6	1.949593	3539968D-04	-1.432573062806D-05	2.716870257549D-07
7	-2.279032	1922723D-05	2.122592718556D-06	-7.778350690825D-08
8	8.693803	3378144D-07	-8.875683289762D-08	3.853513064998D-09
E-I	ndex:	6	7	8
T-Index:				
0	-4.817941	1325124D-07	-4.818422950101D-08	1.400297189617D-09
1	1.88006	7470651D-05	-6.625349071032D-07	8.813516831326D-09
2	1.142439	9741442D-06	2.743493930710D-07	-7.006934630012D-09
3	4.392230	6473310D-07	-3.371829185419D-07	8.645219519537D-09
4	-3.428952	2578243D-07	1.270631026599D-07	-3.377504202843D-09
5	2.905622	2963853D-08	-1.867759838623D-08	5.575839817605D-10
6	-7.981727	7857836D-10	9.983567417040D-10	-3.988647877134D-11
7	3.87031	7660182D-10	8.064843019666D-12	7.746226928676D-13
8	-3.436982	1127862D-11	-1.627459347813D-12	2.106967385582D-14
Max. rel.	Error:	0.922E+01 %		
Mean rel.	Error:	0.210E+01 %		

12.42 Reaction 2.2.14a $H_2^+ + e \rightarrow ... + H(3)$, Ratio $H(3)/H_2^+$

Multi-step hydrogenic population coefficients Data: K. Sawada, T.Fujimoto [7] Ratio of population coefficients: p(3)/nH2+

E-	Index: 0	1	2
T-Index:			
0	-1.722688127458D+01	1.153283206758D+00	-1.683858517653D-01
1	-6.130457183836D-01	1.914093897035D-01	-2.119334228080D-01
2	-3.288796872020D-02	-2.400733485492D-02	2.404651735462D-02
3	1.011296840186D-02	-1.550958978732D-02	1.584315646622D-02
4	1.661600971350D-02	4.557160690820D-03	-3.973908011295D-03
5	-1.332921799914D-03	1.037539779315D-05	6.731975412111D-05
6	-1.279967875089D-03	-2.589228947175D-04	1.486622411070D-04
7	2.677167178361D-04	5.420325237257D-05	-3.368818743134D-05
8	-1.506445178315D-05	-3.499465420549D-06	2.352582612122D-06
E-	Index: 3	4	5
T-Index:			
0	6.918918524329D-02	-1.429478386078D-02	1.613571468557D-03
1	9.109177794808D-02	-2.007505252911D-02	2.472425643895D-03
2	-9.020252068955D-03	1.671217936164D-03	-1.647723170945D-04
3	-6.589011823707D-03	1.468052024984D-03	-1.881996632423D-04
4	1.324545590207D-03	-2.271138929258D-04	2.197082919209D-05
5	-2.225087720532D-05	-3.948031909877D-06	2.183242092156D-06
6	-2.359201102735D-05	5.994534813816D-07	8.163420117561D-08
7	5.871647174879D-06	-7.017526293806D-08	-7.321361270638D-08
8	-4.869333174029D-07	2.666937131278D-08	2.907495025800D-09
E-	Index: 6	7	8
T-Index:			
0	-9.996182392999D-05	3.143558308195D-06	-3.894902873796D-08
1	-1.710731264281D-04	6.171658058460D-06	-8.994609018799D-08
2	8.489265493722D-06	-2.013488013000D-07	1.438802569384D-09
3	1.372284113113D-05	-5.221176658885D-07	7.993094218338D-09
4	-1.193452426271D-06	3.308071890623D-08	-3.519685687680D-10
5	-2.896287982222D-07	1.562000946898D-08	-3.009928452053D-10
6	1.559281307950D-09	-6.451643409471D-10	1.995316529751D-11
7	7.478573101616D-09	-2.883419180345D-10	3.944931881913D-12
8	-4.438182202186D-10	2.053419620687D-11	-3.291110119780D-13
Max. rel.	Error: 3.5492 %		

Mean rel. Error: 1.1008 %

12.43 Reaction 2.2.14b $H_2^+ + e \rightarrow ... + H(2)$, Ratio $H(2)/H_2^+$

Multi-step hydrogenic population coefficients Data: K. Sawada, T.Fujimoto [7] Ratio of population coefficients: p(2)/nH2+

E-I	ndex: 0	1	2
T-Index:			
0	-1.893340627587D+01	9.384468043754D-01	6.845844295054D-02
1	-6.928605971087D-01	-8.026687490301D-02	9.467107255600D-02
2	-2.281426599901D-02	2.469204550924D-02	-2.484665906437D-02
3	7.477602038370D-02	2.032608947899D-02	-2.519725182225D-02
4	1.800864421577D-02	-6.090658281624D-03	7.017163446504D-03
5	-7.998916722808D-03	-9.279887714293D-05	2.698897287206D-04
6	-3.810034520682D-04	-2.106056251267D-05	-1.953567231400D-05
7	2.854892030780D-04	4.128701336617D-05	-4.250413339334D-05
8	-2.071857549683D-05	-4.001420432076D-06	4.379705502021D-06
E-I	ndex: 3	4	5
T-Index:			
0	-3.000866490557D-02	6.301221120024D-03	-7.121426054946D-04
1	-4.166524495938D-02	8.977392904028D-03	-1.051153710461D-03
2	9.033528728860D-03	-1.517598590401D-03	1.263880354474D-04
3	1.162950470259D-02	-2.606098938264D-03	3.140565339454D-04
4	-3.000019054211D-03	6.218383225871D-04	-6.912762960613D-05
5	-2.042942399126D-04	6.121533276155D-05	-8.909019790621D-06
6	3.395544918660D-05	-1.198646949905D-05	1.803522408198D-06
7	1.505473503739D-05	-2.586687292054D-06	2.484264221846D-07
8	-1.726884062383D-06	3.360010725821D-07	-3.628922644305D-08
E-I	ndex: 6	7	8
T-Index:			
0	4.370331341973D-05	-1.366214208274D-06	1.690062454965D-08
1	6.808364131429D-05	-2.298331729242D-06	3.151517460256D-08
2	-4.822206870495D-06	5.000680158777D-08	8.129482308185D-10
3	-2.070880988429D-05	7.034167608369D-07	-9.610489042355D-09
4	4.193160605355D-06	-1.303566995266D-07	1.616380399841D-09
5	6.656671628061D-07	-2.464877011413D-08	3.582951420528D-10
6	-1.317043941884D-07	4.601629603901D-09	-6.103803830641D-11
7	-1.416917248903D-08	4.608792938645D-10	-6.675661118338D-12
8	2.234037377054D-09	-7.375120969117D-11	1.017886320572D-12
Max. rel.	Error: 10.9817 %		
Mean rel.	Error: 4.1166 %		

12.44 Reaction 2.2.14c $H_2^+ + e \rightarrow ... + H(4)$, Ratio $H(4)/H_2^+$

Multi-step hydrogenic population coefficients Data: K. Sawada, T.Fujimoto [7] Ratio of population coefficients: p(4)/nH2+

E-I	ndex:	0	1	2
T-Index:				
0	-1.67633	31978580D+01	9.080085441987D-01	1.147906180602D-01
1	-6.10905	51309024D-01	-8.294588654086D-03	1.632432484919D-02
2	-2.90973	37666296D-02	5.624264669551D-03	-1.197286367681D-02
3	7.62320	54778786D-03	-9.078213947581D-04	5.223194421632D-03
4	1.52142	23403054D-02	1.676511919497D-03	-2.501873457928D-03
5	-9.03092	20815279D-04	-1.632212690782D-03	1.351745824791D-03
6	-1.24391	3874997D-03	5.018902795712D-04	-3.645436069304D-04
7	2.49870)5414219D-04	-6.291439776017D-05	4.327516333116D-05
8	-1.38213	34054195D-05	2.822461526917D-06	-1.872083205062D-06
E-I	ndex:	3	4	5
T-Index:				
0	-5.27010)6237531D-02	1.127860512722D-02	-1.245143403573D-03
1	-1.09620)2696457D-02	3.286907157227D-03	-4.917565920190D-04
2	7.58430	50997821D-03	-2.062094702685D-03	2.791821975336D-04
3	-3.4493	75282404D-03	8.838838532938D-04	-1.095438324110D-04
4	1.10214	13471476D-03	-2.160129746705D-04	2.129894386269D-05
5	-3.96245	53758917D-04	5.313919176171D-05	-3.533864379468D-06
6	9.62225	58500169D-05	-1.184926396450D-05	7.911742891778D-07
7	-1.10779	01453066D-05	1.379188891744D-06	-1.041402141388D-07
8	4.70434	15845794D-07	-5.961078067778D-08	4.961931789364D-09
E-I	ndex:	6	7	8
T-Index:				
0	7.17581	0811923D-05	-2.069167769109D-06	2.363328371263D-08
1	3.75275	53236914D-05	-1.408607567442D-06	2.070687771858D-08
2	-1.96383	35974805D-05	6.884652898708D-07	-9.525997813634D-09
3	7.00458	35234319D-06	-2.213148187150D-07	2.720461054725D-09
4	-1.08061	9499451D-06	2.598412251320D-08	-2.157639142592D-10
5	1.15329	02411062D-07	-1.686998701330D-09	9.600285735482D-12
6	-3.45748	81362906D-08	1.132144357690D-09	-1.987071178818D-11
7	5.89751	8730021D-09	-2.354087236528D-10	4.278831126984D-12
8	-3.22750)9261038D-10	1.380778939747D-11	-2.522987941747D-13
Max. rel.	Error:	3.2596 %		
Mean rel.	Error:	1.2619 %		

Electron Temperature (eV)

12.45 Reaction 2.2.14d $H_2^+ + e \rightarrow \ldots + H(5)$, Ratio $H(5)/H_2^+$

Multi-step hydrogenic population coefficients Data: K. Sawada, T.Fujimoto [7] Ratio of population coefficients: p(5)/nH2+

E-I	ndex: 0		1	2
T-Index:				
0	-1.644185145	736D+01	1.012436644382D+0	0 6.786438608987D-03
1	-6.098791364	927D-01	5.430488667435D-0	2 -7.847894120730D-02
2	-2.950068702	716D-02	-3.373771077709D-0	2 3.289895028745D-02
3	6.754065058	068D-03	7.451626213157D-0	-3.969682127389D-03
4	1.537038416	857D-02	4.118426250990D-0	-4.555083248726D-03
5	-9.947711516	605D-04	-1.833979398896D-0	1.801381990375D-03
6	-1.192700661	337D-03	3.791226761015D-0	5 -3.145634625643D-05
7	2.404465554	223D-04	5.021181230894D-0	5 -5.066197038660D-05
8	-1.326828264	262D-05	-4.564492434807D-0	4.606059092522D-06
E-I	ndex: 3		4	5
T-Index:				
0	-1.636359203	529D-02	6.460968901937D-0	3 -1.074723144885D-03
1	3.737579519	968D-02	-8.178265373295D-0	3 9.193848105982D-04
2	-1.134088065	312D-02	1.754362025677D-0	3 -1.242294410730D-04
3	1.576874933	190D-04	2.391978264795D-0	4 -5.252636585235D-05
4	1.826529292	073D-03	-3.545645854345D-0	4 3.657837147066D-05
5	-6.662982315	176D-04	1.215614803183D-0	4 -1.209604459175D-05
6	1.450525549	912D-05	-3.710641046768D-0	6 5.511118540490D-07
7	1.829155353	709D-05	-3.170388065293D-0	6 2.866743369560D-07
8	-1.697317371	127D-06	3.048871380215D-0	-2.932146588732D-08
E-I	ndex: 6		7	8
T-Index:				
0	8.419235123	864D-05	-3.153526630862D-0	4.581163952178D-08
1	-5.560014479	351D-05	1.725272054044D-0	6 -2.159304879239D-08
2	3.243207880	260D-06	3.071703458548D-0	-2.031512439383D-09
3	4.543948082	974D-06	-1.784049810861D-0	2.642282279507D-09
4	-2.037354098	418D-06	5.743682572167D-0	-6.369815462623D-10
5	6.745084225	490D-07	-1.997093162477D-0	2.459303044047D-10
6	-4.734113162	030D-08	2.110906778108D-0	9 -3.702822546028D-11
7	-1.322386162	924D-08	2.686441115973D-1	0 -1.341741119398D-12
8	1.518492393	831D-09	-3.921390964093D-1	1 3.853896510803D-13
Max. rel.	Error: 3.3	950 %		
Mean rel.	Error: 1.2	048 %		

Electron Temperature (eV)

12.46 Reaction 2.2.14e $H_2^+ + e \rightarrow ... + H(6)$, Ratio $H(6)/H_2^+$

Multi-step hydrogenic population coefficients Data: K. Sawada, T.Fujimoto [7] Ratio of population coefficients: p(6)/nH2+

E-	Index:	0	1	2
T-Index:				
0	-1.6229	99065239D+01	1.114789960848D+0	0 -1.520045539695D-01
1	-6.1280)88795544D-01	4.799590905456D-0	2 -6.226002600050D-02
2	-2.8436	562556626D-02	-2.981491981788D-0	2 3.771158615252D-02
3	9.0405	540246117D-03	-5.376296672908D-0	3 2.724387350634D-03
4	1.4881	57339780D-02	4.117070101509D-0	3 -3.845342947354D-03
5	-1.1008	392809269D-03	6.973802180775D-0	5 2.700981820011D-04
6	-1.1544	143469425D-03	-2.746343562656D-0	4 1.329065248252D-04
7	2.3727	20363390D-04	4.450995037612D-0	5 -2.399096395388D-05
8	-1.3219	939690927D-05	-2.168171198227D-0	6 1.138090912890D-06
E-	Index:	3	4	5
T-Index:				
0	6.4549	047459361D-02	-1.251452482400D-0	2 1.176116823129D-03
1	3.1202	222040133D-02	-7.656737664171D-0	3 9.697768241674D-04
2	-1.7147	43824449D-02	3.730164832607D-0	3 -4.245864266326D-04
3	-7.2841	21072944D-04	1.754857033177D-0	4 -2.833588922766D-05
4	1.5015	531035131D-03	-3.095442801682D-0	4 3.552383842276D-05
5	-1.8700)97557763D-04	4.709088535767D-0	5 -5.863892714562D-06
6	-1.8246	539804367D-05	-6.062961769823D-0	7 4.017509350696D-07
7	4.3714	193229928D-06	-2.114447008583D-0	7 -3.261214899093D-08
8	-1.8895	513057698D-07	3.153827435466D-0	9 2.672896065823D-09
E-	Index:	6	7	8
T-Index:				
0	-5.8017	76455917D-05	1.436236089573D-0	6 -1.386191157402D-08
1	-6.5549	93759673D-05	2.252572465958D-0	6 -3.097271363753D-08
2	2.6172	269803427D-05	-8.313443339779D-0	7 1.069290183120D-08
3	2.4043	364824295D-06	-9.739423966586D-0	8 1.496981935094D-09
4	-2.2666	588480662D-06	7.510316070422D-0	8 -1.007253682698D-09
5	3.9297	20894592D-07	-1.368756170273D-0	8 1.948330325484D-10
6	-4.2840)44640046D-08	1.967059565426D-0	9 -3.388443373389D-11
7	5.1528	399170025D-09	-2.667100015865D-1	0 4.835046441176D-12
8	-3.3701	74839133D-10	1.633061281105D-1	1 -2.854661230035D-13
Max. rel	. Error:	3.0278 %		

Mean rel. Error: 1.1252 %

Electron Temperature (eV)

12.47 Reaction 2.2.15a $H_3^+ + e \rightarrow ... + H(3)$, Ratio $H(3)/H_3^+$

Multi-step hydrogenic population coefficients Data: K. Sawada, T.Fujimoto, [7] and R. Janev et al., 1987 Production of initial H(n = 2) from H_3^+ via $1/3.5 \times \langle Hydhel \ 2.2.15 \rangle$, then CR redistribution in H

Ratio of population coefficients: p(3)/nH3+

E-	Index:	0	1	2
T-Index:				
0	-3.6011	19233903D+01	2.194488055582D+00	-2.490229101640D-01
1	1.6522	206692785D+00	-1.271092194312D-01	L 1.058603034484D-01
2	-8.7007	785019712D-01	-2.161600166796D-02	6.271502055705D-02
3	2.6622	217617059D-01	4.349904766090D-02	2 -3.964570429934D-02
4	-7.7423	301294851D-02	-1.588421393163D-02	6.518330779752D-03
5	1.9313	368710773D-02	-8.106962079405D-04	1.708355185624D-03
6	-3.4092	295405632D-03	1.740482076055D-03	-1.205558081593D-03
7	3.4533	367238152D-04	-3.495754916386D-04	4 2.280918882182D-04
8	-1.4561	L29857393D-05	2.117574196146D-05	5 -1.399865611289D-05
F-	Inder.	З	Л	5
T-Inder•	INGCX.	5	1	5
0	1 1320	9113507650-01	-2 495101533471D-03	2 9580653721320-03
1	-3 3910)43609190D-02	5 252542828036D-0	-4 133003716081D-04
2	-3 5630	92105078D - 02	8 6586712543210-0	-1 084373448947D-03
2	1 4254	102485426D-02	-2 606626099566D-0	2 640179631726D-04
4	2.9429	975651757D-05	-3.820356368930D-04	4 7.370218634646D-05
5	-9 0964	198355642D-04	2 144809623279D-04	-2 630207934234D - 05
6	3.2415	732853912D-04	-4.279559204346D-0	5 2.895227184007D-06
5 7	-5.5838	361278880D-05	6.224370200950D-0	-2.797277959239D-07
, 8	3.5021	16490766D-06	-4.075936276354D-0	7 2.091741957019D-08
J. J	0.0011		1.0,0002,00012	
E-	Index:	6	7	8
T-Index:				
0	-1.9210)33371324D-04	6.398969176227D-0	6 -8.555066878081D-08
1	1.5504	119246049D-05	-2.077147754254D-0	7 -6.217681464656D-10
2	7.3284	129963825D-05	-2.541071707141D-0	5 3.547229620058D-08
3	-1.4980)23460658D-05	4.469952296008D-0	7 -5.466006320221D-09
4	-6.0895	548777788D-06	2.375890801408D-0	7 -3.584223895612D-09
5	1.7460)57261430D-06	-5.958058472873D-08	8 8.192333835651D-10
6	-9.0616	591336736D-08	6.391542243791D-10) 1.652477882971D-11
7	-2.1505	518066178D-09	5.692555261125D-10) -1.288476392288D-11
8	-1.4940)56033386D-10	-2.437016814580D-11	6.330132340750D-13
Max. rel	. Error:	14.3433 %		

Mean rel. Error: 2.2859 %

12.48 Reaction 2.2.15b $H_3^+ + e \rightarrow ... + H(2)$, Ratio $H(2)/H_3^+$

Multi-step hydrogenic population coefficients Data: K. Sawada, T.Fujimoto, [7] and R. Janev et al 1987

Production of initial H(n = 2) from H_3^+ via $1/3.5 \times \langle Hydhel \ 2.2.15 \rangle$, then CR redistribution in H

Ratio of population coefficients: p(2)/nH3+

Mean rel. Error: 0.8237 %

E-	Index:	0	1	2
T-Index	:			
0	-1.9803	37179098D+01	9.999289774464D	-01 3.393626221267D-03
1	-4.0714	76496934D-01	2.924762633195D	-02 -2.851786085227D-02
2	5.4956	588975883D-04	-1.023099678564D	-02 1.171745245738D-02
3	7.1512	98543821D-04	-1.106236848753D	-02 1.167194822465D-02
4	-1.0825	81109495D-04	2.080154145037D	-03 -2.381045517182D-03
5	-5.7846	97350796D-05	8.818867850337D	-04 -9.290488913510D-04
6	7.8288	14939830D-06	-1.410356074545D	-04 1.579270228374D-04
7	1.2894	05712476D-06	-1.803694888454D	-05 1.839342236091D-05
8	-1.7574	35874999D-07	2.740075492523D	-06 -2.922976584923D-06
E	-Index:	3	4	5
T-Index	:			
0	-2.8318	372924647D-03	8.844257796365D	-04 -1.335820142114D-04
1	9.7980	33707980D-03	-1.513369733986D	-03 1.052372400307D-04
2	-5.0631	64235821D-03	1.105581200627D	-03 -1.355736418332D-04
3	-4.5197	63859219D-03	8.509755038057D	-04 -8.608757693484D-05
4	1.0162	30997894D-03	-2.163134055907D	-04 2.552512545027D-05
5	3.5947	34574380D-04	-6.760036792740D	-05 6.820693101367D-06
6	-6.5620	61294501D-05	1.349897286883D	-05 -1.527216042839D-06
7	-6.8384	74731524D-06	1.216126202961D	-06 -1.128282531105D-07
8	1.1497	92069313D-06	-2.210992439606D	-07 2.299563923333D-08
E	-Index:	6	7	8
T-Index	:			
0	1.0396	588098878D-05	-3.967254803956D	-07 5.751612166377D-09
1	-2.0224	07714950D-06	-9.533644334113D	-08 3.425386624889D-09
2	9.5006	61752185D-06	-3.550036000270D	-07 5.446553318204D-09
3	4.7578	11195092D-06	-1.348973665777D	-07 1.542565685557D-09
4	-1.7035	89672933D-06	6.030500436147D	-08 -8.781256295629D-10
5	-3.7485	67528049D-07	1.051005276609D	-08 -1.176476798245D-10
6	9.7040	16493388D-08	-3.256173927393D	-09 4.497431785523D-11
7	5.4185	31608876D-09	-1.198313236434D	-10 8.246578075788D-13
8	-1.3172	209482279D-09	3.905293970215D	-11 -4.696677196057D-13
Max. re	l. Error:	10.2841 %		

12.49 Reaction 2.2.15c $H_3^+ + e \rightarrow ... + H(4)$, Ratio $H(4)/H_3^+$

Multi-step hydrogenic population coefficients Data: K. Sawada, T.Fujimoto, [7] and R. Janev et al 1987

Production of initial H(n = 2) from H_3^+ via $1/3.5 \times \langle Hydhel \ 2.2.15 \rangle$, then CR redistribution in H

Ratio of population coefficients: p(4)/nH3+

E-I1	ndex:	0	1	L		2
T-Index:						
0	-3.6991	68687840D+01	2.001554	1576899D+00	2.9626	73017164D-03
1	2.3278	18682219D+00	-6.477623	3277677D-03	1.30274	47597894D-02
2	-1.2225	03946813D+00	1.123694	153535D-02	-1.83685	59736247D-02
3	3.7594	51408212D-01	-6.964877	7949667D-03	8.96714	41291539D-03
4	-1.0577	17328620D-01	1.811746	5894110D-03	-1.58850)6334985D-03
5	2.5645	58082290D-02	-1.557448	3494435D-04	-1.31810	63984811D-04
6	-4.3620	34354566D-03	1.336313	3932390D-05	5.67738	35912381D-05
7	4.2136	73231999D-04	-5.353070)791744D-06	-1.63039	95162429D-06
8	-1.6907	54255016D-05	5.204418	3811823D-07	-2.76450)7346651D-07
E-1	Index:	3		4		5
T-Index:						
0	-3.0494	73442883D-03	8.934957	7580265D-04	-1.18768	30147766D-04
1	-7.3021	67340628D-03	1.743088	8872108D-03	-2.03331	14551240D-04
2	7.9374	75042441D-03	-1.495920)915105D-03	1.33578	89358832D-04
3	-3.7597	36445513D-03	7.328783	3639342D-04	-7.46726	60815755D-05
4	7.5889	20331506D-04	-1.913322	2099599D-04	2.69131	16713419D-05
5	6.9369	70796563D-05	-9.160519	0294976D-06	-1.14588	39879420D-07
6	-4.3392	23919979D-05	1.175796	5204569D-05	-1.57753	37099191D-06
7	4.4250	66124877D-06	-1.614546	5001621D-06	2.59941	19206670D-07
8	-9.8310	82955550D-08	6.376842	2626606D-08	-1.22281	12849688D-08
E-1	Index:	6		7		8
T-Index:						
0	7.8336	56739024D-06	-2.831734	1234040D-07	4.37612	25518706D-09
1	1.1548	95519966D-05	-3.074042	2636582D-07	2.96782	24771774D-09
2	-5.1031	30444119D-06	3.555541	L061620D-08	1.45715	53306360D-09
3	4.1193	85753462D-06	-1.159886	5623812D-07	1.30819	98318452D-09
4	-2.1121	33421406D-06	8.508133	3152131D-08	-1.36085	50938372D-09
5	1.0142	87149029D-07	-6.777611	L535609D-09	1.37304	41841284D-10
6	1.1374	61746810D-07	-4.208250)772675D-09	6.2643	73124745D-11
7	-2.1371	26396561D-08	8.696995	5094294D-10	-1.38429	96355974D-11
8	1.0983	05710577D-09	-4.703325	5555132D-11	7.71744	46791356D-13
Max. rel	. Error:	9.0711 %				

Mean rel. Error: 1.5148 %

12.50 Reaction 2.2.15d $H_3^+ + e \rightarrow ... + H(5)$, Ratio $H(5)/H_3^+$

Multi-step hydrogenic population coefficients Data: K. Sawada, T.Fujimoto, [7] and Janev et al. 1987 Production of initial H(n = 2) from H_3^+ via $1/3.5 \times \langle Hydhel \ 2.2.15 \rangle$, then CR redistribution in H Ratio of population coefficients: p(5)/nH3+

E-In	dex:	0		1		2
T-Index:						
0	-3.7266	36544624D+01	2.1339	76447955D+00	-1.437	7643407818D-01
1	2.6079	84145369D+00	3.7363	42257132D-02	-5.206	5732236717D-02
2	-1.3724	59802644D+00	-1.1684	50793414D-02	1.039	9452553074D-02
3	4.3811	36968184D-01	-1.5998	58338454D-03	5.567	7058463253D-03
4	-1.2321	02950459D-01	7.2004	65026127D-04	-1.555	5111093198D-03
5	2.7880	50336665D-02	-7.7781	93777532D-04	5.986	5504728580D-04
6	-4.3252	72890946D-03	4.3667	53618704D-04	-3.489	9782061433D-04
7	3.8702	02141408D-04	-8.3960	34178185D-05	7.283	3739797379D-05
8	-1.4725	34680030D-05	5.1957	20673557D-06	-4.730)954375662D-06
E-I	ndex:	3		4		5
T-Index:						
0	5.2662	18557769D-02	-8.7355	67392297D-03	6.919	9538677059D-04
1	2.5752	15280557D-02	-6.0082	09560283D-03	7.323	3649110173D-04
2	-3.3352	59288099D-03	5.0703	848402932D-04	-4.437	7286309383D-05
3	-3.9083	20707976D-03	1.0787	90219266D-03	-1.445	5807390811D-04
4	1.0133	85566510D-03	-2.7513	91890149D-04	3.756	5629725211D-05
5	-1.6090	98607097D-04	2.0016	30094507D-05	-1.302	2966127214D-06
6	9.3813	16606795D-05	-1.0923	884086404D-05	4.836	5506460925D-07
7	-2.2479	60619374D-05	3.3270	27913749D-06	-2.544	1047801913D-07
8	1.5702	34172126D-06	-2.5658	871792243D-07	2.263	3302154308D-08
E-I	ndex:	6		7		8
T-Index:						
0	-2.5373	13706204D-05	2.7550	02502292D-07	3.064	1689208500D-09
1	-4.8941	13742491D-05	1.6890	63212815D-06	-2.350)820776172D-08
2	2.9402	48173139D-06	-1.3202	44963238D-07	2.543	3920290364D-09
3	1.0046	38359166D-05	-3.4857	06886049D-07	4.792	2765609299D-09
4	-2.7445	26032933D-06	1.0218	10292434D-07	-1.520)931726158D-09
5	5.4317	02781882D-08	-1.7110	17659423D-09	2.880)788636234D-11
6	6.4840	42961226D-09	-1.1628	02787754D-09	2.568	8800325791D-11
7	9.6429	46338642D-09	-1.4170	47906131D-10	-7.123	3549343893D-14
8	-1.0833	03425027D-09	2.6042	79537307D-11	-2.404	1346400046D-13
Max. rel.	Error:	8.0720 %				

Mean rel. Error: 1.8795 %

12.51 Reaction 2.2.15e $H_3^+ + e \rightarrow ... + H(6)$, Ratio $H(6)/H_3^+$

Multi-step hydrogenic population coefficients Data: K. Sawada, T.Fujimoto, [7] and R. Janev et al, 1987

Production of initial H(n = 2) from H_3^+ via $1/3.5 \times \langle Hydhel \ 2.2.15 \rangle$, then CR redistribution in H

Ratio of population coefficients: p(6)/nH3+

E-I	ndex:	0		1		2
T-Index:						
0	-3.7313	06702718D+01	2.22679	99613424D+00	-2.713541	1077245D-01
1	2.7219	16003669D+00	2.75207	7117728D-01	-2.817824	4763132D-01
2	-1.4451	71758730D+00	-3.45520)7346437D-02	2.128468	8170611D-02
3	4.8697	84512858D-01	-1.11709	9787519D-01	1.101949	9732661D-01
4	-1.3661	99370764D-01	1.96359	91329586D-02	-1.452797	7917604D-02
5	2.7892	89520108D-02	8.95607	74919162D-03	-9.295896	6282076D-03
6	-3.7855	60599727D-03	-2.44918	88168800D-03	1.956661	1410764D-03
7	3.0861	89807154D-04	1.28709	91624921D-04	-1.507685	5975982D-05
8	-1.1399	82513894D-05	3.98163	31091951D-06	-1.109641	1079725D-05
E-I	ndex:	3		4		5
T-Index:						
0	1.1602	22068193D-01	-2.35144	1393066D-02	2.434601	1322965D-03
1	1.1732	45156970D-01	-2.49183	39320070D-02	2.905055	5223332D-03
2	-5.6332	98373088D-03	7.91781	3609696D-04	-6.24431	7946507D-05
3	-4.4123	65175467D-02	8.99109	02209700D-03	-1.015055	5902253D-03
4	4.7691	80959321D-03	-8.47024	12324439D-04	8.762486	6764680D-05
5	3.7965	52815269D-03	-7.75974	1376950D-04	8.718058	3637354D-05
6	-6.7909	07264022D-04	1.24100)5294221D-04	-1.29155	7445220D-05
7	-1.8145	13841588D-05	6.73081	8401122D-06	-9.728795	5555375D-07
8	5.9579	08324528D-06	-1.39680)7603409D-06	1.69996	7143140D-07
E-I	ndex:	6		7		8
T-Index:						
0	-1.3454	68571268D-04	3.76291	8405002D-06	-4.176542	2071199D-08
1	-1.8855	47024432D-04	6.37538	39426295D-06	-8.745135	5270264D-08
2	3.2928	84698321D-06	-1.19086	56363308D-07	2.060340)214319D-09
3	6.4100	30327458D-05	-2.11686	55424138D-06	2.846524	4837720D-08
4	-5.2820	31902152D-06	1.71497	7601939D-07	-2.311882	2826237D-09
5	-5.4623	20288173D-06	1.78910)8252698D-07	-2.387626	6221779D-09
6	7.6848	30295858D-07	-2.43118	86166102D-08	3.170509	9451364D-10
7	7.0024	58436648D-08	-2.50198	35930755D-09	3.541620)765501D-11
8	-1.1218	47222632D-08	3.81211	7569450D-10	-5.230180	0135049D-12
Max. rel.	Error:	7.7841 %				

Mean rel. Error: 2.1550 %

12.52 Reaction 7.2a $H^- + p \rightarrow \ldots + H(3)$, Ratio $H(3)/H^-$, cold H^-

Multi-step hydrogenic population coefficients Data: K. Sawada, T.Fujimoto, [7] and Janev et al, 1987, and P.T. Greenland Production of initial H(n = 2), H(n = 3) from H^- via $\langle Hydhel 7.2.2 \rangle + \langle Hydhel 7.2.3 \rangle$, then CR redistribution in H Ratio of population coefficients: p(3)/nH-

E-	Index:	0	1	2	
T-Index:					
0	-1.6983	48739110D+01	1.1215054485831	D+00 -1.562056461483D-0	1
1	-1.9866	22381979D-01	-2.3182176892531	D-02 1.896031486639D-0	2
2	-3.0509	75728615D-03	-3.3296995452011	D-02 3.779763018328D-0	2
3	1.0024	99912290D-02	1.045462457960	D-02 -9.650053061780D-0	3
4	-6.3989	53884751D-04	1.441395323793	D-03 -1.689635207883D-0	3
5	-7.7110	75007663D-05	-1.265328413655	D-03 1.172945655383D-0	3
6	-2.0499	83387516D-05	2.0447669984211	D-04 -1.600026196636D-0	4
7	6.4088	78869927D-06	-7.0525330952001	D-06 1.334460994662D-0	7
8	-3.9265	18102708D-07	-4.1618049476481	D-07 7.965715911231D-0	7
E-	Index:	3	4	5	
T-Index:					
0	7.3844	23345663D-02	-1.6968043652721	D-02 2.090058776152D-0	3
1	-3.6641	62784606D-03	-4.3563063742471	D-04 2.146755452836D-0	4
2	-1.6121	81968354D-02	3.4032827086631	D-03 -3.903169292552D-0	4
3	3.2372	64411283D-03	-4.804144315515	D-04 2.972541984716D-0	5
4	7.1639	05079239D-04	-1.561640485896	D-04 1.914209762341D-0	5
5	-4.1203	67467656D-04	7.0088942209421	D-05 -6.189441302916D-0	6
6	5.0334	44502959D-05	-7.181438176276	D-06 4.108056332733D-0	7
7	1.1709	85498327D-06	-4.6901259885751	D-07 8.503464517525D-0	8
8	-3.5942	45312260D-07	7.8146903345201	D-08 -9.611375720209D-0	9
E-	Index:	6	7	8	
T-Index:					
0	-1.3991	95453462D-04	4.7565873064591	D-06 -6.422505400847D-0	8
1	-2.5147	89071754D-05	1.2122908895971	D-06 -2.106280292156D-0	8
2	2.4577	27782342D-05	-7.9413492272631	D-07 1.025519706079D-0	8
3	-1.6949	73729097D-07	-5.1422514218641	D-08 1.423052870937D-0	9
4	-1.3054	10385352D-06	4.5447286185531	D-08 -6.246887421462D-1	0
5	2.7362	19149295D-07	-4.9740146553941	D-09 1.101207197277D-1	1
6	1.9746	98869452D-09	-1.0167132936121	D-09 2.621621803143D-1	1
7	-7.7631	41441637D-09	3.3923740945241	D-10 -5.632384756330D-1	2
8	6.7509	17451519D-10	-2.4759791108471	D-11 3.641741567554D-1	3
Max. rel	. Error:	3.9821 %			

	-	_		~
Mean	rel.	Error:	1.1463	00

12.53 Reaction 7.2b $H^- + p \rightarrow \ldots + H(2)$, Ratio $H(2)/H^-$, cold H^-

Multi-step hydrogenic population coefficients Data: K. Sawada, T.Fujimoto, [7] and R. Janev et al, 1987, and P.T. Greenland Production of initial H(n = 2), H(n = 3) from H^- via $\langle Hydhel 7.2.2 \rangle + \langle Hydhel 7.2.3 \rangle$, then CR redistribution in H Ratio of population coefficients: p(2)/nH-

E	-Index:	0	1	2
T-Index	:			
0	-1.926	343612010D+01	9.700693610120D-01	3.086732967457D-02
1	-1.496	546124174D-01	-1.162600124695D-02	2.092625890254D-02
2	1.400	659517460D-02	-1.908809713587D-03	4.474825228504D-03
3	3.712	727041944D-02	-3.993957797149D-03	-4.541915418960D-04
4	1.113	294261028D-02	1.611302161934D-03	-5.800693212819D-04
5	-2.330	535554138D-03	9.558196184261D-04	-6.770389256165D-04
6	-7.776	821303119D-04	-4.777860585666D-04	3.191698603955D-04
7	1.906	239407094D-04	6.855600321265D-05	-4.406502657234D-05
8	-1.086	976945156D-05	-3.231539920350D-06	1.960565560845D-06
E	-Index:	3	4	5
T-Index	:			
0	-1.026	100449251D-02	1.333365556163D-03	-4.164574430779D-05
1	-1.057	668991857D-02	2.292243771977D-03	-2.438392602831D-04
2	-3.880	343783906D-03	1.355446874959D-03	-2.254517664957D-04
3	1.729	089007572D-03	-5.825182714335D-04	8.058493209277D-05
4	3.161	122491789D-05	-4.291165076538D-06	3.882643863521D-06
5	1.355	992925800D-04	-1.875746974531D-06	-2.072988238143D-06
6	-7.101	794671976D-05	5.892592961569D-06	-1.070175076067D-07
7	9.542	955450383D-06	-7.940664442729D-07	2.114115776211D-08
8	-3.805	705631298D-07	2.128669195423D-08	9.157761577608D-10
E	-Index:	6	7	8
T-Index	:			
0	-4.925	686587468D-06	4.112831538264D-07	-8.777239592815D-09
1	1.320	368718562D-05	-3.516108767654D-07	3.593691259527D-09
2	1.896	658591425D-05	-7.769484207076D-07	1.231580177702D-08
3	-5.398	656503144D-06	1.737911735033D-07	-2.130553272068D-09
4	-6.162	993739156D-07	3.529468645256D-08	-6.926859162458D-10
5	2.283	983783682D-07	-9.387255029589D-09	1.353162447593D-10
6	-5.193	261748972D-09	-8.326872653843D-12	8.362383797066D-12
7	-2.705	240932212D-10	5.067994995276D-11	-2.001347795107D-12
8	-1.122	561005445D-10	1.928570020702D-12	3.288397756094D-14
Max. re	l. Error:	4.1304 %		

110111.	T O T •	DIIOI.	1.1001	0
Mean	rel.	Error:	.7570	00

Electron Temperature (eV)

12.54 Reaction 7.2c $H^- + p \rightarrow \dots + H(4)$, Ratio $H(4)/H^-$, cold H^-

Multi-step hydrogenic population coefficients Data: K. Sawada, T.Fujimoto, [7] and R. Janev et al, 1987, and P.T. Greenland Production of initial H(n = 2), H(n = 3) from H^- via $\langle Hydhel 7.2.2 \rangle + \langle Hydhel 7.2.3 \rangle$, then CR redistribution in H Ratio of population coefficients: p(4)/nH-

E-I	ndex:	0	1	2
T-Index:				
0	-2.96910	8713736D+01	1.931658904309D+00	7.005369877806D-02
1	8.58349	1624134D-01	-8.544233834909D-02	9.904671957939D-02
2	-3.32794	6567475D-01	1.355262241947D-02	-1.899077114113D-02
3	8.77262	3007048D-02	-4.247217004031D-03	6.314342474404D-03
4	-2.58239	4435391D-02	1.090757038295D-03	-1.202894310870D-03
5	6.74629	2673873D-03	-3.228772733572D-04	1.070577412178D-04
6	-1.13232	4670043D-03	6.889983086344D-05	-6.086331074514D-07
7	1.00683	8799981D-04	-5.193593477524D-06	-2.845251555754D-06
8	-3.59976	6107118D-06	3.508499294249D-08	3.027924280383D-07
E-I	ndex:	3	4	5
T-Index:				
0	-2.42213	4716752D-02	3.199185442634D-03	-6.987784095340D-05
1	-4.45003	6905348D-02	9.670609772772D-03	-1.101676052891D-03
2	8.39337	2221366D-03	-1.661524835400D-03	1.641367406906D-04
3	-2.63974	4634139D-03	5.083813172965D-04	-5.282312671120D-05
4	3.81897	4330343D-04	-6.097846279683D-05	6.274556790674D-06
5	9.03259	2725060D-06	-6.659380541156D-06	8.007827323926D-07
6	-7.24119	1756806D-06	1.656854215049D-06	-1.498873287066D-07
7	1.40111	5633607D-06	-2.121062436653D-07	1.534383868464D-08
8	-1.10149	6052033D-07	1.593127950555D-08	-1.277557055555D-09
E-I	ndex:	6	7	8
T-Index:				
0	-1.80388	4638427D-05	1.309228115068D-06	-2.572694262914D-08
1	6.59723	6559178D-05	-1.961355019834D-06	2.274461149865D-08
2	-8.18213	5682187D-06	1.912043686849D-07	-1.561456368451D-09
3	3.18496	8943859D-06	-1.061178779633D-07	1.506697376442D-09
4	-4.43207	3749742D-07	1.802283140716D-08	-2.998106690730D-10
5	-3.77099	8670281D-08	7.419022111792D-10	-5.644157060356D-12
6	7.33928	5822808D-09	-2.538540703677D-10	5.059927143765D-12
7	-7.93485	9405533D-10	3.738687857068D-11	-8.858974656396D-13
8	7.56729	3625031D-11	-3.326379990558D-12	6.790144662322D-14
Max. rel.	Error:	4.0429 %		
Mean rel.	Error:	1.7450 %		

12.55 Reaction 7.2d $H^- + p \rightarrow \ldots + H(5)$, Ratio $H(5)/H^-$, cold H^-

Multi-step hydrogenic population coefficients Data: K. Sawada, T.Fujimoto, [7] and R. Janev et al, 1987, and P.T. Greenland Production of initial H(n = 2), H(n = 3) from H^- via $\langle Hydhel 7.2.2 \rangle + \langle Hydhel 7.2.3 \rangle$, then CR redistribution in H Ratio of population coefficients: p(5)/nH-

E-II	ndex:	0	1	2
T-Index:				
0	-3.04388	0324651D+01	2.037032074318D+0	0 -5.086322906145D-02
1	1.01140	6665313D+00	-6.365628088545D-0	2 7.087018763490D-02
2	-4.73279	2128048D-01	-1.434223357911D-0	2 1.444177153118D-02
3	1.44074	5315416D-01	3.264873576448D-0	3 1.234505116701D-04
4	-4.08283	0889986D-02	1.991190906181D-0	3 -2.756435764540D-03
5	9.54154	8408277D-03	-9.069208554478D-0	4 6.996980010317D-04
6	-1.45411	7847671D-03	1.551884580262D-0	4 -5.857488300427D-05
7	1.19892	8707328D-04	-1.400228251698D-0	5 6.473439676219D-07
8	-4.03021	4875087D-06	6.097512779644D-0	7 4.415255128121D-08
E-I:	ndex:	3	4	5
T-Index:				
0	2.50973	3144867D-02	-6.315994199856D-0	3 8.827794491945D-04
1	-2.97534	5239990D-02	5.983399626204D-0	3 -6.277759777604D-04
2	-5.16630	5865235D-03	9.106705396634D-0	4 -8.761725049017D-05
3	-1.12325	0849126D-03	4.288583660416D-0	4 -6.890481712127D-05
4	1.14778	9672027D-03	-2.316365246467D-0	4 2.543759697649D-05
5	-1.99322	8761853D-04	2.517330858438D-0	5 -1.247794740929D-06
6	9.76211	8554856D-06	-3.741044970390D-0	7 -9.913305397062D-08
7	2.19674	1015054D-07	6.182578609139D-0	8 -2.188081446861D-08
8	-1.18056	5156491D-09	-1.449312603808D-0	8 3.350274299704D-09
E-I	ndex:	6	7	8
T-Index:				
0	-6.94276	8316956D-05	2.730469037199D-0	6 -4.155159141638D-08
1	3.36986	4501513D-05	-8.510546585606D-0	7 7.531215060388D-09
2	4.91433	7425208D-06	-1.501058689051D-0	7 1.891596830989D-09
3	5.52930	4847315D-06	-2.178898125651D-0	7 3.358437789658D-09
4	-1.55505	8635679D-06	4.945103866119D-0	8 -6.348990139489D-10
5	-1.03209	8974250D-08	3.032884418381D-0	9 -7.544164802502D-11
6	1.35696	8032839D-08	-6.737882205239D-1	0 1.229312195398D-11
7	2.26673	1611803D-09	-9.840633948791D-1	1 1.532952032542D-12
8	-3.07919	3750552D-10	1.282055029730D-1	1 -2.003506603284D-13
Max. rel.	Error:	3.6382 %		
Mean rel.	Error:	1.4968 %		

Electron Temperature (eV)

12.56 Reaction 7.2e $H^- + p \rightarrow \ldots + H(6)$, Ratio $H(6)/H^-$, cold H^-

Multi-step hydrogenic population coefficients Data: K. Sawada, T.Fujimoto, [7] and R. Janev et al, 1987, and P.T. Greenland Production of initial H(n = 2), H(n = 3) from H^- via $\langle Hydhel 7.2.2 \rangle + \langle Hydhel 7.2.3 \rangle$, then CR redistribution in H Ratio of population coefficients: p(6)/nH-

	E-I	ndex:	0	1	2
T-Inc	dex:				
	0	-3.0670	97488487D+01	2.133892956222D	+00 -1.858785381782D-01
	1	1.1079	95704752D+00	-7.267316900367D	-02 8.619894154229D-02
	2	-5.3450	11110243D-01	-3.782902464706D	-02 3.756478330674D-02
	3	1.7649	54640174D-01	-1.032649676351D	6.464524722712D-03
	4	-5.2024	91523226D-02	9.880352020439D	-03 -7.493150468782D-03
	5	1.0980	49582592D-02	6.531384081385D	-04 -4.330923663414D-04
	6	-1.2984	74536154D-03	-1.099967577090D	-03 7.673435067944D-04
	7	6.6410	85066002D-05	1.987746890586D	-04 -1.359755033628D-04
	8	-6.0556	72527870D-07	-1.099732061179D	-05 7.398032652292D-06
	E-I	ndex:	3	4	5
T-Inc	lex:				
	0	9.1841	12431405D-02	-2.187443850319D	-02 2.732957962088D-03
	1	-3.5805	17565764D-02	6.746409669729D	-03 -6.444562044629D-04
	2	-1.5269	15092790D-02	3.195158804825D	-03 -3.642351248993D-04
	3	-1.5916	69787688D-03	2.306297194231D	-04 -2.527875779410D-05
	4	2.34402	24954832D-03	-3.904912867153D	-04 3.759207667760D-05
	5	8.1914	45720958D-05	3.579949470965D	-07 -1.520984760597D-06
	6	-2.0016	00190074D-04	2.348421586345D	-05 -1.161204797043D-06
	7	3.4675	01043759D-05	-3.909320595026D	-06 1.690954968052D-07
	8	-1.8397	85030150D-06	1.966330012309D	-07 -6.837510677821D-09
	E-I	ndex:	6	7	8
T-Inc	dex:				
	0	-1.8682	96143542D-04	6.535291194065D	-06 -9.119318650851D-08
	1	3.0523	46096314D-05	-6.246714758968D	0-07 3.118274317587D-09
	2	2.3102	60448654D-05	-7.637664587365D	0-07 1.022317615231D-08
	3	1.9175	16778339D-06	-7.990930597360D	-08 1.329300639507D-09
	4	-2.0899	62077496D-06	6.184502696051D	-08 -7.491029220022D-10
	5	1.6315	98610791D-07	-6.823070866810D	0-09 1.018157208247D-10
	6	1.51912	22575792D-09	1.768275307240D	-09 -4.254302334326D-11
	7	2.5442	77095276D-09	-4.245685956755D	9.325245214987D-12
	8	-3.14712	28047635D-10	2.969365004153D	-11 -6.059328354768D-13
Max.	rel.	Error:	4.5793 %		
Mean	rel.	Error:	1.9756 %		

Electron Temperature (eV)

12.57 Reaction 2.0a $e + H_2 \rightarrow H_2^+ + \dots$, Ratio H_2^+/H_2

Multi-step hydrogenic density ratios Data: K. Sawada, T.Fujimoto, [7] and Janev et al, 1987, and P.T. Greenland

CR equilibrium ratio H2+ to H2 density (coll.rad model, Sawada/Fujimoto/Greenland) here: H2+ gain from electr. impact only

only contribution from EI on H2 and H2* to production rate of H_2^+

E-1	Index:	0	1		2	
T-Index:						
0	-1.9298	03964240D+01	2.0970065029	950D-01	-1.100904809661D	-01
1	1.7276	12905933D+01	-4.6626708598	33D-01	8.567341672326D	-02
2	-8.4380	25952533D+00	6.1151792971	10D-01	-1.153478632323D	-01
3	2.8833	89908864D+00	-4.2863619301	44D-01	6.596018559458D	-02
4	-7.4034	01021470D-01	1.8094420866	565D-01	-1.864042138902D	-02
5	1.3873	71448471D-01	-4.8791758959	09D-02	4.430141421894D	-03
6	-1.7462	17632264D-02	8.1518563392	270D-03	-1.015594807894D	-03
7	1.2875	61948974D-03	-7.5442094597	15D-04	1.374937928555D	-04
8	-4.1360	61327089D-05	2.9144435179	023D-05	-7.106408217685D	-06
E-I	Index:	3	4		5	
T-Index:						
0	4.4777	81641551D-02	-9.0608260892	295D-03	1.170547725039D	-03
1	-6.8273	68520293D-03	-3.6180604676	570D-03	6.852659500488D	-04
2	1.9934	57166448D-02	1.6438372027	14D-04	-3.516424328964D	-04
3	-1.3417	84022457D-02	1.5822012643	814D-03	-7.056994955968D	-05
4	1.8756	66968084D-03	-2.9786881559	016D-04	2.721069163086D	-05
5	1.4767	43155802D-04	-3.9550493880)00D-05	2.382368688632D	-06
6	6.2051	32641268D-06	7.2101786821	86D-06	-6.812476857444D	-07
7	-1.2226	77896703D-05	8.2470292593	344D-07	-5.043186962921D	-08
8	1.0412	67499432D-06	-1.1583749926	504D-07	9.052478729563D	-09
E-I	Index:	6	7		8	
T-Index:						
0	-8.8934	55666588D-05	3.4794549877	799D-06	-5.361512296401D	-08
1	-4.4734	04420068D-05	1.2096020162	239D-06	-1.069974187479D	-08
2	3.2078	86028645D-05	-1.1013059336	503D-06	1.299192188737D	-08
3	4.4314	89645883D-07	2.3268747976	53D-08	1.068518137706D	-10
4	-1.4284	13713222D-06	4.8451486450)34D-08	-8.048035605554D	-10
5	-5.7908	67265229D-08	-6.9860084323	31D-10	4.535659079263D	-11
6	3.2774	46170025D-08	-8.5835179635	518D-10	9.700723935742D	-12
7	2.0259	20058300D-09	-3.6557284307	01D-11	8.337869178540D	-14
8	-4.2800	94258996D-10	1.0631159357	64D-11	-1.030790224273D	-13
Max. rel.	Error:	1.8077 %				

Mean rel. Error: .3852 %

12.58 Reaction 2.0b $e + H_2(v = 0) \rightarrow H_2^+ + \dots$, Ratio H_2^+/H_2

Multi-step hydrogenic density ratios Data: K. Sawada, T.Fujimoto, [7] and R. Janev et al, 1987, and P.T. Greenland

CR equilibrium ratio H_2^+ to H_2 density (coll.rad model, Sawada/Fujimoto/Greenland) contribution from EI on H_2 and H_2^* plus from CX on cold $H_2(v = 0)$, $(E_{H_2}(v) = 0.1 \text{ eV})$ and assuming $n_e = n_p$, $T_e = T_p$

E	-Index:	0	1	2
T-Index	:			
0	-8.073	335051460D+00	6.423193640255D-0	3 -8.948271203923D-03
1	1.653	303173229D+00	-2.467726829997D-0	2 2.781981866915D-03
2	-2.823	571725913D+00	4.179798625064D-0	2 -3.843754761904D-02
3	3.9904	452244578D+00	3.234966368980D-0	2 1.652438305320D-02
4	-1.928	017324234D+00	-5.924941119276D-0	2 2.747810096639D-03
5	4.270	719810226D-01	3.111963342548D-0	2 -5.375451827926D-03
6	-4.448	144242484D-02	-7.757664930424D-0	3 2.077957627729D-03
7	1.689	930248766D-03	9.331136287171D-0	4 -3.275780863917D-04
8	1.023	775315217D-05	-4.333393780782D-0	5 1.830671388026D-05
E	-Index:	3	4	5
T-Index	:			
0	4.5822	288903630D-03	-1.133062383784D-0	3 1.472017794904D-04
1	2.885	192609023D-03	-9.313120366375D-0	4 1.193603851194D-04
2	1.457	779901878D-02	-2.689882985994D-0	3 2.781888663389D-04
3	-1.0962	201612859D-02	1.873511746692D-0	3 -1.169697988538D-04
4	5.0812	237207186D-03	-1.022266662048D-0	3 5.028620238286D-05
5	-1.087	834901368D-03	3.309186604685D-0	4 -2.068184308171D-05
6	-4.372	642244363D-05	-3.372497244723D-0	5 2.250956728263D-06
7	4.092	745909295D-05	-2.274671467977D-0	6 2.463960054850D-07
8	-3.393	709830706D-06	3.905523509303D-0	7 -3.774892100311D-08
E	-Index:	6	7	8
T-Index	:			
0	-1.0373	336914709D-05	3.752297970376D-0	7 -5.454015313711D-09
1	-7.5373	317404876D-06	2.293533267915D-0	7 -2.631009817091D-09
2	-1.566	116716437D-05	4.383284185329D-0	7 -4.647720359472D-09
3	3.575	003652413D-07	2.295739667060D-0	7 -6.354279184897D-09
4	1.852)56305253D-06	-2.235055431776D-0	7 5.044313531628D-09
5	-1.431	641793698D-07	4.978742338393D-0	8 -1.196745758163D-09
6	4.4333	372743456D-08	-7.031624330495D-0	9 1.525402495797D-10
7	-2.449	746761192D-08	1.051457900024D-0	9 -1.574612982461D-11
8	2.386	370809793D-09	-7.721695858310D-1	1 9.552566353384D-13
Max. rei	l. Error:	20.6614 %		

8.5812 %

Mean rel. Error:

this page is intentionally left blank

12.59 Reaction 2.0c $e + H_2(v) \to H_2^+ + \dots$, Ratio H_2^+/H_2

Multi-step hydrogenic density ratios Data: K. Sawada, T.Fujimoto, [7] and R. Janev et al, 1987, and P.T. Greenland

CR equilibrium ratio H2+ to H2 density (coll.rad model, Sawada/Fujimoto/Greenland) for vibrational population P(v) contribution from CX on cold H2(v) ($E_{H_2}(v) = 0.1$ eV) and EI on H2 and H2*

Should be larger than corresponding H11 ratio for contrib. from CX alone. Slightly violated due to fitting problem near 1-2 eV

	E-I	ndex:	0	1			2
T-Inc	dex:						
	0	-5.1791	18614571D+00	1.2860869	17362D-02	-1.24722	4025136D-02
	1	2.7243	90078109D+00	2.8341637	45797D-02	-3.86405	0364482D-02
	2	-4.3866	86018740D+00	-2.9260610	72808D-02	2.89487	8695435D-02
	3	2.2645	69877939D+00	1.8154382	59403D-02	-1.08559	6419844D-02
	4	7.2742	38145138D-02	-8.7114692	40181D-03	1.22848	2582919D-03
	5	-3.3323	79782334D-01	3.7377907	46246D-03	-2.68954	0529741D-04
	6	9.5263	27139861D-02	-1.0463335	32366D-03	2.54935	8736065D-04
	7	-1.0964	55316607D-02	1.4579924	01832D-04	-5.91204	8929304D-05
	8	4.6360	81955869D-04	-7.6215739	81592D-06	3.97356	5261183D-06
	E-I	ndex:	3	4			5
T-Inc	dex:						
	0	4.5336	79343348D-03	-8.3616355	10932D-04	8.55304	4625491D-05
	1	1.7066	52099436D-02	-3.6630384	23578D-03	4.20256	4138138D-04
	2	-9.4466	48200804D-03	1.5189961	06179D-03	-1.26599	7327758D-04
	3	3.4131	00865417D-03	-5.4144614	99166D-04	5.58390	4028460D-05
	4	-2.7837	12092681D-04	4.1185271	68273D-05	-1.41659	6336268D-05
	5	-7.6260	65770945D-05	3.5682285	89947D-05	-1.40631	5371249D-06
	6	-3.0595	60467433D-05	-3.4608933	23989D-06	4.06418	6524949D-07
	7	1.3032	39138604D-05	-1.0863830	20673D-06	6.16100	3040376D-08
	8	-1.0467	64002685D-06	1.2917130	97220D-07	-9.93251	7910526D-09
	E-I	ndex:	6	7			8
T-Inc	dex:						
	0	-4.9997	15093023D-06	1.5710985	67732D-07	-2.06081	3085997D-09
	1	-2.6625	84829521D-05	8.7950621	21815D-07	-1.18222	2955604D-08
	2	5.8543	99926391D-06	-1.4861226	53306D-07	1.68901	2430939D-09
	3	-3.4943	12204501D-06	1.1761518	28469D-07	-1.63123	9647294D-09
	4	1.4342	70108351D-06	-5.4494618	07998D-08	6.85655	5143001D-10
	5	-3.1973	42970575D-08	-4.5393010	68809D-10	9.97554	3797298D-11
	6	-3.3428	48157445D-08	2.4696224	08760D-09	-6.67557	2336239D-11
	7	2.2399	16154599D-10	-2.4553636	14572D-10	7.95411	5052237D-12
	8	3.4124	87324650D-10	1.7485634	36447D-12	-2.51465	2180013D-13
Max.	rel.	Error:	18.5554 %				
Mean	rel.	Error:	8.9531 %				

13 Appendix

References

- [1] A.B.Ehrhardt, W.D.Langer, PPPL 2477 (1987)
- [2] R.K. Janev, B. Langer et al. Springer Series on Atoms+Plasmas, Vol 4, 1987
- [3] A.C.Riviere, Nucl.Fus. 11 (1971), p363
- [4] C.Mahn, V.Welge, IPP 2/239, June 1978
- [5] Reiter, D., Eckstein, W., Giesen, G., Belitz, H.J., Database for recycling and penetration of neutral helium atoms in the boundary of a fusion plasma, Jül-2605 (1991)
- [6] Reiter, D. in "Atomic and Plasma Material Interaction Processes", eds. R.K. Janev, H.W. Drawin, Elsevier Science Publishers 1993
- [7] Sawada, K., Fujimoto, T., J. Appl. Phys. 78 (5), (1995) ,p2913
- [8] Bell et al., "Atomic and molecular data for fusion, part I: recommended cross-sections and rates for electron ionization of light atoms and ions" report CLM-R 216, UKAEA Culham, 1982
- [9] Bachmann, P., Reiter, D., Contrib. Plas. Phys. 35, (1995), 1, pp45
- [10] P.C. Cosby, "Electron-impact dissociation of nitrogen", J. Chem. Phys 98 (1993) 9544
- [11] E.M. Bahati, J.J. Jureta, D.S. Belic, H. Cherkani-Hassani, M.O. Abdellahi and P. Defrance, "Electron impact dissociation and ionization of N2+", J. Phys. B: At. Mol. Opt. Phys. 34 (2001) 2963
- [12] D. Rapp and P. Englander-Golden, "Total cross-sections for ionization and attachment in gases by electron impact. I. Positive ionization", J. Chem. Phys 43 (1965) 1464
- [13] D. Rapp, P. Englander-Golden and D.D. Briglia, "Cross-sections for dissociative ionization of molecules by electron impact", J. Chem Phys. 42 (1965) 4081
- [14] E. Brook, M.F.A. Harrison and A.C.H. Smith, J. Phys. B: At. Mol. Opt. Phys. 11 (1978) 3115
- [15] J.R. Petersen, A. Le Padellec, H. Danared et al., J. Chem. Phys. 108 (5), (1998), p1978
- [16] Greenland, T., Reiter, D., "The Role of Molecular Hydrogen in Plasma Recombination", Report, JUEL-3258 (1996), FZ-Jülich
- [17] Behringer, K., "Description of the Impurity Transport Code "STRAHL"". Report JET-R (1987) 08 and Report JET-R (1989) 03, JET Joint Undertaking, Abingdon Oxon OX 14 3EA
- [18] Schultz, D. in "Atomic and Molecular Processes in Fusion Edge Plasmas", ed.: Janev, R.K., Plenum Press, New York, 1995
- [19] Freeman, R., Jones, E., (1974), CLMR-137, Culham Laboratory report, Abingdon, England

- [20] T. Fujimoto, J. Quant. Spectrosc. Radiat. Transfer, 21 (1979) 439 and: M. Goto, J. Quant. Spectrosc. Radiat. Transfer, 76 (2003) 331
- [21] Kristic P. S., Schultz D. R., Physical Review A, 60 (1999), p2118
- [22] R.W.P. McWhirter, A.G. Hearn, Proc. Phys. Soc. 82 (1963), p641