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Abstract

The problem of plasma-wall interaction and impurity control is one of the remaining criti-
cal issues for development of an industrial energy source based on nuclear fusion of light
isotopes. In this field sophisticated integrated numerical tools are widely used both for
the analysis of current experiments and for predictions guiding future device design. The
present work is dedicated to the numerical modelling of the edge plasma region in divertor
configurations of large-scale tokamak fusion devices. A well established software tool for
this kind of modelling is the B2-EIRENE code. It was originally developed for a relatively
hot (≥ 10 eV) “high recycling divertor”. It did not take into account a number of physical
effects which can be potentially important for “detached conditions” (cold, - several eV,
- high density, - ≈ 1021 m−3, - plasma) typical for large tokamak devices. This is espe-
cially critical for the modelling of the divertor plasma of ITER: an international project of
an experimental tokamak fusion reactor to be built in Cadarache, France by 2016. This
present work is devoted to a major upgrade of the B2-EIRENE package, which is routinely
used for ITER modelling, essentially with a significantly revised version of EIRENE: the
Monte-Carlo neutral transport code.

The main part of the thesis address three major groups of the new physical effects
which have been added to the model in frame of this work: the neutral-neutral collisions,
the up-to date hydrogen molecular reaction kinetics and the line radiation transport. The
impact of the each stage of the upgrade on the self-consistent (between plasma, the neutral
gas and the radiation field) solution for the reference ITER case is analysed. The strongest
effect is found to be due to the revised molecular collision kinetics, in particular due to
hitherto neglected elastic collisions of hydrogen molecules with ions. The newly added
non-linear effects (neutral-neutral collisions, radiation opacity) are found to be quite sig-
nificant for ITER conditions (large size and density) as well, despite the fact that their
experimental identification in the presently available smaller devices (including JET) is
very difficult.

An experimental validation of this particular package which is used for the ITER design
has been carried out for a series of discharges at the Joint European Torus (JET) tokamak
(UK, Culham). A relatively good (within a factor 2) agreement for the outer divertor has
been found. At the same time, a significant discrepancy between the modelling and the
experiment is seen in the inner divertor. As in the case of ITER the model for molecular
kinetics has a significant impact on the solution.

The new version of the coupled code (SOLPS4.2) has been made available to the ITER
International Team and is now extensively used there. It has already provided significant
revisions of currently predicted divertor operational scenarios.
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0.1 Introduction

0.1.1 Fusion research

The topic of this work is numerical modelling of the divertor plasma of tokamak fusion
devices. Therefore the terms “fusion”, “tokamak” and “divertor” should be explained first.

The ultimate goal of the fusion energy research is creation of a new industrial-scale
energy source based on the nuclear fusion of light elements. Due to repulsive Coulomb
forces acting between charged nuclei a fusion reaction can only occur if the kinetic en-
ergy of the reagents is high enough: tens of kilo-electron volts. The reaction easiest to
achieve is the DT reaction D+T→ 4He+n+17.6 MeV. This reaction can be efficient already
when the average kinetic energy (the temperature) of the reagents is around 10 keV [1],
Chapter 1, [2]. For such high temperatures the matter forms a mixture of stripped ions
and electrons known as a hot plasma. The principal problem of the fusion research is
how to sustain the reaction which can produce industrially relevant amount of energy in a
controllable way. Individual fusion reactions have been routinely demonstrated on particle
accelerators since 1930th but a net positive energy gain can not be achieved in this way.

Achieving a positive energy release, that is, obtaining more energy from the fusion
reactions than it was spent to create the hot plasma, is called the break-even. To reach
the break-even the plasma parameters have to meet the so called Lawson criterion. It
states that the nτ product must exceed roughly 1020 m−3 · s [2]. Here n is the plasma density
and τ the time scale of the energy loss from the plasma. Presently a modified version of
the Lawson criterion, the so called triple product, is used more frequently, see e.g. [2].

The Lawson criterion shows that there are basically two ways to achieve the break-
even. One can try to create an extremely dense plasma during short time. This principle
is exploited in inertial confinement (inertial fusion) which is based on the compression of
small pellets by intense laser radiation or ion and electron beams [3]. In such devices the
plasma exists only for nano-seconds but its density can reach 1030 m−3 (higher than the
solid-state density).

The alternative is to confine a not so dense plasma for relatively long time, ensuring
its good thermal insulation. This approach is realized in magnetic confinement devices. A
charged particle in magnetic field gyrates around the filed lines due to Lorentz force. The
magnetic field of several Tesla allows to “suspend” the plasma, isolating it from the solid
walls. The devices of this kind have plasma densities only up to 1020 m−3 but the energy
confinement time is in the range of seconds.

Figure 1: The tokamak mag-
netic configuration (repro-
duced from [3]).

Different kinds of devices with magnetic confinement
have been studied in the past and are studied now:
tokamaks, stellarators, magnetic mirrors, reversed field
pinches and others [3]. Tokamaks represent the main-
stream of modern fusion research. They are the best stud-
ied and the most extensively developed devices. The first
projects of fusion reactors (the devices targeting at the in-
dustrial level energy production) are based on this concept.
However, a significant progress has been made recently for
other types of devices as well, especially for stellarators [4].

The tokamak magnetic configuration was first proposed
in the USSR by A. Sakharov and I. Tamm [5]. It became the
leading type of devices in fusion research since 1967 when
the electron temperature exceeding 1 keV was first ob-
served in tokamak T-3 in Kurchatov Institute, Moscow [6].
A schematic of the tokamak geometry and magnetic field is

shown in Figure 1. A magnetic field inside a long coil (a solenoid) is parallel to its axis.
In the absence of collisions the charged particles could escape from such a magnetic field
only through the ends of the solenoid. To avoid these end losses, one can connect both
ends of the solenoid making the geometry toroidal. This kind of magnetic field in a toka-
mak, which is created by external coils is called the toroidal field Bφ. The toroidal field
is inherently non-uniform. In particular, it is higher at the inner side of the torus. In a
non-uniform magnetic field different kinds of drift motion are possible e.g. gradient drift
and curvature drift [7, 8]. The drifts can effectively transport particles across the magnetic
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field even in the absence of collisions.

This drift motion can be mitigated by inducing a plasma current in the toroidal direc-
tion. This current creates a component of the magnetic field in the poloidal plane (poloidal
field) Bθ, Figure 1. The poloidal plane is the plane containing the torus axis. It can be
shown that the presence of the poloidal magnetic field mitigates the drift motion [5], see
e.g. [8]. In real devices the poloidal field is created not only by plasma current, but also
by extra magnetic coils (poloidal field coils). They are used to enhance stability, to allow
an active feedback control of the plasma equilibrium and to shape the magnetic field. The
poloidal field is typically an order of magnitude lower than the toroidal one. The toroidal
and poloidal magnetic field together form helical magnetic field lines. Most of them do
not return to the initial point after a finite number of turns around the torus, but instead
fill a closed surface. One speaks therefore not about the field lines but about the nested
magnetic surfaces (flux surfaces).

In most of the modern tokamaks the plasma is elongated in vertical direction to make
more effective use of the magnetic field (in this way the plasma is pushed towards the
high field region). The distance between the axis of the torus and the centre of gravity of
the poloidal projection of the plasma volume is called the major radius R, Figure 1. The
shortest distance between this centre of gravity and the boundary of the plasma volume is
called the minor radius a. The toroidal current in tokamaks is induced by the alternating
magnetic flux created by the vertical central solenoid: the so called inductive current drive.
Therefore, the tokamak is an intrinsically pulsed machine, although the duration of the
pulses can be very long (up to hundreds seconds) and a non-inductive current current
drive is also possible. The toroidal current can also heat the plasma (ohmic heating) but
this heating becomes ineffective for temperatures higher than ≈1.5 keV because of the
low plasma resistivity at high temperatures. To reach higher temperatures (10 keV and
higher), the auxiliary heating is used. It can be either injection of fast neutral particles
(Neutral Beam Injection, NBI) or the resonance electromagnetic waves (Electron Cyclotron
and Ion Cyclotron Resonance Heating, ECRH and ICRH).

The transport of the charged particles along the magnetic field (magnetic surfaces) can
be described by a theory which considers only collisions between particles, - the classical
theory [9, 10, 11]. However, the experimentally observed transport across the magnetic
field is much stronger (at least an order of magnitude) than predicted by the classical the-
ory or a more advanced theory which takes into account the non-uniformity of the mag-
netic field (the neo-classical theory, see [1], Sections 4.4-4.11). The origins of this so-called
anomalous transport are still being extensively studied. The basic reason (according to the
current knowledge) is the presence of the self-consistent perturbations of electric field and
magnetic fields in plasma (turbulent transport), see [1], Sections 4.16-4.23. Despite fact,
that the mechanisms of the anomalous transport are still not completely understood, a
significant progress has been made in past two decades in improving the plasma confine-
ment. The conditions which satisfy Lowson criterion for the break-even have been already
achieved on three machines: JET (Europe), JT-60 (Japan) and TFTR (USA), see [1], Chap-
ter 12. The D-T operation has been tested on two of them (JET [12] and TFTR).

0.1.2 Scrape-off-Layer and Divertor

One of the conditions which must be satisfied to make the fusion reactor efficient is a
sufficiently low level of high-Z impurities in plasma. Here Z is the charge number of the
chemical element. The major, principally unavoidable mechanisms of the power loss from
the hot centre of the plasma volume (the so called core plasma) is the bremsstrahlung
radiation. The radiated power for bremsstrahlung scales as ∼ Z2. Therefore, even the
presence of a small amount of high-Z impurities can boost up the radiation losses. The
maximum tolerable concentration for carbon it is ≈2 %, for neon ≈0.5 %, for iron ≈0.05 %
and for tungsten <0.01 % [13].

The main source of impurities is the sputtering of the plasma-facing components by
fast particles. Plasma-facing components (the first wall) are the elements of the structure
which receive directly the particle fluxes from the plasma. The amount of impurities can be
controlled by reducing the amount of sputtered material and by hindering its penetration
into the main plasma. The choice of the wall material itself is also important: low-Z ma-
terials (beryllium, carbon) or materials with low sputtering yield (tungsten, molybdenum)
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are preferable. This is, however, only a partial solution, especially for a fusion reactor
which has also inherent source of helium produced by the fusion reaction (the helium
ash). The impurities, therefore, have to be constantly removed from the plasma. This can
be achieved by organising a particle throughput inside the vacuum vessel: puffing in the
pure hydrogen isotopes and pumping out the mixture including all impurities. In this way
the amount of impurities in the plasma can be sustained on an acceptable level.

Figure 2: Limiter configura-
tion of SOL plasma

Both the effectiveness of wall sputtering and the pump-
ing of impurities and their penetration into the plasma core
are determined by the processes which take place at the
plasma edge. This region is also called the Scrape-Off-
Layer (SOL). It can be approximately defined as the plasma
region significantly affected by the recombined and sput-
tered neutrals coming from the wall. The properties of this
region have been extensively studied in the last 20 years
on different machines. A comprehensive review of the cur-
rent state of the SOL physics can be found in the book of
Peter Standgeby [14].

Two main configurations of the SOL plasma are used
presently in tokamaks: a limiter configuration and a diver-
tor configuration. The advantages and drawbacks of each
configuration are outlined in [14], Section 5.1. The limiter

is a part of the wall which is “touched” by one of the magnetic surfaces, Figure 2. This sur-
face is called the last closed magnetic surface (LCMS). Magnetic surfaces of larger radius
intersect the limiter. The charged particles on those surfaces have a high probability to
make it on the solid surface where they are neutralised. Most of them return to the plasma
and some part can be pumped out as a neutral gas. This process of the neutralisation of
charged particles with subsequent re-ionization is called “recycling”. The disadvantage of
the limiter configuration is that the limiter is very close to the main plasma. The plasma
near the limiter surface is still hot (tens eV). As a result, the sputtering is very efficient and
the sputtered material can easily contaminate the main plasma. The pumping efficiency
is low because of low achievable density of the neutral gas.

These problems are solved in the divertor configuration which is shown in Figure 3.
This magnetic configuration has a separatrix. The sepatartix is a surface which divides
regions of the magnetic field with different topology: closed magnetic surfaces in the core
and open magnetic surfaces at the edge. In the divertor configuration the area where
the charged particles impinge on the wall (the area of intense plasma-wall interaction) is
located farther from the main plasma. It can be shown, that in this case the heat flux
from the main plasma is transported mainly by thermal conduction unlike to limiter SOL
where the convection dominates, see [14] Section 5.2 or [15]. As a result, a significant
temperature gradient develops and the plasma temperature in front of the solid surface
drops to a few eV. This significantly reduces the target erosion (physical sputtering). In
addition, the increased distance hinders the penetration of the sputtered particles into
the main plasma. In the divertor configuration a relatively high neutral pressure at the
entrance to the pumping slot (up to 10 Pa and more) can be achieved, thus increasing the
efficiency of the pumping and removal of impurities.

Some terms related to the SOL plasma which and used throughout this Thesis are
explained below. The point of the self-intersection of the separatrix in the poloidal plain is
called the X-point. The configuration shown in Figure 3 has only one X-point. It is called
thus a single-null divertor configuration. Configurations with two X-points (double-null
configurations) are also possible. The solid surfaces intersected by the magnetic surfaces
are called the divertor targets. The volumes in front of them are called the inner and the
outer divertor. The region beneath the X-point is called the Private Flux Region (PFR),
Figure 3. The distance from one target to another along the magnetic field is called the
connection length. The toroidal field is much larger than the poloidal one, therefore this
length can be an order of magnitude larger than the perimeter of the magnetic surfaces
seen in the poloidal cross-sections and reaches 100 m and more for large machines. The
direction normal to the magnetic surfaces is called the radial direction. The direction along
the magnetic field is called the parallel direction and its projection on the poloidal plane
is called the poloidal direction. In this Thesis the consideration will be focused mainly on
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the divertor region. To stress this, the term “divertor plasma” will be often used instead of
“SOL plasma”.

Figure 3: Divertor configuration of
SOL plasma

Besides the advantages listed above, the diver-
tor configuration has one more important feature.
The so called H-mode, - the operational regime with
improved confinement, - was first discovered and
now can be stably reproduced on divertor machines
(starting from ASDEX). This to a large extent prede-
fined the modern shift in favour to divertor configu-
ration which is used in most of the large tokamaks.
The H-modes were obtained on limiter machines as
well (TORE-SUPRA, TEXTOR) but the improvement
of confinement is much less pronounced there. At
the same time, the divertor has some disadvantages
compared to the limiter. In particular, the divertor
itself takes a large part of the ”expensive” magnetic
volume which reduces the efficiency of machine.

A severe problem of the divertor which is espe-
cially important for the reactor conditions is a strong
concentration of the target heat loads. The conduc-
tive heat flux follows the magnetic surfaces. Its radial
dispersion comes mainly from the cross-field trans-
port and therefore small. As a result, the effective
wetted area which receives most of the load is much
smaller than the geometrical size of the targets. The
heat flux density can reach 10 MW/m2 and more sig-

nificantly complicating the design. However, a significant fraction of the incoming heat
flux can be disposed due to radiation. In this case it may be spread on a much larger area.
The hydrogen radiation is usually not effective but the radiation of impurities can dissipate
50-70 % of the total heat flux. It can be either the radiation from the sputtered impurities
(e.g. carbon) or the impurities which are seeded specially for this purpose (Ne, Ar, N2). For
divertor configurations the contamination of the main plasma can still be acceptable even
in this case.

A radical solution of the problem of divertor heat loads can be found in achieving the
so called divertor detachment. It is known from experiment that different regimes of the
divertor operation may appear depending on the level of density. In experiment this latter
is usually defined as the average density along a line-of-sigh which intersects the core
plasma <n>. Three different regimes can be seen as the density <n> increases:

1. Sheath-limited (low recycling) regime similar to the operation of limiter. The heat
flux is transferred to the target mainly by convection. The density at the target nt

increases nearly linearly with < n> and the temperature at the target Tt is high (>10
eV).

2. Conduction-limited (high recycling) regime. The density nt increases nearly quadrati-
cally with <n>, the temperature Tt decreases.

3. Detached regime (detachment). The density nt saturates (the so-called rollover) and
then starts to decrease.

More precisely, the experimental features of detachment can be defined in the following
way. Detachment is characterised by a decreasing ion flux on the divertor targets as <n>

increases, whereas the Hα radiation continues to increase, see [14], Chapter 16. A strong
pressure drop from upstream to the targets can be also seen. One distinguishes between
the partial detachment, when the maximum ion flux density starts to decrease, and the
full detachment, when the total ion flux starts to decrease. Detachment is observed in
almost all divertor tokamaks. The plasma at the inner target of large machines is normally
detached and it is possible to achieve the detachment of the outer target as well [16, 135].

Understanding the divertor detachment is still an active research area. But it is already
clear that the detachment allows to reduce the peaking of the incident target heat flux. It
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is therefore a desirable mode of operation for reactor conditions. Most of the calculations
shown in this work have been done for the detached mode of operation.

The SOL plasma in the case of the H-mode does in fact never reach steady-state even
approximately. It is permanently perturbed by the so-called Edge Localised Modes (ELMs):
periodic bursts of energy and particles expelled from the core plasma. As it is clear at
present, the ELMs can carry a large fraction of energy (up to 30-40 % of the total SOL
energy input, see e.g. [18]) and can be seriously dangerous (for the plasma facing compo-
nents) especially for large machines. The physics of ELMs is still not completely under-
stood and their modelling from first principles is a challenging area of research, see e.g.
the recent review [19].

In this work only the steady-state modelling without any kinds of transient events is
considered. The results should be thus understood as obtained for the inter-ELM period.
In principal, it is possible to estimate the response of the SOL plasma on ELMs using the
similar software tools as used in this work. This can be done applying periodic perturba-
tions to the transport coefficients, see e.g. [20]. There are also other kinds of instabilities
which may occur in the SOL plasma, e.g. formation of MARFE (Multifaceted Asymmetric
Radiation from the Edge): strongly radiating blobs of relatively cold and dense plasma,
see e.g. [14], Chapter 22. All those instabilities are not considered in this work as well,
although their modelling using the same codes is possible.

It should be pointed out that the problem of plasma-wall interaction and the edge
plasma is to a large extent universal for all kinds of magnetic confinement devices (toka-
maks, stellarators etc.). It becomes especially serious for reactor conditions. Moreover, the
progress in improving the plasma confinement makes this problem more and more severe.
The findings made in this field for specific devices and specific conditions may, therefore,
have a broader area of application.

0.1.3 Motivation and outline of the thesis

The SOL plasma is a complex system. Its detailed description has to be at least 2D in
space and includes mutual influence of plasma transport and neutral recycling. A quan-
titative analysis of the SOL and the prediction of its behaviour are impossible without
numerical modelling. Presently the ”standard” configuration which is used for such an
analysis is a combination of a finite-volume fluid code describing the plasma transport
and a Monte-Carlo code to describe the transport of neutral particles. Fluid-diffusion
models are applied sometimes for the neutrals as well. A first 2D fluid model for the SOL
and divertor plasma coupled to a Monte-Carlo code for neutrals was presented in [21].
The B2-EIRENE code used in the present work was originally developed by D. Reiter and
M. Baelmans [22, 23, 24]. It is based on 2D plasma transport code B2 by B. Braams [25]
and the Monte-Carlo neutral transport code EIRENE, developed by D. Reiter et al. [26, 27].
This package was later further developed at IPP Garching under name SOLPS [28]. This
is the main code package which is used in the European activities on fusion edge plasma
modelling. The EDGE2D code is an analogue of B2 developed for JET [29, 30]. It is
currently used with a Monte-Carlo neutral code NIMBUS [31] but work is in progress to
replace NIMBUS by EIRENE. In the US the fluid plasma code UEDGE [32] is usually ap-
plied for SOL modelling, sometimes in combination with the Monte-Carlo neutral code
DEGAS-2 [33] (analogue of EIRENE).

The B2-EIRENE code is the software tool which is used to simulate the divertor plasma
of ITER: an international project of the next-step tokamak fusion device targeting to
demonstrate the technical and economical feasibility of industrial fusion power produc-
tion. This code was originally designed for the so called high recycling mode of divertor
operation with relatively low density (≈ 1014 cm−3 and less) and high temperature (ten eV
and more). The B2.4-EIRENE code which was used previously to model the ITER divertor
plasma did not take into account some physical effects which are important for divertor
conditions with higher density (≈ 1015 cm−3) and lower temperature (from several eV to
below 1 eV). In particular, the effects related to the hydrogen molecular chemistry and the
non-linear effects (neutral-neutral collisions and the line radiation opacity).

The goal of this work was an upgrade of the code which extends its range of applica-
bility for the detached divertor conditions and hence for the current ITER divertor design
concept. The corresponding options were already implemented in EIRENE separately from
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each-other. The task was to combine them together in one coupled code self-consistent
between plasma, neutral gas and radiation field.

This thesis incorporates the results of the following previous works. The model for
neutral-neutral collisions based on a so called BGK approximation [34, 35, 36, 37]. It
was implemented in EIRENE by Christoph May for his PhD Thesis [38, 39]. The im-
proved molecular reaction kinetics is based on the Sawado-Fujimoto [40, 41] model for
the chemistry of hydrogen molecules, with vibrational kinetics added by D. Reiter and
P. Greenland [42, 43]. The description of elastic collisions was developed by P. Bachmann
and D. Reiter [44]. The photon transport model coupled to atomic kinetics was first im-
plemented by Sven Wiesen in the framework of his PhD Thesis [45, 46, 47] and by Petra
Börner for her Diploma Thesis [48, 49] for fixed plasma conditions. It had to be signifi-
cantly modified for the purpose of this thesis, in which a self consistent solution is sought.

The thesis is organised as follows. Chapter 1 contains a general description of the B2
(Section 1.1) and EIRENE (Section 1.2) codes and their application for ITER, Section 1.3.
Chapter 2 describes the model for neutral-neutral collisions. The up-to date model for
molecular kinetics is described in Chapter 3. Chapter 4 is devoted to the model for ra-
diation transport and its coupling with atomic kinetics. In the description of each model
special attention is paid on the underlying physics and on the scope of validity. An exam-
ple of the effect produced for the calculated ITER plasma (in the self-consistent modelling)
is shown for each new model feature. The final impact of the upgraded model on the
predicted operational scalings of the ITER divertor is shown in Chapter 5. The first ex-
perimental validation of the upgraded package is discussed in Chapter 6. Most of the
technical information about implementation of the described models in the code can be
found in Appendices.

The package developed in frame of this Thesis is indexed as SOLPS4.2. It is meanwhile
extensively used now by the ITER International Team (without photon opacity), see recent
publications [50, 51, 52].



Chapter 1

B2-Eirene modelling

1.1 The B2 code

1.1.1 Equations

The B2.4 code solves a set of fluid equations describing the 2-dimensional radial-poloidal
transport of a multi-species plasma with toroidal symmetry. The code was originally de-
veloped by Bastian Braams in the framework of his PhD thesis [25].

The general form of the fluid equations for a single-ion plasma is the following [24, 25]:

∂ni

∂t
+ div(Vini) = S i

n (1.1)

∂ne

∂t
+ div(Vene) = S e

n, (1.2)

∂

∂t
(miVini) + ∇· (miniViVi) = −∇pi − ∇·Πi + Zieni (E + Vi × B) + Ri + S mu|| (1.3)

−∇pe − ene (E + Ve × B) + Re = 0 (1.4)

∂

∂t

(

3

2
niTi +

mini

2
V2

i

)

+ div

([

5

2
niTi +

mini

2
V2

i

]

Vi + qi

)

+ ∇(Πi · Vi) = (eniZiE − R) · Vi − Qei + S i
E (1.5)

∂

∂t

(

3

2
neTe

)

+ div

(

5

2
neTeVe + qe

)

= −eneE + R · Vi + Qei + S e
E (1.6)

Equations (1.1), (1.2) are the continuity equations for ions and electrons, Equations (1.3), (1.4)
are the momentum balance equations and (1.5), (1.6) a the energy balance equations. The
definitions of vector and tensor operations can be found in Appendix C. Note in particular
that VαVα defines a tensor called dyadic but not a scalar product.

The following notations are used:

ne and ni are the density of the electrons and ions;

Ve and Vi are the average (drift) velocities of the electrons and ions;

Te and Ti are the electron and ion temperatures (expressed in energy units);

mi, Zi are the mass and charge number of the ion;

pe = neTe, pi = niTi are the pressure of ion electrons and ions;

B, E are the magnetic induction and the strength of electric field;

Π is the divergence-free part of the stress tensor;

Re, Ri are the friction forces between electrons and ions;

qi and qe are the ion and electron heat fluxes; Qei = kei (Ti − Te) is the energy exchange

rate between ions and electrons;

13
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S n, S mu|| , S e
E
, S i

E
are the sources of particles, parallel momentum, electron and ion energy

due to interaction with neutrals.

The friction forces Re, Ri were calculated in [11]:

R = Re = −Ri = ene

(

j||

σ||
+

j⊥

σ⊥

)

− 0.71ne∇||Te −
3

2

en2
e

σ⊥B2
[B.∇Te] (1.7)

Here j = eniVi − eneVe is the electric current, σ is the electric conductivity, signs || and ⊥
denote directions parallel and perpendicular to magnetic field.

The classical heat fluxes qi and qe, which were calculated in the same work [11], take
the form:

qi = −ki
||∇||Ti − ki

⊥∇⊥Ti + ki
∧

[

B

B
.∇⊥Ti

]

(1.8)

qe = −ke
||∇||Te − ke

⊥∇⊥Te + ke
∧

[

B

B
.∇⊥Te

]

− 0.71
Te

e
j|| −

3

2

Te

eωeτeB

[

B.j⊥
]

(1.9)

Here k are the thermal conductivities, subscript ∧ denotes diamagnetic direction which
is perpendicular to both B and ∇Te. The numerical coefficient 0.71 in Equations (1.7-1.9)
corresponds to ions with Z = 1. The values for other Z can be found in [11], Chapter 2.

The set of equations (1.1)-(1.6) is simplified for toroidal geometry. Quasineutrality of
plasma and the absence of electric currents (ambipolarity) are assumed. The viscosity
tensor Π is taken in Newton form with different viscosity coefficients parallel and perpen-
dicular to magnetic field, η|| and η⊥. Therefore, the Equation (1.3) in the parallel direction
takes the form of the Navier-Stokes equation. For the perpendicular direction only dif-
fusion transport is considered, see Equation (1.13) below. This version of B2 code does
not take into account classical drifts (EXB drift, curvilinear drift etc.). More recent ver-
sion B2.5 [28] and later do have this additional feature, but the level of maturity of these
extensions is not yet sufficient for routine ”design” applications.

For numerical solution the equations are transformed to the so called “toroidal-poloidal-
radial” coordinate system. The detailed description of the different kinds of transforma-
tions applied for SOL modelling can be found in [24]. In the transformed coordinate system
the equations are expressed using metric coefficients hx, hy and g:

hx =

∣

∣

∣

∣

∣

∂r

∂x

∣

∣

∣

∣

∣

, hy =

∣

∣

∣

∣

∣

∂r

∂y

∣

∣

∣

∣

∣

,
√

g = hxhy (1.10)

Here r = {x′, y′, z′} are the Carthesian coordinates and x and y are the poloidal and radial
coordinate respectively. The poloidal coordinate surfaces are the projections of the mag-
netic flux surfaces to the poloidal plane, the radial coordinate is directed perpendicular to
the magnetic surfaces. The velocity is represented by its two components u and v. Veloc-
ity u is the projection of the parallel velocity u|| into the poloidal plane (poloidal velocity).
Velocity v is the component of velocity perpendicular to magnetic surface (radial velocity).
In the absence of drifts, the parallel velocity can be expressed as u|| =

B
Bθ

u where Bθ is the
projection of magnetic field into the poloidal plane.

Finally the set of equations, generalised for multi-species plasmas, takes the following
form [25].

Continuity equation:
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n (1.11)

Momentum balance equation for the parallel direction:
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(1.12)

Here ci and ce are the coefficients of the thermal force (this force can be important for
impurities), Fαβ is the friction force between species α and β, Ze f f is the effective charge:

Ze f f =

∑

α Z2
αnα

∑

α Zαnα
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Diffusion equation in the radial direction (Dn and Dp are the diffusion coefficients):

vα = −
Dα

n

hy

∂

∂y
(ln nα) −

Dα
p

hy

∂

∂y
(ln pα) (1.13)

Equations (1.11)- (1.13) are taken for each ion species α.
Energy balance for electrons:
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Energy balance for ions:
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It is assumed that all ions have the same temperature Ti, ni =
∑

α nα.
In the Equations (1.11)-(1.15) the subscript x denotes the transport coefficients in the

parallel direction, and the subscript y stands for the perpendicular direction.
The electron density and average velocity are found from the conditions of quasi-

neutrality and ambipolarity:

ne =

∑

α

Zαnα, ue =
1

ne

∑

α

Zαnαuα, ve =
1

ne

∑

α

Zαnαvα (1.16)

1.1.2 Transport coefficients

Classical transport coefficients are used for the description of parallel transport. The
transport coefficients for a single-ion plasma can be found in [53]. They are expressed in
terms of two basic collision times. The collision time for electron-ion collision (for single-
component plasma, ne = Zni):

τe =
3
√

meT
3/2
e

4
√

2πniZ2e4 lnΛ
= 3.44 · 1011 T

3/2
e

Zne lnΛ
(1.17)

The collision time for ion-ion collisions:

τi =
3
√

mpmiT
3/2
i

4
√
πZ4ni lnΛ

= 2.09 · 1013
T

3/2
i

√
mi

Z4ni lnΛ
(1.18)

All the formulas with reduced numerical coefficients throughout this subsection yield the
result (by default) in SI units. They are given for temperatures in eV and densities in m−3.
The ion mass mi is expressed in proton masses mp (amu). Formulas taken from [53] use
CGS units.

The Coulomb logarithm lnΛ is a factor which is used to take into account long range
character of the collisions [9, 10]. It is calculated using the approximation:

lnΛ = 15.2 − 0.5 ln
ne

1020
+ ln

Te

1000
(1.19)

The typical value is 10..15.



16 Chapter 1. B2-Eirene modelling

Classical thermal conductivity was calculated by Spitzer and Härm [9]. Electron ther-
mal conductivity:

ke
|| = 3.2

neTeτe

me

=
2.4

√
2πmee4

T
5/2
e

Z lnΛ
= 3.1 · 104 T

5/2
e

Z lnΛ
(1.20)

Ion thermal conductivity:

ki
|| = 3.9

niTiτi
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10.7

4
√
πmpe4

T
5/2
i√

miZ4e4 lnΛ
= 1.25 · 103

T
5/2
i√

miZ4 lnΛ
(1.21)

Formulas (1.20) and (1.21) with numerical coefficients give the result in W/(m·eV). For the
hydrogen ion ki

|| is a factor ≈30 smaller than ke
|| .

The formula for parallel viscosity was obtained by Braginskii [11]:

η|| = 0.96niTiτi =
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e4

√
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Z4 lnΛ
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√
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Z4 lnΛ
(1.22)

This is the dynamic viscosity expressed in kg/m3·s (P·s).
Expressions (1.20)-(1.22) can be generalised for the case of multi-species plasma [25]:
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Formulas (1.23)-(1.25) represent a simplification of the complete multi-species transport
theory. They are valid for the case if one species dominates [25].

Energy exchange coefficient kei is taken from [53] and generalised for the multi-species
case:
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Formulas (1.17) and (1.18) allow to estimate the Mean Free Path (MFP) and thus to
evaluate the validity of the fluid approximation. Corresponding expressions for electrons
and hydrogen ions are:

MFPe = ve
T · τe = 2.5 · 1017 T 2

e

ni lnΛ
, MFPi = vi

T · τi = 2.05 · 1017
T 2

i

ni lnΛ
(1.27)

Here ve
T
=

√

3Te

me
and vi

T
=

√

Ti

mi
are the estimates if the electron and ion thermal velocities.

Three characteristic regions can be discussed for the SOL plasma of a JET or ITER size
devices. In the upstream region the density is relatively low and the temperature is rel-
atively high. Substituting ne = 1019 m−3 and Te = 100 eV into formula (1.27) one gets MFPe

≈ 18 m. This is smaller than connection length which can be 50-200 m for large machines.
At the entrance to the divertor region the plasma cools down and the density becomes
somewhat higher. Substituting ne = 1020 m−3 and Te = 10 eV yields MFPe = 2.4 cm. This is
small compared to the expected spatial scale of the variation of plasma parameters: ≈10
cm in parallel direction. Finally, in front of the target the gradients can be very strong
but the MFP becomes smaller than one millimeter because the plasma there is cold and
dense. Indeed, substituting ne = 1021 m−3 and Te = 1 eV yields MFPe = 3.5 ·10−5 m. This simple
estimate shows that one should expect the fluid approach for the plasma transport to be
valid at least as a first approximation.

However, the transport of heat and momentum takes place mainly not due to the par-
ticles with thermal energies as it was assumed in the above estimates, but due to fast
particles with much larger MFP. Using the fluid approximation for the parallel heat fluxes
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and viscosity lead to nonphysical results in case of steep gradients [14], Chapter 26. To
take this into account, while remaining in the frame of the fluid model (without full kinetic
description) the corrections for the classical (fluid) transport coefficients are introduced.
In B2 the following expression with so called “flux limits” are used for the electron heat
conductivity and viscosity:
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(1.28)

Here ke
||S H

is the Spitzer-Härm coefficient given by Formula (1.23) and ηα|| is calculated by
Formula (1.25). The values of the flux limiting factors Fe and Fmom used in this work were
0.2 and 0.5 respectively. They are the values which yield the best fitting to the results
of the full kinetic simulations (solving the Fokker-Plank equation for the model problems
where such simulations are possible, see [14], Chapter 26).

The transport coefficients in the perpendicular direction are anomalous: no robust
and usable theory exists at the moment to calculate them. They are usually taken as
constants. Their values are the values which give the best fitting to the experimental
radial profiles. The typical values are χe

y = χ
i
y = 1 m2/s, νy = 0.2 m2/s and Dn

y = 0.3..0.5 m2/s.
Here χ is the thermal diffusivity (k divided by thermal capacity) and ν is the kinematic
viscosity (η divided by mass density).

1.1.3 Boundary conditions

For the combination of the continuity equation (1.11) and diffusion equation (1.13) one
needs two boundary conditions on the radial boundaries and only one boundary condition
on the poloidal boundary. Here and below the term “poloidal boundary” means the bound-
ary across the magnetic surfaces (x = const) and “radial boundary” means the boundary
along magnetic surfaces (y = const). On the boundaries which represent the wall of the
vacuum chamber a constant e-folding length is usually specified (derivative of the loga-
rithm in normal direction). Typical value for tokamaks is 3 cm. On the boundary with the
Core plasma (Core-Edge Interface, CEI) either density or the particle flux can be specified.
For the poloidal boundaries the zero density gradient at the guard cell (see below in Sec-
tion 1.1.4) is usually prescribed on both boundaries. This ”technical” boundary condition
does not really affect the solution, because upwind scheme is used for this equation [24],
Section 3.4.1.

On the radial surfaces e-folding length, temperature or the heat flux density can be
specified for the energy equations (1.14), (1.15). The e-folding length is typically 3 cm as
for the density.

To specify the boundary conditions on the poloidal surfaces which are intersected by
the magnetic field lines (targets) one has to consider the properties of the plasma sheath.
This is a thin layer of uncompensated charge forming between the plasma and the solid
surface. Its thickness is estimated by the Debye length: that is ∼ 10−5..10−4 cm for a
tokamak SOL.

It can be shown, see e.g. [14], Sections 2.3-2.4, that the sheath layer can be stable only
if the parallel velocity of the incident plasma is larger than the sound speed u|| ≥ cs. This
inequality is usually reduced to an equality (strict Bohm criteria). The boundary condition
which is used in B2 has the form:

u‖ =

√

neTe + Ti ·
∑

α nα
∑

α mαnα
(1.29)

Thus, the isothermal sonic velocity is assumed. This is the most primitive form of this
boundary condition: in particular, it assumes equal velocity for all species. B2 has also an
option to specify the condition u|| ≥ cs. In this case a zero second derivative of u|| in poloidal
direction is enforced. This option was not used in the present work.

The boundary conditions for the energy equations at the targets read:

qe
|| = γeTeneu

e
|| , qi

|| = γiTineue
|| (1.30)
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Here γe and γi are the so called sheath transmission factors. They can be found from the
kinetic description of sheath and pre-sheath, see [14], Sections 2.8, 25.5. This considera-
tion includes the interaction of the particles with the floating potential which forms at any
contact between a solid wall and plasma. The values which were used in this work: γi = 3.5

for ions and γe = 2 + γΦ for electrons(see e.g. [24]). Here γφ is describes acceleration by the
floating potential ∆Φ [27], chapter 1.5.1:
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(1.31)

This relation neglects the plasma current and the electron emission from the surface. For
a pure deuterium plasma γΦ = 2.8 (for Te = Ti).

The sheath boundary conditions as the are described here valid only if the angle be-
tween the surface and the magnetic field line is not too small. It it is less than 1o than
they have to be modified (funnelling model) [14], Sections 25.2, [54].

1.1.4 Numerical algorithm

The numerics of the B2 code are largely described in [25], some more detail about the im-
plementation of the boundary conditions can be found in [24]. Here only a brief description
is given.

B2 uses finite-volume discretisation on a topologically rectangular mesh (drawn along
the magnetic surfaces). The description of the basic ideas of this method can be found
in [55]. From the mathematical point of view equations (1.11)-(1.15) are a set of convection-
diffusion equations. The general form of such an equation is:

∇ · (ρuΦ − Γ · ∇Φ) = S (1.32)

Here Φ and u are unknown quantities, the scalar ρ and the tensor Γ are coefficients (which
may depend on Φ and u) and S is the source term. The discretisation is based on the con-
servation of the physical quantities in a grid cell. The scalar quantity Φ is discretized in cell
centres and the velocity u is discretized at the cell faces. The calculated quantities are in
fact the averages over the cell volume or over the cell face. The discrete coefficients depend
continuously on the local Peclet number (Pe). The dependence gives central difference for
small Pe and upwind difference for large Pe. This scheme thus combines the second order
of approximation of the former with stability of the latter. A special correction procedure is
applied to the continuity equation to handle the case of low Mach number when the flow
becomes effectively incompressible.

B2 applies source linearization to the sources obtained from the neutral transport code
. The source S is split into two parts:

S = S vΦ + S c, S v =
max (0, S ) − |S | · R

Φ0

, S c = min (0, S ) + |S | · R (1.33)

Here Φ0 is the value for which the source S was calculated (at the beginning of time step).
The factor R=5 is usually taken. Notation (1.33) allows a very flexible way of implementing
the boundary conditions. In B2 they are specified giving equivalent sources in the small
extra cells attached to the grid boundaries: so called guard cells [24]. For example if A is
the area of the guard cell face, then imposing S v = 0 and S c = −QA defines the constant
flux density Q to the boundary (Neumann condition). Analogously, imposing S v = −h and
S c = hΦd where h is very large (“infinite”) defines Dirichlet condition Φ = Φd. The mixed
condition (linear combination of Φ and its flux) can be specified in the same way.

To obtain the steady-state solution of the discretized system (1.11)-(1.15) the equations
are iterated on each time-step in a cyclic order until convergence is achieved. Time-
stepping is applied to get some underrelaxation. The discretisation is fully implicit in
time. Each iteration (internal iteration on one time-step) consists of the following actions
(quotation from [25]):

1. The source terms S n, S mu|| , S e
E
, S i

E
are computed (by the neutral transport code);

2. The momentum balance equations (1.12) are relaxed by changing the field u‖α for
each species α;
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3. The total momentum equation is relaxed through identical changes in the velocities
of all species;

4. The fields vα are adjusted to satisfy the diffusion equations (1.13);

5. The continuity equations (1.11) are relaxed through simultaneous changes to ne, u‖α
and vα for each species α;

6. The electron and ion energy equations (1.14), (1.15) are relaxed separately by changes
to the fields Te and Ti respectively;

7. The total energy equation (sum of (1.14) and (1.15)) is relaxed by identical changes to
Te and Ti;

8. The continuity equations (1.11) are relaxed once more as in step 2.

This procedure includes the pressure correction which was mentioned before

The “Strongly Implicit Procedure” of Stone [56] based on incomplete L ·U decomposition
is used to relax the discrete equations (five-point equations). Relaxation of the equations
for the total momentum and total energy is done in order to increase the convergence rate
in the presense of mutual momentum and energy exchange terms: interspecies friction
forces Fαβ in equation (1.12) and the term kei(Te − Ti) in equations (1.14), (1.15).

1.2 The EIRENE code

1.2.1 Monte-Carlo method for transport problems

This section describes the general ideas of applying Monte-Carlo methods for linear trans-
port problems. The main advantage of the Monte-Carlo methods is their ability to handle
a complicated geometry and make a detailed description of the system on a kinetic level.
It is sometimes the only tool which can be used for the 2D and 3D problems which involve
kinetic transport effects and complex chemistry. The main drawback of the method is that
the computation time must be large to achieve a low level of numerical error. The under-
laying theory has been well developed for the purposes of nuclear engineering (transport
of neutrons) [57]. The consideration below follows [27] and tries to highlight mainly the
issues which are important from the practical point of view.

The primary quantity of interest in the kinetic modelling is the one-particle distribution
function: f (r, v, i, t). This is a probability density in phase-space of the test particle which
is characterised in general by a position vector r, a velocity vector v, a species index i (i
stands for, e.g., H,D, T,D2 etc.) and the time t.

The basic equation for the distribution function f (x) is the Boltzmann kinetic equation
(see e.g. [58]):

∂ f (r, v, t)

∂t
+ v · ∇r f (r, v, t) =

∫ ∫ ∫

σ(v′,V′; v,V)|v′ − V′| f (v′) fb(V′)dv′dV′dV−

−
∫ ∫ ∫

σ(v,V; v′,V′)|v − V| f (v) fb(V)dv′dV′dV (1.34)

Equation 1.34 is written for the case of only one test species i0, which can interact with
species b, therefore the species index is omitted. The triple integrals denote the integration
over the whole velocity space. σ(v′,V′; v,V) is the cross section for a binary particle collision.
The first two arguments in σ, namely the velocities v′,V′ of the first integral, correspond
to the velocity of the species i0 and b, prior to the collision. These are turned into the post
collision velocities v,V, again for species i0 and b, respectively. The first integral, therefore,
describes transitions (v′,V′ → v,V) into the velocity space interval [v, v + dv] for species i0,
and the second integral describes the loss from that interval for this species. The collisions
are assumed to be point events. The equation (1.34) as it is written here does not take
into account any external force (external force field): the particle motion between collision
events is governed only by inertia. The particles with distribution functions f (v) and fb(V)

will be called further “the test particles” and “the background particles”.
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For linear transport problems the distribution fb(V) is given. The function f (v) can then
be taken out of the second integral in (1.34). One arrives to the following equation:

∂ f (r, v, i, t)

∂t
+ v · ∇r f (r, v, i, t) + νt(r, v, i) f (r, v, i, t) =

∫

dv′C(r; v′, i‘→ v, i)|v′ − V′| f (r, v, i, t) + Q(r, v, i, t)

(1.35)

Here νt(r, v) is the total collision frequency, C(r; v′, i′ → v, i) is the kernel of the collision op-
erator and Q(r, v, i, t) is the primary source. Collision frequency is the number of collisions
which the test particle experiences during a unit time interval:

νt(r, v, i) =
∑

k

νk(r, v, i), νk(r, v, i) =

∫ ∫ ∫

σk(v,V, i; v′,V′, i′)|v − V| fb(V)dvdV′dV (1.36)

Here νk(r, v, i) is the collisions frequency for the specific process k. The collision kernel is
the number of particles of species i′ with velocity (v′) which emerge from the collisions as
the particles of species i with velocity v:

C(r; v′, i′ → v, i) =
∑

k

νk(r, v′, i′)ck(r; i′, v′ → v, i)

ck(r; v′, i′ → v, i) =

∫ ∫

σ(v′,V′, i′; v,V, i)|v′ − V′| fb(V′)dV′dV
∫ ∫ ∫

σ(v′,V′, i′; v,V, i)|v′ − V′| fb(V′)dv′dV′dV
(1.37)

The factor ck(r; v′, i′ → v, i) is the conditional probability distribution for the post-collision i

and v for the specific collision process k. The collision frequency and the collision kernel
can include not only collisions in the volume but surface collisions as well. The absorption
can be formally taken into account introducing a special kind of collisions which turn the
test particle into an artificial “empty” species.

Equation (1.35) can be further transformed into an integral equation of the Fredholm
type with the kernel consisting of the collision kernel C(r; v′ → v) and the transport ker-
nel (by integrating over characteristics) [27, 57, 59]. This approach is used for rigorous
mathematical analysis of the Monte-Carlo method and it is not considered here.

The simplest Monte-Carlo approach of solving the Equation (1.35) can be derived straight
from its physical meaning. Indeed, this equation describes the distribution function of
the particles, which start from the source Q(r, v, i, t). They travel along the straight lines
and undergo collisions with background particles and the wall with frequencies νk(r, v).
In each collision the particle changes its velocity and type according to the distribution
ck(r; v′, i′ → v, i). The process continues until the test particle disappears due to absorp-
tion. Solving the Equation (1.35) by reproducing this process ”in a computer” for a finite
number of trajectories using machine generated pseudo-random numbers is called ”ana-
log sampling”. The pseudo-random numbers are deterministic sequences which possess
some properties of real random numbers (e.g. have the same distribution function). It
has to be pointed out that all ”random processes” generated by a computer are, in fact,
deterministic and can be exactly reproduced.

To proceed with analog sampling one does not in fact even have to know about the
existence of Equation (1.35). But using a formal mathematical description allows in some
cases to show that it is possible to build an algorithm which does not mimic exactly the
physical processes behind the transport but leads to the same solution as Equation (1.35).
The algorithms of such kind are called ”non-analog sampling” and some examples of them
will be shown below.

The following issues have to be resolved to build a Monte-Carlo sampling procedure:
i) sampling from the source Q(r, v, i, t); ii) tracking the test particles in space; iii) sampling
from the distribution ck(r; v′, i′ → v, i); iv) calculating the estimates over the trajectories. The
issues i) and iii) are largely problem dependent. The issue ii) is in opposite common for all
kinds of the transport problems.

For the test particle which emerges from the primary sources or from a collision the
distance to the next collision L (free path) can be sampled from the inverse cumulative
distribution F(L) [33, 57, 59]:

F(L) = 1 − exp

[

−
∫ L

0

νt

|v|
dl

]

,

∫ L

0

νt

|v|
dl = − ln u (1.38)
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Here u is a random number distributed uniformly between 0 and 1. At the point of collision
the type of the collision event is sampled from the discrete probability distribution pk =

νk

νt
.

After that the post collision velocity is sampled from the distribution ck or the particle is
absorbed.

To use the relation (1.38) in practice one samples first the number ln u and then updates

the integral
∫ L

0

νt

|v|dl until it meets the last equality of (1.38) or until the test particle reaches
a surface. The parameters of the background (they are required to calculate νk and to
sample the post-collision state from ck) are usually specified on a discrete grid. The routine
which controls the tracking of the test particles have to ensure that the position on the
grid is known at each moment.

Sampling the free path L is an example of the general method of sampling the ran-
dom variable with given distribution function. It can be applied if the inverse cumulative
distribution can be easily calculated. If this is not the case, then the rejection sampling
technique can be applied, see e.g. Section B.1.

For practical problems it is usually not necessary to know the distribution function
f (r, v, i, t) itself but it is necessary to calculate some moments of this distribution. As it
was already mentioned above, the procedure of calculating those moments is called “the
estimation”. Two kinds of estimates (or “estimators”) are usually used in Monte-Carlo
codes: collision estimator and track-length estimator. Let ωn

= {x0, x1, x2 . . . x j . . . xn} denotes
a trajectory in the one-particle phase space x = (r, v, i, t). The points x j are the coordinates
of the collisions. In general an estimate R calculated over N trajectories ωi is the following
sum:

R =
1

N

N
∑

i=1

X(ωi) (1.39)

The function X(ωi) depends on the type of the estimator. For the collision estimator:

XC(ωi) =

n
∑

j=1

gc(x j)w(x j) (1.40)

Here gc is the detector function which is calculated for each collision and w(x j) is the so
called statistical weight. In the simplest case gc = 1 this estimation yields the total number
of collisions. It can be shown that XC gives unbiased estimation of the sum of gc over all
collisions [57].

For the track-length estimator the function X(ωi) has the following form:

XT (ωi) =

n
∑

j=1

∫ x j+1

x j

ds

|v(s)|
w(s)gt(s) (1.41)

Here gt(s) is the detector function which is defined in each point of the particle’s trajec-
tory. This estimator gives the unbiased estimation of the corresponding moment of the
distribution function:

∫

f (r, v)gt(r, v)dv (1.42)

In particular, if g(r, v) = 1 it yields the total number of particles. In other words, the
sum over the residence time of the particles in a volume is proportional to the number of
particles in this volume. In neutron physics the estimator (1.41) is usually expressed in
terms of integral

∫ x j+1

x j
ds (without dividing by velocity). In this case for g(r, v) = 1 it yields

the volume integral over the particle flux density. Estimators (1.40) and (1.41) can be
applied to any control volume. In particular, to each cell of the computational grid to get
the spatially resolved estimation.

The statistical error of the calculations: the deviation from the mean expectation, can
be estimated in the same way as in the case of multi-dimensional integration, see e.g. [59]
or [60], Chapter 7.6. It is given by the estimate of the statistical variance:

var[X] =
1

N − 1

N
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Here X = {Xi} is a set of N points sampled to estimate the expectation of the mean value
of Xi. The variance can serve as an estimate of the numerical error, based on the Central
Limit Theorem:

√
var[X]/N. One has to keep in mind, however, that the calculated var[X]

is only an estimate of the true variance. An extra analysis is required in some cases to
find out how close those are to each over, e.g. when the calculated var[X] is too large [59].

Introducing the statistical weight w into estimators (1.40) and (1.41) allows to use dif-
ferent kinds of the non-analog sampling. The most well known are Russian roulette and
splitting. Russian roulette is applied if at some point it is not desirable to sample a test
particle further. For example if it is out of the region of interest. In this case one can “kill”
the particle with a probability P. If the particle was not ”killed”, then its statistical weight
is multiplied by 1/P. In the opposite case it may be necessary to increase the amount of
the test particles in some regions. To do this one can split the test particle into n parti-
cles. The correct estimation will be obtained if the weight of each particle is divided by
n. Another kind of the non-analog sampling which is often used, is the suppression of
absorption: reducing the test particle statistical weight instead of absorbing (“killing”) it.
The non-analog methods mentioned here are special cases of more general techniques.
Their description and rigorous mathematical derivation can be found in [57].

The design of a typical Monte-Carlo transport code can be considered as consisting of
two principal parts: the geometry module and the physical module. The geometry module
performs the particle tracking and it is to a large extent independent of the particular
problem to be solved (neutron transport, radiation transport etc.). This subsection was
mainly dealt with this common part. The physics of the problem is defined by the source
Q, the post-collision distribution ck and the collision rates νk. This problem-specific part of
the code is called the physical module. The physical module of EIRENE code will be briefly
described in the next section.

1.2.2 Description of the code

EIRENE is a linear Monte-Carlo solver developed specifically for the transport of neutral
particles in plasma. The thorough information on the code and its databases can be found
on the web-page www.eirene.de. In this section the physical model will be described and
some technical information about the code will be given.

The code can handle a full 3D geometry defined on a tetrahedral grid [49, 48]. For
divertor applications the 2D toroidal geometry is mainly used. For this case two options are
available at the moment. The simplest and the oldest option is that the code uses the same
quasi-orthogonal grid consisting of quadrangles as the plasma code. This grid is called “the
standard grid”. The boundaries of the standard grid which coincide with the boundaries
seen by the plasma code are called “non-default standard surfaces” (“standard surfaces”
are the surfaces which form the standard grid). Extra physical boundary surfaces (for
example the wall of the vacuum vessel) are called “the additional surfaces”.

The disadvantage of the standard grid is that the scoring (calculating the estimators)
outside the defined plasma volume is impossible. To overcome this drawback the geometry
module of the code was extended to work on a triangular grid. This grid is similar to the
grids which are used for Finite Element calculations. It can fill the volume between the
plasma grid and the additional surfaces. The plasma grid is divided into triangles as well
and the both grids are attached to each other forming one continuous triangular grid. The
properties of the wall material can be specified for the additional and non-default standard
surfaces. These surfaces can have some absorption coefficient and semi-transparency as
well.

Several types of sources of the test particles are available. The most important for
divertor applications are the surfaces sources and the volume sources. The first is used
for describing the recycling sources of neutrals (ions neutralised on the solid surfaces) and
the second is used for describing the volume recombination. In both cases the primary
sampled particle is an ion. One can also specify surface sources of neutrals to model gas
puffing. The recycling sources are specified on the boundary of the B2 grid. It does not
always reflect correctly physical location of the wall but the ion fluxes are available only
on those surfaces.

The velocity distribution function of the background particles (ions) is taken to be a
shifted Maxwellian. The velocity of ions incident on the surface is sampled from a trun-
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cated shifted Maxwellian distribution:

f (v) = Cvn exp

[

− m

2T
(v − Vd)2

]

(1.44)

Here v is the velocity of the ion, vn is the component of velocity normal to the surface, Vd

and T are the drift velocity and the temperature of ions in front of the surface, m is the
ion mass and C is the normalising constant. The cumulative distribution function for this
probability density can not be expressed explicitly, therefore a special non-analog sampling
procedure is applied, see [27] Section 1.5. For the target surfaces (surfaces intersected by
magnetic field lines) the sheath acceleration (1.31) is added. After the sampling of velocity
a surface interaction model is applied to the incident ion. The same surface model is used
for the incident neutral particles.

EIRENE considers three kinds of surface processes: reflection of the fast particles,
thermal desorption and sputtering. Several options are available for the fast particles
reflection. The best option at the moment is to sample the probability of reflection, velocity
and the scattering angle of the reflected particle using the pre-computed tables obtained
by the TRIM code [61]. TRIM is a Monte-Carlo code for the solid-particle interaction. The
data for the different pairs “target-projectile” (different chemical elements) can be found
on www.eirene.de. If EIRENE can not find the data for a specific pair then it takes the
available data with the closest reduced atomic mass of the target and projectile.

The particles which are not reflected as fast particles thermally desorb with Maxwellian
velocity distribution at the wall temperature. The latter is usually set to 0.1 eV for target
surfaces and to 0.04..0.07 eV for other surfaces. For particles with incident energy lower
than a certain prescribed cut-off (usually 1 eV) the thermal desorption is considered as
well. Hydrogen atoms are desorb as molecules. Only desorption (no fast reflection) is ap-
plied for molecules. A particle absorption coefficient (albedo) can be set for some surfaces
to model pumping.

Two kinds of sputtering processes are considered: physical sputtering and chemical
sputtering. The physical sputtering is described by the modified Roth-Bohdansky formula
for the sputter yield, Thompson energy distribution and cosine angular distribution for
emitted particles [62]. The necessary parameters are read from datafile SPUTER. As the
physical sputtering by the hydrogen isotopes has a rather high energy threshold (e.g. 27 eV
for D on graphite) it is not very important for divertor conditions. The chemical sputtering
is switched on automatically for the carbon surfaces and hydrogenic ions or atoms. The
sputtering coefficient can be calculated using the Roth formula [63] which includes a
dependence on the particle flux. This option is not well tested and at the moment it is not
suggested for use. In the actual calculations a constant sputtering yield was prescribed.

The volume processes can be divided into two groups: electron impact collisions and
heavy particles collisions. The first group includes ionization, dissociation and recombina-
tion. The collision rates of the electron-impact processes are assumed to be independent
of the test particle velocity (making use of the fast velocity of electrons). Their rates de-
pend on the electron temperature and in some cases on the electron density (in the case
of effective reaction rates - Collision-Radiative models). More details are given below in
Sections 3.2 and 4.2.2.

The collisions of heavy particles are the elastic collisions and the charge-exchange col-
lisions. The latter is in fact a special case of the elastic collisions (from numerical point of
view). The collision rates for those processes depend on the plasma ion temperature and
the velocity of the test particle, see Section 3.1. Elastic collisions may include the neutral-
neutral collisions, Chapter 2. The sampling of photons is described in Chapter 4.2.1.

The reaction rates are tabulated in the datafiles HYDHEL (old hydrogen-helium database
taken from [64]) AMJUEL (new hydrogen-helium database described partly in Section 3.2)
and METHANE (processes with carbon). The fitting formulas are described in Section 3.1.3.

For most of the output quantities (in EIRENE documentation they are called “talllies”)
the track-length estimator (1.41) is used. In particular for particle sources, densities,
average kinetic energies, energy and momentum sources due to electron impact collisions.
The standard option to calculate the momentum and energy sources due to heavy particle
collisions uses the collision estimator (1.40). The corresponding track-length estimator
was implemented in this work, Section 3.1.

The use of non-analog sampling in EIRENE is rather restricted. The Russian roulette
is applied for inelastic collisions to choose the product to follow. This kind of treatment
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was also used for sputtering but it was replaced by analog sampling in order to improve
the particle balance. In the EIRENE documentation this analog sampling is sometimes
referred to as “splitting”. The suppression of absorption by weight reduction is not used
because it was found to be inefficient: it produces too long histories in the regions which
are out of interest. The standard variance reduction techniques, such as splitting and
Russian roulette on specified surfaces can be activated in EIRENE but the experience
shows that the results must be analysed very carefully in this case. In particular, the
standard deviation (1.43) may not give the true estimate of the statistical error [27], Section
1.3.1. The recycling source in EIRENE is usually splitted into several parts: the stratified
sampling is used. The recycling sources from the different surfaces can have very different
strength and the stratified sampling helps to distribute the primary sources of the test
particles more uniformly.

1.3 ITER modelling

The modelling shown in this work is dedicated mainly to the divertor plasma of ITER.
ITER is an international project of the experimental fusion reactor. Its ultimate goal is
to demonstrate the principle possibility of using the power of thermonuclear fusion as an
industrial scale energy source. The partners in the project, - the ITER Parties, - are the
European Union (represented by EURATOM), Japan, the Peoples Republic of China, India,
the Republic of Korea, the Russian Federation and the USA. ITER will be constructed in
Europe, at Cadarache in the South of France. The corresponding official decision was
taken and approved by all the participating parties in 2006. The expected date of commis-
sioning (“first plasma”) is 2016. The up to date information about the project can be found
on the official web-page www.iter.org.

ITER is a tokamak with a lower single-null divertor configuration. The major radius of
the torus 6.2 m, minor radius of plasma 2 m. The linear dimensions are twice as large as
those of the largest existing machines JET and JT-60. The superconducting coils allow to
create an average toroidal magnetic field 5.3 Tesla. The expected plasma current is 15 MA.
The reference mode is the long pulse operation with inductive current drive. The duration
of one pulse is 400-600 sec (quasi steady-state operation). The power of auxiliary heating
is 70 MW. The expected fusion power is 400-600 MW and the power amplification factor
is ≈10.

The fusion plasma has to be surrounded by the first wall integrated with the blanket
structure beneath. The latter is to absorb most of the neutron flux produced by DT reac-
tion. Currently in the reference design beryllium is chosen for the first wall coating due
to its low Z. Most of the divertor is coated by tungsten because of its low sputtering yield
and high thermo-mechanical properties (it is the metal with the highest melting temper-
ature of 3.5 kK). The most severely loaded parts of divertor targets will be fabricated of
Carbon-Fibber-Composite (CFC). All the structures are water cooled.

CFC is the only possible solution for ITER divertor targets which is currently foreseen.
It is the only material able to receive expected thermal loads due to its high thermal con-
ductivity (≈100 W/m·K for irradiated samples, [65]) combined with high sublimation point
(5.5 kK, it does not melt). At the same time using carbon as a plasma facing material has
a very strong limitation. Carbon forms stable chemical compounds with tritium which is
beta-radioactive (with half-life 12.5 years). The migration of carbon due to its sputtering
and re-deposition causes, therefore, the migration and retention of tritium inside the vac-
uum chamber which is very undesirable. A possibility to get rid of carbon as the plasma
facing material and to switch to a full metal wall is being extensively studied at present.
This will require to keep both the steady state and the transient loads relatively low.

The design of the ITER divertor is based on the experimental experience from the exist-
ing machines extrapolated with extensive use of numerical modelling. The experimental
experience alone is not sufficient because the large dimensions and high densities ex-
pected in ITER can make significant the effects which are not well pronounced in the
existing devices. Examples of such (non-linear) effects will be shown in particular in this
Thesis. The main tool for the steady-state modelling of the ITER SOL plasma is the B2-
EIRENE code.

The modelling allows at least two types of analysis. Some input parameters have a
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high level of uncertainty: for example cross-field transport coefficients. It is impossible to
specify those parameters precisely but it is possible at least to investigate the response of
the solution to a variation of those parameters in some range, - i.e. to perform a sensitivity
analysis. The second kind of analysis is the engineering analysis of possible consequences
of the modification of design, for example the geometry of the divertor. The both kinds
of analysis require that some range of the input parameters has to be investigated: no
conclusions at all can be made from a single point.

It was found by extensive modelling [66, 67, 68, 69, 70] that the operational parameter
space of the ITER divertor can be approximated by a set of scalings against a parameter
which reflects the level of the neutral density in the divertor. In this work it is the average
pressure of the neutrals at the edge of the Private Flux Region. The principal parameters
which are important for the design of the machine may be called ”the engineering output
of the calculations”.

The main purpose of the divertor is to pump the impurities. The parameters which
are used to characterise the effectiveness of pumping are the average effective charge Ze f f

and the helium concentration CHe at the separatrix. Helium is emphasised because it is
the main core impurity in case of reactor operation (the product of fusion reaction). For
ITER those parameters must not exceed 1.6 and 6 % respectively [67]. Since the target
heat loads are the main concern for the divertor structure, the next important parameter
is the maximal (peaking) steady-state target heat flux density qpk. For ITER the constraint
qpk ≤ 10 MW/m2 has to be fullfiled [67, 74].

One distinguishing feature of the ITER modelling is the way of density control. The
simplest way to specify the level of density in the SOL is to fix a certain plasma density at
the separatrix (more precisely: at Core-Edge Interface). However, in a real discharge the
level of density is established due to the balance between plasma fuelling and pumping.
This way of density control is mimiced in the numerical simulations presented in this work.
Two types of fuelling are possible: gas puffing and pellet injection (core fuelling). The NBI
heating brings a some small contribution to the core fuelling as well. The gas puffing is
specified as a source in the neutral transport code. The pellet injection can be taken into
account imposing a certain ion flux from the Core to the SOL region. The upstream density
is, therefore, not fixed. For all the simulations shown below the core fuelling is zero. In
this case the influx of ions to the SOL has to be equal to the flux of neutrals to the Core.
For large devices this flux is very small (at least an order of magnitude smaller than the
fuelling flux) and can be neglected. In practice a small flux is specified even in this case,
for numerical stability. For the reference ITER design the maximum core fuelling rate is
2.7 · 1022 s−1 and the maximum gas pumping rate is 11 · 1022 s−1 (here: fluxes of nuclei).
This latter imposes the limit on the total fuelling rate. The wall retention of hydrogen and
outgasing are not taken into account in the simulations.

The implementation of the proper of density control required modification of the B2
code of ITER Team [66]. After a call of EIRENE the balance between the incident plasma
fluxes and recycling fluxes of neutrals is sufficiently good. But as B2 starts relaxing its
equations as described in Section 1.1.4 the incident plasma flux changes. If the neutral-
related sources are not re-scaled accordingly, then the error in particle balance can reach
10−2 of the recycling flux. The total recycling flux for ITER is ≈ 1025 s−1. This means that the
error will be of the same order as the gas puffing (pumping) rate and the density control
using the gas puffing is impossible. To solve this problem s rescaling is applied for the
sources calculated by EIRENE on the B2 iterations [66]. This rescaling allows to reduce
the error in particle balance by 3 orders of magnitude.

The ITER modelling set-up which was used for the calculations in this work was de-
rived from the case ITER 828 obtained from Andrey Kukushkin, ITER International Team,
Garching. The magnetic equilibrium configuration is shown in Figure 1.1a. The grid has
28 cells in the radial direction and 74 cells in the poloidal direction: 12 poloidal cells in
each of the divertor legs, 8 rings in the core and PFR. The grid which combines the quasi-
orthogonal B2 grid with triangular grid for EIRENE is shown in Figure 1.1b. This figure
also depicts some components of the divertor structure (dome, V-shapes, etc).

The dome is an extra structure which is used to retain (compress) neutrals near the
entrance to the pumping duct. The dome support structures have windows distributed
periodically in the toroidal direction. They are modelled by semi-transparent surfaces
with the transparency coefficient of 0.56. The pumping duct is protected by a grill. It is
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(a) (b)

Figure 1.1: Magnetic equilibrium (a) and the grid with divertor structure (b)

modelled by specifying on this surface a non-zero absorption coefficient for the neutral
particles: 0.7 % for the cases with Neutral-Neutral Collisions (NNC) and 1.15 % for the
case without NNC. This ensures the pumping speed around 40 m3/s as expected for the
ITER cryo-pumps. The fuelling of the discharge is performed by puffing the D2 through
the slot on the top of the vacuum chamber, Figure 1.1a. The so called “V-shapes” were
proposed in [66] to increase the neutral density in front of the targets.

The model plasma consists of 9 ion species: D+ and all charged states of He and C.
D represents both D and T. The neutral species are D, He, C, D2. The perpendicular
(anomalous) transport coefficients are taken to be constant: diffusivity D⊥ = 0.3 m2/s and
temperature diffusivity χ⊥ = 1 m2/s. Other parameters of the plasma transport are de-
scribed in Section 1.1.2. The boundary conditions on the targets and wall surfaces are
described in Section 1.1.3. The boundary conditions at the Core-Edge interface are the
following. The total incoming power 100 MW is equally distributed between electrons and
ions. A small incoming flux of D+ (9 · 1020 s−1) is specified. The incoming flux of He++ is
calculated from the specified fusion power 600 MW. The influx of all other ions is set to
0. All particle and energy fluxes are distributed uniformly. The specified SOL input power
is smaller than one fifth of the fusion power because it is assumed that some part of it is
radiated directly from the Core. It has to be pointed out that the magnetic configuration
of ITER in reality has also an upper null. Calculations made with double-null configura-
tion [75] showed that its influence is negligible (only several percent of the total power will
go in this direction) and it is therefore ignored in the modelling here.

All the plasma-facing components in the model are covered by carbon (including co-
deposited carbon). This assumption is based on the study which was made with the so
called “realistic wall model” [71, 72]. The main idea of this model is to check the deposition
and erosion rate of carbon for each part of the wall. If the erosion rate is higher, then the
surface is assumed to be carbon free. In the opposite case (the deposition rate is higher)
it is treated as been covered by carbon in further calculations. Several such iterations
are made in a simulation. Applying this model to ITER conditions usually shows that
most of the outer wall is covered by carbon. It was also found [72], that the operational
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scalings calculated with the “realistic wall model” are closer to those of the full carbon
machine, rather than to the case with a full metallic wall. Therefore, the assumption
of the full carbon wall can be considered as a good first approximation and was applied
in this work. A constant chemical sputtering yield of carbon Ychem = 1 % was used for
all surfaces. The released carbon atoms have constant energy 1 eV and cosine angular
distribution. Complete sticking is assumed for all carbon atoms and ions. Other details of
the wall interaction model can be found in Section 1.2.2. The choice of Ychem ensures that
roughly 60% of the power input from the core is radiated by carbon ions.

For the hydrogen atom charge-exchange and ionization are considered. The corre-
sponding reaction rates are taken from databases HYDHEL (3.1.8) and AMJUEL (H.4
2.1.5). Ionization (HYDHEL H.2 2.3.9) and elastic collisions (AMJUEL 0.2T) are taken
into account for helium. Only ionization is considered for carbon atoms (METHAN H.2
2.23). The model for the kinetics of H2 molecules is described in Section 3.2. Volume re-
combination (sum of radiative and three-body recombination) was taken into account only
for hydrogen (AMJUEL H.4 2.1.8). The model for carbon (both erosion and volume pro-
cesses) which is used at the moment is rather primitive and has to be revisited in future.
In particular, it does not include hydrocarbon molecules as it was done in [73].

The old model for the neutral transport which was used for ITER modelling before 2004
(it will be referred to as ”EIRENE 1996”) did not include any kind of non-linear processes:
neutral-neutral collisions and the opacity of line radiation. The main goal of the present
work was to implement the upgraded model for ITER. The first step on this way was to
couple the new EIRENE code with the B2.4 of ITER IT. Full backward compatibility was
confirmed for the reference case ITER 828. The new version of the code successfully
reproduced the results of the old version. In the benchmarks of EIRENE stand-alone the
neutral density, particle and energy sources were compared (sums and maximum values
in each divertor). To take into account statistical variance the relative difference of the
results obtained with different number of histories N was followed and checked whether
it reduces as 1/

√
N. The B2-EIRENE runs were compared in terms of reproducing the

time-tracings from the standard ITER set. As was said in the Introduction the model of
EIRENE 1996 was updated in three steps which are described in the bulk of the thesis.
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Chapter 2

Neutral-neutral collisions

2.1 Motivation

Neutral neutral collisions (NNC) can be almost safely ignored in divertor modelling of exist-
ing tokamaks and stellarators, because their related mean free path length is comparable
or larger than other relevant spartial scales. NNC can however provide significant mod-
ification of divertor operation in large future devices, such as ITER, via the modification
of the neutral gas flow near the divertor targets and in the plasma-free regions of the di-
vertor volume. They can have especially strong influence on the efficiency of pumping. It
is particularly important to take into account the effect of NNC to asses the elements of
design which are used to control the neutral flow, like dome and V-shapes, see [51]. For
the ITER divertor conditions the mean free path for NNC is typically several centimetres,
thus the Knudsen number is 0.1..10 and one expects the flow to be in transition regime
(transition between free molecular and hydrodynamic limit). Therefore, the modelling has
to take into account kinetic effects.

In the current version of the EIRENE code the NNC are described using the so called
BGK approximation [34, 35, 36, 37]. This option was implemented in EIRENE by Christoph
May in the framework of his PhD thesis [38, 39] and tested with a fixed plasma back-
ground. In the present work this extension of the code was incorporated into the self-
consistent B2-EIRENE modelling which allows to take into account the effect of the neutral-
neutral viscosity on the overall performance of divertor. The current Chapter shows a
rigorous derivation of the BGK technique. Special attention is paid on deriving the rela-
tions between the BGK collision rates and the transport coefficients to clarify the physical
meaning of the former. The derivation is based on the Chapman-Enskog method [58]. This
issue was not completely clarified in May’s work and was of concern in particular in [33].
The implementation of BGK in the EIRENE code is briefly described in Appendix A.3.

2.2 BGK approximation

The Bhatnagar-Gross-Krook (BGK) approximation [34] represents the simplest example of
the so called model equations: the approach which is widely used in rarefied gas dynamics
to find approximate solutions of the Boltzmann equation [84]. The idea is to replace the
Boltzmann collision integral with another relation which makes the problem easier to solve
but which retains some (most important) features of the original equations.

Here the generalisation of the BGK method for a multi-species gas is used [35, 36]. The
model equation for collision integral reads:

StBGK( fi) =

N
∑

j=1

νi j ·
[

f M
i j (v, r; ni j, Ti j, ui j) − fi(v, r)

]

=

N
∑

j=1

StBGK
i j ( fi) (2.1)

Here fi is the velocity distribution function of the species i; νi j is the collision frequencies
for collisions of the species i with the species j, N is the number of species. The collision
rates νi j are assumed to be independent of the relative velocity (“Maxwellian molecules”).
f M
i j

is the shifted Maxwellian distribution:

29
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f M
i j (r,V) =

ni j(r)α
3/2
i j

π3/2(r)
· exp

[

−αi j(r)(V − ui j)
2
]

, αi j =
mi

2kTi j

(2.2)

Here r is the spatial coordinate and V is the velocity of the test particle, mi is the mass
of the species i, k is the Boltzmann constant; ni j, ui j and Ti j are parameters of the statistical
model to be defined later.

The theory which is described below is built up for the case of elastic collisions (mo-
mentum and energy conservation in a collision event) for particles for which only the
translatory energy changes in the collisions.

2.2.1 Parameters of self collisions

For the self collisions (collisions of the particles of the same type) nii, uii and Tii can be
found from particle, momentum and energy conservation:

∫

StBGK
ii ( fi)dV = 0;

∫

VStBGK
ii ( fi)dV = 0;

∫

V2StBGK
ii ( fi)dV = 0 (2.3)

Here and below in this Section the integrals without limits denote an integral over the
whole velocity space:

∫

· · · dV =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
. . . dVxdVydVz

For νii which is independent of V this implies:

∫

[ f M
ii − fi]dV = 0;

∫

V[ f M
ii − fi]dV = 0;

∫

miV
2

2
[ f M

ii − fi]dV = 0 (2.4)

For Maxwellian distribution (2.2):

∫

f M
ii dV = nii;

∫

V f M
ii dV = uii;

∫

miV
2

2
f M
ii dV =

3

2
kTii +

miu
2
ii

2
(2.5)

one gets finally:

nii =

∫

fi(V)dV = ni; uii =

∫

V fi(V)dV = ui; Tii =
mi

3k

(∫

V2 fi(V)dV − u2
i

)

= Ti

(2.6)

The parameters (of the model) are simply the number density, average velocity and kinetic
energy of the species i, νii is the remaining model parameter to be determined later in
Chapter 2.3.1.

2.2.2 Parameters of cross-collisions

For the cross collisions (collisions of the particles of different type) the condition of the
particle conservation

∫

S tBGK
ii

( fi)dV = 0 is valid as well as for the self collision, therefore
ni j = ni. The determination of the parameters uii and Tii is less straightforward. They are
calculated to have the correct rates of momentum and energy exchange in the case of so
called “Maxwellian Molecules”. These are the particles for which:

σ(1)(vr)vr = 2πvr

∫ ∞

0

[

1 − cosχ(vr, b)
]

bdb = Km = const (2.7)

Here σ(1) is the momentum transfer (diffusion) cross section, vr is the magnitude of the
relative velocity of colliding particles, b is the impact parameter, χ is the scattering (deflec-
tion) angle in the centre-of-mass frame. This definition of σ(1) can be found in [44]; σ(1)vr

corresponds to the value 2πφ
(l)

12
from [58], Chapter 9. It should be pointed out that when

using the term “Maxwellian Molecules” only the property (2.7) i meant but not the stronger
assumption that the interaction potential is V(r) ∼ 1

r4 (where r is the intermolecular dis-
tance).
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The momentum and energy transfer between two components with such kind of in-
teraction does not depend on the shape of velocity distribution functions. To derive the
corresponding equations it is convenient to use formulas from [10], Chapter 7. The mo-
mentum gained by particles of the type 1 due to their collisions with particles of the type
2 reads as:

(

dp

dt

)

21

= −mr

∫

Km(v1 − v2) f2dv2, mr =
m1m2

m1 + m2

(2.8)

and the kinetic energy gained by particles 1 due to their collisions with particles 2 is:
(

de

dt

)

21

= −mrv1

∫

Km (v1 − v2) f2dv2 +
m2

r

m1

∫

Km (v1 − v2)2 f2dv2 (2.9)

In case of Km = const the integration in (2.8) and (2.9) yields:
(

dp

dt

)

21

(v1) = mrKmn2 (u1 − u2) (2.10)

(

de

dt

)

21

(v1) = mrKmn2

[

(v1.u2) − v2
1 +

mr

m1

(

v2
1 +

< E2 >

m2

− 2(v1.u2)

)]

= (2.11)

2m1m2

m2
0

Kmn2













< E2 > −
m1v2

1

2
+

m1 − m2

2
(v1.u2)













, m0 = m1 + m2

Here < Ei > is the average kinetic energy of the particles i: < Ei >=
∫

miv
2
i

2
fidvi =

3
2
kTi +

miu
2
i

2

The total rate of momentum and energy exchange between components 1 and 2 is
calculated integrating (2.10) and (2.2.2) over the velocity space v1:

(

dP

dt

)

21

=

∫ (

dp

dt

)

21

(v1) f1dv1 = mrKmn1n2(u2 − u1) (2.12)

(

dE

dt

)

21

=

∫ (

de

dt

)

21

(v1) f1dv1 =
2m1m2

m2
0

Kmn1n2

(

< E2 > − < E1 > +
m1 − m2

2
(u1.u2)

)

(2.13)

To find u12 one has to integrate the corresponding cross collision term in (2.1) over
m1v1dv1 (momentum gained by particles 1) and equate it to (2.12):

(

dP

dt

)

21

=

∫

m1v1ν12

(

f M
12 − f1

)

dv1 = m1ν12n1 (u12 − u1) = Kmmrn2n1 (u2 − u1)

Therefore:

u12 = u1 + α
m2

m0

(u2 − u1) , α =
Kmn2

ν12

, m0 = m1 + m2 (2.14)

With α another free parameter.
Similarly for T12: integrating the cross collision term over 1

2
m1v2

1
dv1 and equating it

to (2.13):
(

dE

dt

)

21

=

∫

m1v2
1

2
ν12

(

f M
12 − f1

)

dv1 = m1ν12n1













3

2
kT12 +

m1u2
12

2
− 3

2
kT1 −

m1u2
1

2













=

=
2m1m2

m2
0













3

2
kT2 +

m2u2
2

2
− 3

2
kT1 −

m1u2
1

2













(2.15)

Substituting (2.14) and u = u1 − u2:

T12 = T1 +
2αm1m2

m2
0

(T2 − T1) +
m1m2

3km2
0

(

2m2u2
2 − 2m1u2

1 + 2(m1 − m2)(u1.u) − αm2u2 − 2m0(u1.u2)
)

=

= T1 +
2αm1m2

m2
0

(T2 − T1) +
m1m2

3km2
0

α(2 − α)u2 (2.16)

Formulas for T21 and u21 can be obtained from (2.14) and (2.16) by exchanging indices. This

choice of the cross-collision parameters ensures that
(

dP
dt

)

21
= −

(

dP
dt

)

12
and

(

dE
dt

)

21
= −

(

dE
dt

)

12

and therefore the momentum and energy conservation is met automatically. The remain-
ing free parameter νi j (uniquely connected to α) will be determined below, Chapter 2.3.2.
In the current implementation α = 1, see Appendix A.3.
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2.3 Effective collision rates

2.3.1 Self collisions

The choice of the self-collision rates νii can be done in such a way that the model gas will
have the same viscosity as a real gas. For this the the Chapman-Enskog method is applied
to the kinetic equation with collision term (2.1). The analysis below is based on the book
of Chapman and Cowling [58], and the notation in this Section is kept close to this book.

The first approximation f (0) in the Chapman-Enskog expansion is the Maxwellian dis-
tribution. In the considered case f (0)

= f M. The equation for the correction of the second
order approximation f (1) ( f = f (0)

+ f (1)
+ · · · ) can be found expressing the transport operator

D( f ) (full time derivative of f ) in terms of the peculiar velocity c = v − u ([58], Equation
7.30.3):

ν
(

f (0) − ( f (0)
+ f (1))

)

= f (0)

[(

mc2

2kT
− 5

2

)

c.∇ln T +
m

kT
c̊c :

∂u

∂r

]

(2.17)

Note that here the notation of the kind cc denotes the so called dyadic but not the scalar
product of two vectors which is denoted as c.c ([58], Chapter 1.3). To avoid misunder-
standing, the notations for vector and tensor operators which are used in this chapter are
explained in Appendix C.

Equation 2.17 yields:

f (1)
= − f (0)

ν

[(

mc2

2kT
− 5

2

)

c.∇ln T +
m

kT
c̊c :

∂u

∂r

]

(2.18)

To find the viscosity coefficient in the BGK model the expression for the first order approx-
imation of the stresses tensor is used ([58], Chapter 7.41):

Π
(1)
= m

∫

f (1)ccdc (2.19)

Substituting (2.18) into (2.19) and taking into account that the integrals over odd power
of c are vanishing, yields:

Π
(1)
= − m2

νkT

∫

f (0)cc.

(

c̊c :
∂u

∂r

)

dc

This relation can be transformed using the following integral theorem ( [58], Chapter 1.421):

∫

F(c)cc.(c̊c : w)dc =
2

15

˚
w

∫

F(c)c4dc

Here F(c) is any scalar function of c. Therefore:

Π
(1)
= − 2m2

15νkT

˚
∂u

∂r

∫

f (0)c4dc

Using the definition of viscosity coefficient µ ([58], Equation (7.41,2)): Π(1)
= −2µ

˚
∂u
∂r

and
substituting:

f (0)dc = 4πc2n

(

α

π

)3/2

e−αc2

dc, α =
m

2kT
(2.20)

yields:

µ =
4nm2α3/2

15
√

(π)νkT

∫ ∞

0

c6e−αc2

dc

The integral can be calculated using the following formula ([58], Chapter 1.4):

∫ ∞

0

cre−αc2

dc =
1

2
α−(r+1)/2

Γ

(

r + 1

2

)

=

√
π

2

1

2

3

2

5

2
· · · r − 1

2
α−(r+1)/2 (2.21)

Therefore:

µ =
4nm2α3/2

15
√

(π)νkT
· α−7/2

√
π

2

1

2

3

2

5

2
=

nm2

4νkTα2
=

kTn

ν
(2.22)
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If collision frequency ν for the self collisions is calculated using Formula (2.22), then in
the hydrodynamic limit the model will give the same viscosity as the real gas with viscosity
coefficient µ.

The thermal conductivity coefficient given by BGK model can be calculated in the sim-
ilar way. The conductive heat flux is defined as ([58], Chapter 7.4):

q(1)
= −1

2
m

∫

f (1)c2cdc (2.23)

Substituting ( 2.18) into ( 2.23) and vanishing integrals over odd degree of c yields:

q(1)
= − m

2νT

∫

c2

(

mc2

2kT
− 5

2

)

(c.∇T ) cdc

If A is any constant vector (independent of c), then the following formula is valid ([58], Equa-
tion (1.42.4)):

∫

F(c) (A.c) cdc =
1

3
A

∫

F(c)c2dc

In this case A = ∇T and making use of the definition of thermal conductivity q(1)
= −λ∇T

gives:

λ =
m

6νT

∫ (

mc2

2kT
− 5

2

)

f (0)(c)c4dc

Substituting (2.20) and using (2.21) to calculate the integrals one arrives to:

λ =
mn

6νT

∫ ∞

0

4π

(

α

π

)3/2
(

αc2 − 5

2

)

c6e−αc2

dc =
2mnα3/2

3
√
πνT

[

α

∫ ∞

0

c8e−αc2

dc − 5

2

∫ ∞

0

c6e−αc2

d

]

=

=
2mnα3/2

3
√
πνT

· α−7/2

√
π

2

1

2

3

2

5

2

[

7

2
− 5

2

]

=
5k2Tn

2mν

The Prandtl number (Pr) can be calculated as:

a =
λ

Cp

=
5k2Tn/(2mν)

5
2
kn

=
kT

mν
, η =

µ

mn
=

kTn/ν

mn
=

kT

mν
, Pr =

a

η
= 1

Here a is the temperature diffusivity and η is the kinetic viscosity.
Theoretical studies show that for all physically meaningful interaction laws the Pr num-

ber is close to 2/3, and this conclusion is confirmed experimentally (e.g. for air at normal
conditions Pr=0.7) [85]. Therefore, the BGK model yields incorrect Pr number and thus
leads to an overestimated (by 50%) thermal conductivity, if viscosity is matched. In other
words, the simplest version of the BGK approximation does not allow matching both ex-
perimental viscosity and thermal conductivity and strictly valid only for isothermal flow.

2.3.2 Cross-collisions

The BGK collision rates for the cross-collisions can be chosen in such a way to have the
same energy exchange rate between two components as for the real gas. The expression
for the energy exchange rate between two gases with Maxwellian velocity distribution and
different temperatures T1, T2 and masses m1, m2 was found by Desloge [86] and Morse [87].

(

dE

dt

)

21

=
4π(m1m2)7/2 (kT2 − kT1) n1n2

(2π)3/2K5/2 (m1T2 + m2T1)

∫

e−Kg2

g5σ(1)(g)dg =

√

2

π

m1m2n1n2

(m1 + m2)2
(kT2 − kT1) K5/2 1

K3

∫ ∞

0

x5σ(1)
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Here:

K =

(

2kT1

m1

+
2kT2

m2

)−1

=

(

2kTe f f

mr

)−1

, Te f f =
m2T1 + m1T2

m1 + m2

(2.25)
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The effective temperature Te f f corresponds to the average relative velocity between the
particles of two components. The Ω-integral is defined as ([58], Chapter 9.33):

Ω
(1)
12
=

√

kT

2πmr

∫ ∞

0

x5σ(1)













x

√

2kT

mr













e−x2

dx (2.26)

Equation (2.24) gives the energy transferred from particles 2 to particles 1 per unit time
per unit volume (W/m3). It is assumed that there is now macroscopic relative motion of
two gases (u1 − u2 = 0) or at least its velocity is much smaller than the thermal velocity:

(u1 − u2)2 << min
(

2kTi

mi

)

.

According to the Chapman-Enskog theory the integral (2.26) enters the first order ap-
proximation of the diffusion coefficient ([58], Chapter 9.81):

D12 =
3kT

16nmrΩ
(1)

12

This diffusion coefficient defines the flux of the gas 1 in the gas 2 as Γ12 = −D12∇n1. For
molecules with σ(1)(vr)vr = const = Km:

Ω
(1)
12
=

1

2
√
π

∫ ∞

0

Km x4e−x2

dx =
3

16
Km, D12 =

kT

nmrν
(2.27)

The expression (2.21) was used to calculate the integral in 2.27.
If Km is determined from Equation (2.27), then the gas with such collision frequency

has the same Ω(1)

12
(T ) as the real gas with a diffusion coefficient D12. At the same time,

according to equation (2.24) it will have the same energy equipartition rate as the real
gas. It was shown in the Section 2.2.2 that the BGK model yields exactly the same en-
ergy exchange rate as the given Maxwellian gas if ν12 = Kmn2/α. Therefore, if the effective
collision rate ν12 is determined from the experimentally measured diffusion coefficient D12

using Equation (2.27) the model will give the same energy exchange rate between the two
components with Maxwellian velocity distribution (and no macroscopic relative motion) as
in the real gas.

2.4 Calculating the collision rates

In this section the calculation of the BGK collision rates using empirical data on viscos-
ity and diffusivity will be shown. It repeats and cross-checks the calculations made by
Christof May [38, 39].

The empirical formula for the diffusion coefficient D12 is [91, 92]:

D12 =

10−2T 1.75
√

M1+M2

M1 M2

P
[

(
∑

v1)1/3 + (
∑

v2)1/3
]2
= D0

T 0.75

n
(2.28)

Here D12 is measured in m2/s, P is the total pressure (Pa), n is the total density (m−3), M1

and M2 are molecular masses of the components in kg/mol (not to be confused with the
small m which denotes masses in kg), T is measured in K. (

∑

v) are the so called diffusion
volumes which are found empirically. May used the diffusion volumes from [92]. The
corresponding rate of the cross-collisions is calculated according to formula (2.27):

< σv >12= s0T 0.25, s0 =
k

mrD0

(2.29)

For the self-collisions May used viscosity recalculated from the diffusion coefficient (2.28).
In the notation of the book [93] the corresponding transport coefficients are:

µ =
5

16

√
πMRT

πσ2Ων
=

5

16

kT
√

πkT
m
σ2Ων

(2.30)

D =
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16
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2πkT
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M1M2
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1

nπσ2ΩD

=
3

8

kT

n

√

πkT
m
σ2ΩD

(2.31)
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Here R = k/NA = 8314 J/(K·kmol) (gas constant), NA is the Avogadro number. The for-
mula for D was reduced to get the coefficient of self diffusion. Comparing the rela-
tions (2.30), (2.31) with corresponding formulas from [58], Chapter 9:

µ =
5

8

kT

Ω
(2)

12
(2)

, D =
3

8

kT

nmΩ
(1)

12
(1)

(2.32)

one finds the connection between Ων and ΩD and Chapman-Enskog Ω integrals:

Ω
(2)
12

(2) = 2

√

πkT

m
σ2
Ων, Ω

(1)
12

(1) =

√

πkT

m
σ2
ΩD (2.33)

The notation of [93] ensures that for the case of rigid spheres Ων = ΩD = 1. Formulas (2.32)
are only the first approximation of the decomposition into the Sonine polynomials [58].
But calculations of the higher order corrections made for some special cases show that
they do not exceed 10 % for viscosity and diffusion coefficients [58, 94].

The connection between µ and D can be found using relations (2.32):
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Dnm
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(2.34)

For most of the practical cases one can assume that Ων
ΩD
= 1.1 [93], page. 551. Then, using

expression (2.28) for the diffusion coefficient (reduced to self-diffusion) one obtains:

µ =
5

6
·

1

1.1

M

R

10−2T 0.75
√

2
M

[

2(
∑

v)1/3
]2
= 1.894 · 10−3

√
2MT 0.75

R(
∑

v)2/3
= µ0T 0.75 (2.35)

Here the temperature T is measured in K, the mass M in kg/kmol (≈amu). The viscosity is
calculated in Pa·s. This is exactly the formula which can be found in [38].

If the viscosity is known, then the collision rate is calculated using Formula (2.22):

< σv >= s0T 0.25, s0 = k/µ0 (2.36)

The results of calculating D0, µ0 and s0 for some selected substances are shown in
Table 2.1. The column ”ln s0” is the input data for EIRENE (where the temperature is
translated from K to eV). The column L0 is the proportionality coefficient in the formula for
the Mean Free Path (MFP, cm):

MFP =

√
8kTπm

s0T 0.25n
= L0

T 0.25, eV

n, 1020 m−3
(2.37)

In other words L0 is the MFP of the test particle in the background gas with the tempera-
ture 1 eV and the density 1020 m−3.

To cross-check the May’s data they were compared with the low-temperature diffusivity
and viscosity data available in the engineering literature [95, 96]. The results are shown
in Figures 2.1a, 2.1b. The maximum deviation is 26% for viscosity and 20% for diffusivity.
The deviation tends to increase for higher temperatures. Figure 2.1c shows comparison
with H2 viscosity calculated using Sutherland’s formula:

µ = µ0

0.555T0 +C

0.555T +C

(

T

T0

)1.5

(2.38)

Table 2.1: BGK collision rates (see notations in the text)

Collision µ0 D0 s0 ln s0 L0

D+D 2.6071e-07 - 5.2958e-11 -2.1322e+01 20.1

D2+D2 1.7881e-07 - 7.7217e-11 -2.0945e+01 9.75

D2+D - 6.1275e+19 1.0177e-10 -2.0669e+01 D2: 7.40
- D: 10.5

He+D - 8.6567e+19 7.2037e-11 -2.1014e+01 He: 10.5
- D: 14.8

He+D2 - 4.8060e+19 8.6505e-11 -2.0831e+01 8.70
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Figure 2.1: Comparison of the viscosity and diffusivity calculated by May [38] with the data
from CRC Handbook [95] and Sutherland’s approximation for H2 viscosity taken from [96]
(Crane)

The constants µ0, C and T0 are taken from [96], the approximation is valid for temperatures
below 800 K. For those low temperatures it matches the data from [95], Figure 2.1b. For
high temperatures May’s viscosity and formula (2.38) deviate significantly from each over.
The deviation reaches a factor of 2.2 for T=2 eV, Figure 2.1c. This indicates at least that the
relation of the form (2.28) with constant power is valid only for low temperatures. Indeed,
the review [94] suggests that this power can vary from 1.5 to 2 for different temperature
ranges.

Comparison of the extrapolation of empirical dependences for viscosity and diffusivity
with the results of quantum-mechanical calculations was done in [33]. The quantum-
calculations show that the temperature dependence of the transport coefficients satu-
rates and begins to decrease starting from temperatures 0.5..1 eV, opposite to the formu-
las (2.28), (2.30), (2.38) which show constant increase. However, the calculated coefficients
shown in [33] do not match the experimental values for low temperatures.

Everywhere in this work the May’s collision rates are used, because the strong devi-
ations between different approaches starts to be significant only for temperatures higher
than 0.5 eV. But for such high temperatures the neutral-neutral collisions are not very
important. The best solution would probably be to combine the low temperature empirical
data with the results of the quantum calculations for high temperatures.

2.5 The effect of neutral-neutral collisions

The principal effects related to the neutral-neutral collisions (NNC) can be seen in the
calculations with fixed plasma background. The calculations were made for the plasma
background of the case ITER 828 with gas puffing rate 5.7·1022 s−1, average neutral pressure
in PFR 6 Pa, full carbon wall and input power to the SOL 100 MW. The model is described
in Section 1.3. The distribution of the electron temperature and density in the divertor
can be found in Section 3.3.1, Figures 3.18b, 3.19b.

The comparison of the neutral density and temperature without and with NNC is shown
in Figures 2.2- 2.5. The “temperature” in the plots is the average kinetic energy multiplied
by 2/3: it includes thus the energy of the drift motion. The shown figures are obtained
after EIRENE runs with 700.000 histories. For BGK 15 iterations with approximately
20.000 and then 3 iterations with 700.000 histories were made. In this case the standard
deviation for the density and average kinetic energy of neutrals in the region of interest
does not exceed 5 %.

One can see a significant increase of the molecule density (the maximum increases
by a factor of 3) in V-shapes and in the dome channel, Figure 2.3. The temperature of
molecules increases by an order of magnitude. On the contrary, the density of atoms in
those regions decreases, as well as their temperature. This behaviour will be explained
below.

The main reason is the collisions of D atoms with D2 molecules. Directly in front of the
targets near the strike points the density of atoms is high enough (> 2 ·1014cm−3, Figure 2.2)
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to produce high D+D2 collisionality, Figure 2.6. The shown Mean Free Path (MFP) was
calculated directly by Monte-Carlo using the estimation: MFP =

∑

i
Vi

νi
· wi · ti. Here i is the

index of one free flight between two events (collision, changing the grid cell etc), ti is the
time between two events, wi is the statistical weight, Vi is the current velocity of the test
particle and νi is the collision rate (for the collisions for which the MFP is calculated).

The D2+D collisions are responsible for the observed increase of D2 temperature, Fig-
ure 2.5. The effect is so strong because in the absence of NNC there is no process (in the
model of EIRENE 1996) which can increase the kinetic energy of molecules. In this case it
is determined completely by the wall temperature. However, if the model includes elastic
collisions of molecules with ions D2+D+ (see Chapter 3), the heating due to NNC becomes
unimportant. It’s effect is studied here mostly because of its qualitative similarity to the
effect of D2+D+ collisions.

The resulting increase of the molecule density originates from their compression near
the targets due to back-scattering. This effect is illustrated in Figure 2.7a which shows the
incident flux of molecules to the inner and outer targets. When NNC are turned on the flux
is a factor 3 higher. The increase of the return flux results in the increase of the molecule
density in front of the targets, Figure 2.3. The increase of the molecular pressure in the
vicinity of targets leads to the same grow in V-shapes and beneath the dome. This latter
statement is based on the fact that the gas conductivity between those regions (target
region - V-shape - dome channel, Figure 1.1b) is at least not decreased when NNC are
switched on, thus the pressure gradient is not increased. This finally leads to a factor 3
higher pressure of the neutral gas in front of the pumping surface, Figure 2.7b.

The temperature of D atoms near the strike points does not experience significant
modification because of permanent heating due to charge exchange with plasma ions.
But in the “plasma-free” region their temperature reduces, Figure 2.4, because atoms
transfer now a part of their kinetic energy to the molecules. The density of atoms in this
region becomes smaller, almost vanishing in the middle of the dome channel, Figure 2.2.
This happens because D+D2 collisions increase the number of collisions of D atoms with
the wall. According to the actual wall interaction model each such collision can lead to
a transformation of the atom into a molecule (thermal desorption), thus decreasing the
number of atoms and adding to the increase of the molecule density.

This vanishing of the density of atoms leads to a significant increase of the pumping
speed, defined as the ratio of the pumping flux to the neutral pressure. Without NNC
the atomic fraction constituted about 40 % of the total neutral pressure, Figure 2.7b. At
the same time more than 90% of the entire particle flux incident on the pumping surface
was associated with molecules, Figure 2.8a. The reason is that the incident flux scales

as Pressure
√

Temperature
and the temperature of atoms without NNC is a factor 20 larger than

that of molecules. In other words, the pressure associated with atoms creates almost
no pumped flux. The NNC remove this “useless” fraction, Figure 2.8a. Now the gas in
the dome channel consists almost only of the cold (almost wall temperature) molecules. In
order to have about the same particle throughput, the pumping speed at the duct entrance
(absorption coefficient at the pumping surface) in all succeeding calculations was lowered
by a factor of 1.6 compared to the old model (from 1.15 % to 0.7 %). This and previous
effects of neutral-neutral collisions are described in the paper [50].

Figure 2.8b shows an example of the particle balance in the dome with and without
NNC. Mostly atoms enter the dome channel and mostly molecules leave it. The net flux
of nuclei is directed from the inner divertor to the outer one. One can see that this flux
is an order of magnitude larger in the case with NNC. This can be partly explained by the
increase of the molecule density, and partly by the increase of the channel conductivity
as flow transits from the free-molecular to hydrodynamic regime: an effect, which is well
known in the rarefied gas dynamics, see e.g. [97].

In the analysis above He atoms were not considered because their density is almost two
orders of magnitude lower than that of D. Like D atoms, they experience cooling due to
collisions with D2 molecules. The pumped flux of He increases by a factor of 2, Figure 2.8b.

Short mean free paths, Figure 2.6c suggest that the gas flow in V-shapes and in the
dome channel should be close to hydrodynamics. The Velocity Distribution Function (VDF)
in some selected spatial points was calculated directly for the case ITER 1055p1 (the
case with photon transport and low density, see Section 4.3) in an EIRENE test run with
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Figure 2.2: Density of D atoms

900.000 histories. Figure 2.9 shows the distribution function for the absolute magnitude
of velocity of D2 molecules for two selected points. One point (point 10) lies in the middle
of the dome channel, another one (point 14) lies in the inner V-shape. One can see a
very good agreement with a Maxwellian, especially for the dome channel, as expected.
Angular distribution of velocity (not shown) is also isotropic. However, whereas in the
dome channel and V-shapes one finds molecular gas in quasi-equilibrium, at the entrance
to the dome channel the MFP is larger than 5 cm, Figure 2.6c. This means a transition
flow with Knudsen Number ≈ 1.

The calculations shown above were made without elastic collisions of molecules and
ions. To asses the effect of NNC for the model with up-to-date molecular kinetics, Chap-
ter 3, the results with and without NNC were compared on the fixed plasm of case ITER
1055. The main difference is in the pressure distribution in the dome channel, Fig-
ure 2.10. The pressure ”upstream”, - at the bottom near the entrance to the channel,
- is similar in both cases: 17..19 Pa on the inner side and 13..14 Pa on the outer side. But
when NNC are switched on, the density in the middle of the dome channel increases from
5.3 to 8.5 Pa due to higher conductivity in the collisional case. The velocity pattern does
not experience serious modification. The total hydrogenic fluxes to the dome and from the
dome are changed by less than a factor of 1.5. NNC can also affect the efficiency of impu-

rity pumping. Figure 2.11 shows relative thermal flux of He atoms (n
√

T/m)He

(n
√

T/m)D+2·(n
√

T/m)D2

: the

ratio of the one-side thermal flux of He and that of D nucleus. This quantity corresponds
approximately to the fraction of He in the incident flux, thus in the pumped flux. He atoms
enter the dome channel mainly from the inner side. NNC hinder their penetration further
through the channel, increasing He concentration on the inboard side, and decreasing it
on the outer side.
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Figure 2.3: Density of D2 molecules
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Figure 2.4: Temperature (average kinetic energy) of D atoms
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Figure 2.5: Temperature (average kinetic energy) of D2 molecules
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Figure 2.6: Inverse average mean free path for D2+D2 (a) and D2+D (b,c) collisions. Red
regions corresponds to MFP<1 cm for D2+D2 and MFP<2 cm for D2+D collisions

(a) (b)

Figure 2.7: (a) The effect of back-scattering of molecules due to their collisions with atoms;
(b) the increase of the neutral gas pressure in front of the pumping surface (see Fig-
ure 1.1b). “Distance from separatrix” is the distance along the target. Negative direction
points towards PFR.



2.5. The effect of neutral-neutral collisions 41

(a)

With NNC

D = 2.5e+23 s−1

He= 7.4e+20 s−1

D−at.= 1.7e+23 s
−1

D
2
= 4.1e+22 s−1

 D =−8.8e+22 s
−1

 He=−3.6e+20 s
−1

D−at.= 1.8e+23 s
−1

D
2
=−1.3e+23 s

−1

 D = 1.6e+23 s−1

 He = 3.7e+20 s−1

W/O NNC

D = 7.4e+22 s−1

He= 9.5e+20 s−1

D−at.= 3.7e+23 s
−1

D
2
=−1.5e+23 s

−1

 D =−9.3e+21 s
−1

 He=−7.9e+20 s
−1

D−at.= 3.8e+23 s
−1

D
2
=−2.0e+23 s

−1

 D = 6.4e+22 s−1

 He = 1.6e+20 s−1

(b)

Figure 2.8: (a) The modification of the pumped flux; (b) the diagram of the neutral particle
fluxes in the dome. Subfigure (a) shows the distribution along the pumping surface. “D”
on the diagram stands for the number of nuclei (”D-at.” is the flux of atomic D)
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(a) Point 10, Dome Channel
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(b) Point 14, V-shape

Figure 2.9: An example of the distribution function for the absolute magnitude of velocity
for D2 molecules for the point lying in the centre of the dome (a) and deep in the inner V-
shape (b). The parameters of the gas in Point 10 and Point 14 are given in the table below.
R and Z are the radial and vertical coordinates of the point, T is the temperature (aver-
age kinetic energy), VR,Z,θ are the radial, vertical and toroidal components of the average
velocity.

Point R, cm Z, cm T, eV VR, cm/s VZ, cm/s Vθ, cm/s

10 485 -397 0.05 1.9e3 -5.4e2 -5.4e3

14 410 -382 0.10 -8.9e2 -2.4e3 -1.9e4
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Figure 2.10: Pressure of D2 molecules with and without NNC on a fixed plasma (case ITER
1055)
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Figure 2.11: Relative thermal flux of He atoms (estimate of the fraction of He in the incident
flux) with and without NNC on a fixed plasma(case ITER 1055)



Chapter 3

Molecular kinetics

3.1 Elastic collisions

3.1.1 General definitions

This section contains a detailed description of the current status of the model for elastic
collisions in EIRENE. For completeness it contains the necessary theoretical background
including some general terms and relations. In particular, a complete derivation of the
momentum and energy transfer rates between test particles and a Maxwellian plasma
background is shown, Section 3.1.4. These rates can be used to apply a Track Length
Estimator instead of a Collision Estimator for the corresponding sources, which has been
done in the present work. The Track Length Estimator can in some cases (low collisional-
ity) increase the accuracy of calculations. This is a side-by result of this work because it
was found almost irrelevant for the highly collisional ITER divertor conditions. However,
using different estimators provides an independent consistency check of the implementa-
tion of elastic collisions, Section 3.1.8.

The term “collision” in this work is used to define an instant change of velocity and (or)
the internal state of the test particle. The main physical assumption behind this model
is that the forces acting between particles can be strong enough only for short distances.
Only if the two particles approach each other to such short distance their velocities or state
can be significantly perturbed. Such close approach is called “collision”. It is assumed,
therefore, that the distance of this approach is much smaller than the distance which
particle travels between the two collisions (“strong perturbations”). Analogously, the time
which is necessary to change the test particle’s state (the time of one collision) is assumed
to be much smaller than the time between two subsequent collisions. In the frame of
this work only collisions between two particles are considered (with one exception: three-
body recombination). The assumptions listed above are valid for a gas with relatively
low density and short-range interaction potential between particles. They break down for
high densities (e.g. pressures more than 10..100 bar for room temperature) or long range
Coulomb-like interaction potentials.

Let a test particle with velocity vt moves in the background with a given velocity distri-
bution fp. Here and below the index t corresponds to the neutral (“test”) particle and the
index p corresponds to the background ion: “plasma” particle. The distribution fp here
is normalised to the particle density. The collision rate is the total number of collisions
experienced by the test particle in a unit time interval. It is assumed that this number of
collisions is large enough: either the time of observation is long, or an average over many
test particles is calculated. The consideration below is based predominantly on the paper
of Trubnikov [10]. The number of the test particles with velocities laying in the interval
{

(v
p
x , v

p
x + dv

p
x ), (v

p
y , v

p
y + dv

p
y ), (v

p
z , v

p
z + dv

p
z )

}

which cross the area bdbdψ, Figure ??, during a unit
time interval is equal to:

vrnp f (vp)bdbdψdv
p
xdv

p
y dv

p
z , vr = vt − vp (3.1)

Here np is the number density of the background particles. The quantity b is called the im-
pact parameter: it is the distance of closest approach of the two particles if no interaction
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would exist, Figure ??. To find the total number of collisions in a unit time interval Rtnp

this relation should be integrated over all possible values of b, φ and
{

v
p
x , v

p
y , v

p
z

}

:

Rtnp = np

∫

dvp · vr f (vp)

∫ 2π

0

dψ

∫ bmax

0

db · b (3.2)

Figure 3.1: Towards definition of
the collision rate and cross-section

The following common notation is used:

∫ ∞

−∞
dvx

∫ ∞

−∞
dvy

∫ ∞

−∞
dvz =

∫

dv

The quantity:

σt (Er) =

∫ 2π

0

dψ

∫ bmax

0

db · b = 2π

∫ bmax

0

bdb (3.3)

is the total cross-section of the collision. The integra-
tion over the angle ψ is made assuming axial symme-
try of the collision (b is independent of ψ). Here σt is
defined as a function of Er:

Er =
mrv

2
r

2
, vr = vt − vp, mr =

mpmt

mp + mt

Er is the kinetic energy of the relative motion, vr is the relative velocity, mr is the reduced
mass.

The parameter bmax in (3.7) is an artificial cut-off parameter which is introduced to avoid
the disconvergence of the classical cross-section. The choice of this parameter depends in
fact on the convention of what is called “collision”. Collision which does not lead to the
modification of internal state is a deflection near a centre of force. Formally a classical
particle approaching to any distance to this centre of force will deflect to some (although
probably very small) angle. This is the reason why the cross-section becomes formally
infinite. Obviously, the collisions with too large impact parameters lead to a very weak
deflection and do not have significant influence on the particle transport. The cut-off
parameter serves therefore to eliminate the unimportant weak collisions. The choice of
this parameter will be described later. The problem of the disconverges of the total cross-
section can be rigorously solved only in quantum mechanics. For the classical treatment
the choice of this cross section (equal to πb2

max) is not very important above some level,
because it can only increase the amount of weak (low-angle) collisions.

Using definition (3.7) the integral (3.2) is expressed as:

Rtnp = np

∫

σt (Er) · vr f (vp)dvp (3.4)

The calculation of the integral (3.4) for Maxwellian f (vp is considered in Section 3.1.2.
In this section only elastic collisions are considered i.e.: collisions which do not change

the total kinetic energy. In case of classical interaction with spherically symmetric interac-
tion potential V(r) the scattering angle Θ, Figure ?? is calculated as (see e.g. [99], Chapter
4.18):

Θ = arccos (cosχ), χ (b, Er) = π − 2b

∫ ∞

r∗

dr

r2
√

1 − V(r)/Er − (b/r)2
(3.5)

Here χ is the deflection function, r∗ is the distance of the closest approach, Figure ??. In
general χ is different from the deflection angle Θ because orbit-trajectories with χ > π are
possible [44]. The distance r∗ can be found as the maximal root of the equation:

1 − V(r)/Er − (b/r)2
= 0 (3.6)

Using the deflection function χ one can define the differential cross-section which de-
pends on the scattering angle Θ (see e.g. [44, 99]):

σ (Θ, Er) =
∑

i

bi

sinχ

∣

∣

∣

∣

∣

dbi

dχ

∣

∣

∣

∣

∣
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In general b can be a multi-valued function of χ and the sum over all the branches of b is
calculated.

Using this definition, the total cross-section σt can be expressed as:

σt (Er) = 2π

∫ π

0

σ (Θ, Er) sinΘdΘ (3.7)

To describe momentum and energy exchange (see Section 3.1.4) the diffusion (momentum
transfer) cross-section is introduced:

σd (Er) = 2π

∫ ∞

0

(1 − cosΘ) bdb = 2π

∫ π

0

(1 − cosΘ) sinΘσ (Θ, Er) dΘ (3.8)

It is also common to define:

σ(0) (Er) = 2π
∫ bmax

0
bdb,

σ(l) (Er) = 2π
∫ ∞

0

(

1 − cos(l)
Θ

)

bdb, l > 0
(3.9)

Then, taking into account that cosχ = cosΘ one gets (compare to (3.7) and (3.8)): σt
= σ(0)

and σd
= σ(1). In some places below σ(l) is expressed as a function of vr which is equivalent

to σ(l) (Er) for given masses mt and mp.
The cross-sections σ(l) for hydrogen-helium plasmas were calculated in [44] using pre-

scribed potential V(r) (see Appendix B.2). In this paper the parameter bmax in the inte-
gral (3.7) was determined from a prescribed cut-off angle χ0. To find χ0 the integral (3.8)
(which always converges) was calculated using the same low angle cut-off and the result
was compared to the calculation with the full integral. It was found that χ0 = 0.1 gives a
difference less than 1% for all relevant processes with hydrogen and helium.

In the next sections some major issues of implementing the sampling of the elastic
collisions in a Monte-Carlo code are described. In section 3.1.2 the calculation of the
collision rate for Maxwellian background is shown. Section 3.1.3 explains the treatment
of the cross-section and collision rate data. For bookkeeping the the algorithm of sam-
pling the velocity of the incident particle is described in Appendix B.1. The model for
the interaction potential and the sampling of the scattering angle can be found in Ap-
pendix B.2. Derivation of the relations for momentum and energy transfer rates is given
in Sections 3.1.4- 3.1.6. A numerical example is shown in Section 3.1.8.

3.1.2 Collision rate for Maxwellian background

Everywhere in this work it is assumed that the background (plasma ions) has a shifted
Maxwellian velocity distribution:

fp(vx
p, v

y
p, v

z
p)dvx

pdv
y
pdvz

p =
α3np

π3/2
v2

p exp
[

−α2
(

(vx
p − ux

p)2
+ (v

y
p − u

y
p)2
+ (vz

p − uz
p)2

)]

dvx
pdv

y
pdvz

p, α2
=

mp

2T
(3.10)

Here mp, T and up are the mass, temperature (in energy units) and the average velocity of
the background particles.

It is convenient to assume first the Maxwellian distribution without shift u = 0:

fp(vx
p, v

y
p, v

z
p)dvx

pdv
y
pdvz

p =
α3np

π3/2
v2

p exp
(

−α2v2
p

)

sin θdθdφdvp (3.11)

Here vp is expressed in spherical coordinates with θ being the angle between vt and vp,
Figure 3.2.

Following the approach of Nakano and Baba [104] it is convenient to make a transfor-
mation from variables (vp, θ) to variables (vp, vr). Taking into account that (see Figure 3.2):

v2
r = v2

p + v2
t − 2vtvp cos θ (3.12)

the Jacobian of the transformation is:

∂(vp, θ)

∂(vp, vr)
=

∣

∣

∣

∣

∣

∣

∣

∂vp

∂vp

∂θ
∂vp

∂vp

∂vr

∂θ
∂vr

∣

∣

∣

∣

∣

∣

∣

=

(

∂vr

∂θ

)−1

=
vr

vpvt sin θ
(3.13)
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Figure 3.2: Towards integra-
tion limits for vp

Substituting (3.11) into (3.4), taking into account Jaco-
bian (3.13) and integrating over angle φ yields:

Rt =
2α3

√
πvt

∫ ∞

0

dvrσ
(0)(vr)v

2
r

∫ vr+vt

vt−vr

dvpvp exp
(

−α2v2
p

)

(3.14)

The integration limits for vp can be found from the following
geometrical considerations. Formula (3.12) shows that:

|vt − vp| < vr < vt + vp

The corresponding region in the (vp, vr) plan is sketched in
Figure 3.2. This region can also be defined by the inequal-
ity:

|vt − vr | < vp < vt + vr

The limit |vt − vr | in the integral 3.14 is replaced by vt − vr

because the integrand is anti-symmetric regarding zero. This means that if (vt − vr) < 0

then:
∫ |vt−vr |

vt−vr

· · · dvp = 0, therefore

∫ vr+vt

vt−vr

· · ·dvp =

∫ vr+vt

|vt−vr |
· · · dvp

This rule works for any odd power of ν which is in particular the case for all integrals
considered below in Section 3.1.5.

It is convenient to introduce dimensionless velocities:

ξ = αvr , ν = αvp, δ = αvt (3.15)

Note that δ is a constant. The integral (3.14) then reduces to:

Rt =
2α−2

√
πvt

∫ ∞

0

dξ · ξ2σ(0)(ξ2T )

∫ δ+ξ

δ−ξ
dνν exp

(

−ν2
)

(3.16)

Here it is assumed that the cross-section σ(0) is defined as a function of Elab =
mpv2

r

2
ξ2T .

Finally:

Rt =
α−2

√
πvt

∫ ∞

0

dξ · ξ2σ(0)(ξ2T )
[

e−(δ−ξ)2 − e−(δ+ξ)2
]

=
α−1np√
πvt

∫ ∞

0

dvr · v2
rσ

(0)(vr)
[

e−α
2(vt−vp)2 − e−α

2(vt+vp)2
]

(3.17)

The Formula (3.17) can be found e.g. in [64]. It can be easily generalised for the case of a
Maxwellian background with shift up replacing vt by the relative velocity of the test particle
and the background |vt − up|.

For the electron-impact processes, which will be considered in Section 3.2, the relation
between the cross section σ(vr) and the collision rate R is simplified due to the fact that
the thermal velocity of the electrons is much higher than that of the test particles. This
allows one to assume vt = 0 and vr = vt and Equation (3.17) is then reduced to:

R =

∫

σt
(

vp

)

· vp f (vp)dvp =
4α3np√

π

∫

σt
(

vp

)

· v3
p exp

(

−α2v2
p

)

dvp (3.18)

Thus, the collision rate (reaction rate) for the electron-impact collision is a function of
electron temperature only. The average (macroscopic) velocity is neglected because for the
electrons it has the same magnitude as for ions (due to ambipolarity), therefore it is much
smaller than the electron thermal velocity.

3.1.3 Cross sections and collision rates

In this work the Janev-type polynomial approximation [64] is used for the atomic cross-
sections. The general form of this approximation as applied to elastic collisions is:



















Elab ≤ Emin, ln (σ) =
∑2

i=0 ali lni (Elab)

Emin < Elab < Emax, ln (σ) =
∑8

i=0 ai lni (Elab)

Emax ≥ Elab, ln (σ) =
∑2

i=0 ari lni (Elab)

(3.19)
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For convenience of calculating the rates (see Section 3.1.2) the energy of the relative motion
Er is replaced in the fittings by the energy of the plasma particle in moving frame Elab:

Elab =
mpv2

r

2
=

mp

mr

Er (3.20)

The whole energy range is divided into three parts by the following two energies: Emin =

Elab c, Emax = Elab 0. The energy Elab c is the parameter of the model used for the interaction
potential, see Appendix B.2. The second characteristic energy Er0 appears due to the
fact that the dependence χ(b) is ambiguous: for Er > Er0 one angle χ, Equation (3.5),
corresponds to 3 different values of the impact parameter b. The same data format (3.19)
as for σt is used for the diffusion cross section, although for σd it is not necessary to
separate the low and high energy branches.

To obtain the fitting approximations σt and σd were calculated for a number of energies
Elab using formulas (3.7) and (3.8) together with (3.5) and the model functions for V(r) [44].
The fitting coefficients were found by the Least Square method. The calculated fitting pa-
rameters ai, ali and ari for 0.01 ≤ Elab ≤ 100 eV can be found in the database AMJUEL [106],
Section H.1. The cross-sections σt and σd for H2 + H+ collisions are plotted in Figure 3.3a
together with the cross section of the charge-exchange process H + H+ [64] for compari-
son. This latter is the effective cross-section comprising both charge-exchange and elastic
collisions (which can be important for energies < 1 eV). For energies Elab < 10 eV the cross
sections of both processes have similar magnitude. For E = T = 1 eV (where T is the back-
ground temperature) the collision rate for H2 + H+ is 10−8 cm3/s. The average velocity of H2

molecule in this case is 106 cm/s, therefore, the expected Mean Free Path for the plasma
density 1014 cm−3 is 1 cm. Note that despite similar collision rates one charge-exchange
collision is “stronger” than one elastic collision: the former assumes a scattering to angle
π (maximum possible scattering) whereas the latter is a deflection to some smaller angle.

Figure 3.3a shows also the diffusion cross-sections obtained by quantum-mechanical
calculations by Krstić and Schultz [102]. The actual classical and quantum mechanical
cross-section for H2 + H+ collisions start to disconverge significantly (more than a factor
1.5) only for energies Elab greater than 5 eV. Note that the comparison of the quantum
calculations with the Bachmann-Reiter data in [102] shows too large discrepancy even for
the low energies because the results of classical calculations were not rescaled from Elab

to Er.
All cross-sections (and collision rates) which are used here are calculated for hydro-

gen. To apply them for its isotopes an appropriate mass rescaling should be used. The
scaling relations for the hydrogen isotopes were studied by Krstić and Schultz [103] (see
also [102]). They showed that for the case of H+H+ collisions both total and momentum
cross-sections scale as σ(l)(vr). Taking into account that vr =

√

Elab/mp the cross section σ
(l)

2

for the mass mp2 can be calculated from known σ
(l)
1

(for the mass mp1) as:

σ
(l)

2
(Elab) = σ(l)

(

2Elab

mp2

)

= σ(l)

















2
mp1

mp2
Elab

mp1

















= σ
(l)

1

(

mp1

mp2

Elab

)

According to the same paper [103] the diffusion cross-section for H2+H+ collisions scales
as σ(1)(Er) where Er = mr/mpElab. Therefore:

σ
(d)

2
(Elab) = σ(d)

(

mr2

mp2

Elab

)

= σ(d)

(

mr1

mp1

mp1mr2

mr1mp2

Elab

)

= σ
(d)

1

(

mp1mr2

mr1mp2

Elab

)

(3.21)

As it is shown in [103], for the H+H+ collisions the rescaled total cross-section coincides
with direct calculation within 1 % for energies greater than 1 eV (in this paragraph Er is
meant). For lower energies they start to diverge (because of increasing influence of elastic
collisions). The deviation reaches 5 % for 0.5 eV and 25 % for 0.1 eV. The same behaviour
is seen for the diffusion cross-section. For the collisions with H2 molecules the diffusion
cross-section is well scaled for energies below 2 eV, but for energies between 2 and 10
eV the deviation can reach a factor of 3 because of the influence of vibrationaly excited
states. For the total cross section for H2+H+ Krstić and Schultz suggest the scaling σ(0)(vr).
But the increasing/decreasing the value of this cross section (in some range) is not very
important because it will affect mainly the amount of the low angle deflections which are
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Figure 3.3: (a) Total and diffusion cross-sections for elastic collisions H2+H+ (AMJUEL
H.1 0.3T) and charge-exchange H+H+ (HYGHEL H.1 3.1.8 [64]). (b) total collision rates for
the same processes for selected values of background temperature T (AMJUEL H.3 0.3T
and HYDHEL H.3 3.1.8 respectively). “Krstić-Schultz” is the diffusion cross-section taken
from [102]

of low importance for transport, see Section 3.1.1. From the classical point of view all
cross-sections must be functions of Er only, see Formulas (3.5), (3.6).

For a Maxwellian background the collision frequency Rt (integral (3.4)) is expressed as
a two-parametric dependence Rt(E, T ), Formula (3.17). Here T is the temperature of the
background ions and E = 1

2
mp|vt − up|2 (the kinetic energy of the relative motion of the test

particle and the background). This function of two variables is approximated by the Janev-
type two parametric fitting [64] using similar least-square fitting as for cross-sections but
in two dimensions:

ln [Rt (E, T )] =

8
∑

i=0

8
∑

j=0

ai j lni (E) ln j (T ) (3.22)

The fitting coefficients can be found in database AMJUEL [106], Section H.3. The relative
error of the fitting does not exceed 4 %. The mass-rescaling for the collision rates is
discussed in Appendix A.4.2. The dependence Rt(E, T ) for H2+H+ together with that for
charge-exchange H+H+ [64] is shown in Figure 3.3b.

3.1.4 General relations for the transfer rates

In this and the next sections a rigorous way of calculating the momentum and energy
transfer rates (further: transfer rates) is presented. These rates define the total amount of
momentum and kinetic energy transferred by the test particles to the background during
a unit time interval. They are applied is the Track Length Estimator, see Section 1.2.1,
for the corresponding momentum and energy sources for plasma due to its friction with
neutrals. The calculations are based on based on the work of Trubnikov [10], Chapter 7.

The velocity of a test particle vt involved in a collision event can be expressed in terms
of the relative velocity vr and the centre-of mass velocity vc:

vc =
mpvp + mtvt

mp + mt

=
mp(vt − vr) + mtvt

mp + mt

= vt −
mp

mp + mt

vr (3.23)

Because of momentum conservation the centre of mass velocity remains constant during
the collision event, hence the increment of the test particle velocity ∆vt = v′t − vt is equal to:

∆vt =
mp

mp + mt

∆vr =
mr

mt

∆vr (3.24)

Here and below in this Chapter all quantities with prime ′ are those after collision.



3.1. Elastic collisions 49

The momentum and energy gained by the test particle in the collision (and, respectively,
lost by the background):

∆pt = p′t − pt = mt∆vt = mr∆vr (3.25)

∆Et = E′t − Et =
mt

2
(vt + ∆vt)

2 − mt

2
v2

t =
mt

2

(

∆v2
t + 2(∆vt.vt)

)

= mr

(

mr

2mt

∆v2
r + (vt.∆vr)

)

(3.26)

Here ∆vt was expressed using Formula (3.24). Up to this point the conservation of kinetic
energy in the collision was not used. Expressions (3.25), (3.26) make use only of the
momentum conservation (3.24). For an elastic collision vr does not change it’s magnitude
but only the direction, therefore:

(vr + ∆vr)
2 − v2

r = 2(vr.∆vr) + (∆vr)
2
= 0, (∆vr)

2
= −2(vr.∆vr)

Substituting this relation into (3.26) yields:

∆Et = mr

(

mr

2mt

∆v2
r + (vt.∆vr)

)

= mr (vt.∆vr) −
m2

r

mt

(vr.∆vr) (3.27)

To find the total momentum Rpnp and energy REnp transfer rates the increments ∆pt and
∆Et should be multiplied by the differential (3.1) and integrated over the whole velocity
space:

Rp = −mr

∫

dvp · vr f (vp)

∫ 2π

0

dφ

∫ ∞

0

db · b∆vr

RE =

(

vt.Rp

)

+
m2

r

mt

∫

dvp · v2
r f (vp)

∫ 2π

0

dφ

∫ ∞

0

db · b∆vr (3.28)

Here the sign was changed to get the loss for the test particle (the gain for the background).

To simplify the integrals (3.28) vr is expressed in spherical coordinates vr, ψ,Θ, Fig-
ure ??. Then ∆vr = v′r − vr is equal to:

∆vz
r = vr cosΘ − vr

∆vx
r = vr cosψ sinΘ − 0

∆v
y
r = vr sinψ sinΘ − 0

Thus:

∫ 2π

0

dψ

∫ ∞

0

db · b∆vr =



























−vr

∫ 2π

0
dψ

∫ ∞
0

(1 − cosΘ)bdb = −vrσ
(1)(vr)

vr

∫ 2π

0
dψ cosψdφ

∫ ∞
0

sinΘbdb = 0

vr

∫ 2π

0
dψ sinψdφ

∫ ∞
0

sinΘbdb = 0



























= −vrσ
(1)(vr) (3.29)

Here it was assumed that b is independent of ψ (axial symmetry) and the definition (3.9) is
used. Substituting (3.29) into (3.28) yields:

Rp = mr

∫

σ(1)(vr)vrvr f (vp)dvp

RE =

(

vt.Rp

)

−
m2

r

mt

∫

σ(1)(vr)v
3
r f (vp)dvp (3.30)

These formulas were obtained by Trubnikov, [10], Equation (7.29).

Instead of vector quantity Rp it can be convenient to use its projection on the direction
of vt. This projection Rpt can be calculated using the following relation:

(vr.vt) =
(

vt − vp.vt

)

= v2
t +

(

vp.vt

)

(vr.vr) = v2
r = v2

p + v2
t − 2

(

vp.vt

)

(3.31)

Therefore:

(vr.vt) =
1

2

(

2v2
t − v2

p − v2
t + v2

r

)

=
1

2

(

v2
t − v2

p + v2
r

)

(3.32)
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This yields:

Rpt =
1

vt

(

Rp.vt

)

=
mr

vt

∫

σ(1)(vr)vr (vr.vt) f (vp)dvp =
mr

2vt

∫

σ(1)(vr)vr

(

v2
t − v2

p + v2
r

)

f (vp)dvp

RE = vtRpt −
m2

r

mt

∫

σ(1)(vr)v
3
r f (vp)dvp (3.33)

In the next sections it will be shown how to transform integrals (3.33) for the special case
of Maxwellian distribution f (vp).

3.1.5 Transfer rates for Maxwellian background

If f (vp) is the Maxwellian distribution without shift (3.11), then integrals (3.33) can be
calculated in completely the same way as the integral (3.4), Section 3.1.2. This results in
the following relations:

Rpt =
2α3mr

2
√
πv2

t

∫ ∞

0

dvrσ
(1)(Elab)vr

∫ vr+vt

vt−vr

dvp ·
(

v2
t − v2

p + v2
r

)

·

·vpe−α
2v2

p =
α−4

√
πv2

t

∫ ∞

0

dξσ(1)(Tξ2)ξ

∫ δ+ξ

δ−ξ
dν ·

(

δ2 − ν2
+ ξ2

)

νe−ν
2

(3.34)

vtRpt − RE =
m2

r

mt

2α3

√
πvt

∫ ∞

0

dvrσ
(1)(Elab)v3

r

∫ vr+vt

vt−vr

dvpvpe−α
2v2

p

=
m2

r

mt

2α−4

√
πvt

∫ ∞

0

dξσ(1)(Tξ2)ξ3

∫ δ+ξ

δ−ξ
dν · νe−ν2

(3.35)

One can express Rpt and RE in terms of I-integrals which were introduced in [44]:

I(l,n) (E, T ) =
α−2

√
πvt

∫ ∞

0

dξξ2+nσ(l)
(

Tξ2
) [

e−(ξ−δ)2 − (−1)ne−(ξ+δ)2
]

(3.36)

The following relations will be used below:
∫ δ+ξ

δ−ξ
dν · ν exp

(

−ν2
)

=
1

2

[

e−(δ−ξ)2 − e−(δ+ξ)2
]

(3.37)

and (using partial integration):
∫ δ+ξ

δ−ξ
dν · ν3 exp

(

−ν2
)

=
1

2

(

1 + δ2
+ ξ2

)

·
[

e−(δ−ξ)2 − e−(δ+ξ)2
]

− 2δξ ·
[

e−(δ−ξ)2

+ e−(δ+ξ)2
]

(3.38)

Applying integrals (3.37) and (3.38) to (3.34) yields:

Rpt =
α−4mr√
πv2

t

∫ ∞

0

σ(1)(Tξ2)ξ2dξ
{(

δ2
+ ξ2 − 1 − δ2 − ξ2

)

·
[

e−(δ−ξ)2 − e−(δ+ξ)2
]

+ 2δξ
[

e−(δ−ξ)2

+ e−(δ+ξ)2
]}

=

mrα
−2

2vt

[

2δI(1,1) − I(1,0)
]

= mrα
−1

[

I(1,1) −
1

2δ
I(1,0)

]

= mr

√

2T

mp

















I(1,1) −
1

2

√

mtT

mpE
I(1,0)

















(3.39)

Here the a variable E was introduced: vt =

√

2E
mt

, thus δ = vtα =
√

mtT

mpE
.

For the energy transfer rate (3.35) and (3.37) yield:

RE = vtRpt −
m2

r

mt

α−4

√
πvt

∫ ∞

0

σ(1)(Tξ2)ξ3
[

e−(δ−ξ)2 − e−(δ+ξ)2
]

dξ = vtRpt −
m2

r

mt

α−2I(1,2)
= vtRpt −

2m2
r

mtmp

T I(1,2)

(3.40)

Formulas similar to (3.39) and (3.40) were obtained in [44]. Note that the paper [44]
contains a mistake in the formula for RE. The integrals Rp and I(1,2) calculated for H2+H+
and H+H+ collisions are shown below in Section 3.1.7, Figures 3.4. The rescaling of those
integrals to another isotope masses (see Section 3.1.3) is shown in Appendix A.4.2.
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3.1.6 Transformation to background with shift

The rates (3.39) and (3.40) were calculated for the case of the background without average
macroscopic velocity (drift velocity). The frame of reference having this property will be
called below the “rest-frame” or R-frame. The results can be generalised for the frame
of reference where the background has a drift velocity up: the laboratory frame, L-frame.
This can be done by calculating Rpt and RE in R-frame and then transforming them into
L-frame. The following notation will be used below:

< X >=

∫

dvp · vr f (vp)

∫ 2π

0

dψ

∫ ∞

0

db · b · X

Here X is any function of vr and b. The connection between velocity in the L-frame and in
the R-frame is:

vL
= vR

+ up

Here and below superscript L denotes the variables calculated in L-frame and R stays for
R-frame. One can write the momentum lost by the test particle as:

RL
p = −mp

〈

∆

(

vL
p

)〉

= −mp

〈

∆

(

vR
p + up

)〉

= −mp

〈

∆

(

vR
p

)〉

= RR
p = RR

pt

vR
t

vR
t

Here the operator ∆ denotes the velocity after collision minus velocity before collision.

∆

(

up

)

= 0 because this velocity does not change. The momentum source in the R-frame is

directed along the velocity vR
t because it is the only special direction in case of isotropic

background. The independence of the momentum source on the frame of reference is a
direct consequence of the fact that the acceleration and therefore the force is invariant
regarding the choice of inertial frame of reference.

The projection of the momentum sources on the direction of the magnetic field (the
parallel momentum source) is of particular interest for B2-EIRENE applications:

Rp|| = RR
pt

(

vL
t.B̂

)

vL
t

=
Rpt(E

R, T )

vR
r

[(

vL
p.B̂

)

−
(

up.B̂
)]

(3.41)

Here B̂ is the unit vector of magnetic field, Rpt(E
R, T ) is calculated using equation (3.39) and

the test particle kinetic energy in R-frame ER.
For the energy lost by the test particles:

RL
E = −

mt

2

〈

(

vL
t

)2
〉

= −mt

2

〈

(

vR
t + up

)2
〉

= −mt

2

〈

(

vR
t

)2
〉

− mt

(

up.
〈

vR
t

〉)

= RR
E +

(

up.R
R
p

)

= RR
E +

(

up.v
R
t

) RR
pt

vR
t

Therefore, equation (3.40):

RL
E = Rpt(E

R, T )






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
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


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(

u.vR
t

)

vR
t

















−
2m2

r

mtmp

T I(1,2)(ER, T ) (3.42)

Here Rpt and I(1,2) are calculated again using the R-frame energy ER.

3.1.7 Simplified approach

Assuming σ(1)vr = const, the integrals (3.30) can be easily calculated and one gets formu-
las (2.12) and (2.13) from Section 2.2.2. They can be used as a first approximation for
the integrals (3.30) with realistic dependence of σ(1)(vr) by substititing I(1,0) in place of the
constant Km:

Rp ≈ mrI(1,0)(E, T )
(

ut − up

)

RE ≈
2m2

r

mpmt

I(1,0)(E, T )















E −














3

2
T +

mpu2
p

2















+
mt − mp

2
(vp.ut)















(3.43)
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Here the test particle kinetic energy E is calculated in the rest frame (see Section 3.1.6.
The relation for Rp which corresponds to this approximate treatment is:

Rp ≈ mrI(1,0)(E, T )vt = mrI(1,0)(E, T )

√

2E

mt

(3.44)

To find the corresponding relation for I(1,2) on should equate the formula (3.40) with the
relation for RE (3.43) for the case up = 0. This yields:

2m2
r

mpmt

I(1,0)

[

E −
3

2
T

]

= Rpvt −
2m2

r

mpmt

T I(1,2)

Substituting (3.44) yields finally:

I(1,2) ≈ I(1,0)

(

mp

mt

E +
3

2
T

)

(3.45)

The comparison of the full integrals Rp and I(1,2) with those calculated applying rela-
tions (3.44) and (3.45) is shown in Figures 3.4. Figures 3.4a, 3.4c present the result for
the charge-exchange H+H+ (CX) (the cross-section from [64]) and Figures 3.4a, 3.4c show
the result for elastic collisions H2+H+. For CX the difference between full and simplified
approach does not exceed 25 % for both Rp and I(1,2). For elastic collisions the difference
for Rp is a factor of 2 and more. This estimate shows that the simplified approach can
be applied with reasonable accuracy to the hydrogen charge-exchange, whereas elastic
collisions of molecules with ions need full treatment.

For CX collisions one can use an assumption Θ = π. This yields:

σ(1)
= 2π

∫ ∞

0

(1 − cosΘ) bdb = 4π

∫ ∞

0

bdb = 2σ(0)

Therefore I(1,0)
= 2I(0,0). Assuming in addition mp = mt = m, Formulas (3.43) can be reduced

to the following simple relations:

Rp = mI(0,0)(vt − u),
RE

Rt

= I(0,0)














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
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
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



3

2
T +

mu2
p

2





























(3.46)

The relations (3.46) correspond to the complete exchange of the momentum and energy in
each collision. They are used in EIRENE as a built-in default option for CX.

3.1.8 A numerical test

The momentum and energy transfer rates calculated in the previous sections were used
to replace the Collisional Estimator (CL) for the corresponding sources with the Track
Length Estimator (TL). Technical aspects of the implementation of this option in the code
are described in Appendix A.4.1. To test the correctness of the implementation and to
study the influence on the level of statistical noise the plasma parallel momentum and
energy sources calculated with TL and CL were compared to each other. Note that for cor-
rect comparison the rejection sampling must be enforced for CL (NFLAG>3 in subroutine
VELOEL). This benchmark can be considered also as a consistency check of the whole
treatment of elastic collisions in the code. The calculations were performed on the fixed
plasma background of ITER 1055 case, see Section 3.3. Because of technical reasons
the compared values include both contribution from elastic collision, ionization and ion
conversion. They are called thus “sources due to D2+plasma collisions”. The contribu-
tion of elastic collisions near the targets is thought to be dominant. The results of the
benchmarking are shown in Table 3.1 and Figures 3.5, 3.6.

Table 3.1 contains the following quantities: maximum values of the sources (per unit
volume) in the inner and outer divertor regions (MAX) and their sum over the whole inner
and outer divertor (TOTAL). ∆ is the relative difference between CL and TL:

∆X =
|XT L − XCL |

XT L

· 100 %
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Figure 3.4: Momentum transfer rate Rpt (a),(b) and integral I(1,2) (c),(d) for charge-exchange
H+H+ and elastic collisions H2+H+ for selected background temperatures. The blue dashed
curves show the results of the approximate approach, Section 3.1.7
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Here XT L and XCL are estimations of the variable X with the corresponding estimator. N is
the number of histories per target. The total number of histories is 5N. The maximum S max

and average S avr standard deviations of a variable X are calculated as following:

S max =
max |σiXiVi|
|XIVI |

, S avr =

√

∑

i (σiXiVi)
2

∑

i XiVi

Here i is the index of the grid cell, I is the index of cell for which max |σiXiVi| is reached, V is
the cell volume, σ is the relative standard deviation of the estimation X, see Section 1.2.1.
The operations max and

∑

are taken over all cells of the computational grid in the specified
domains: within 12 poloidal cells near the inner and outer targets. In other words, S max is
the maximum relative standard deviation and S avr is the mean relative standard deviation.

Both momentum and energy sources are strongly localised near the target surfaces: in
fact within few first poloidal cells (1-3 cm away from the target) of the computational grid.
The profiles of the radial distributions (distributions along the targets) of these quantities
in the first two poloidal cells of the grid are shown in Figures 3.5, 3.6. The comparison of
TL and CL shows a good agreement: for N=10000 the difference for the total momentum
source <3% and for the total energy sources <1.3%. The same is true for the maximum
rates: 4 % (for momentum) and 1 % (for energy). This difference does not decrease as N
increases because of systematic errors of fitting for Rpt and I(1,2) which can reach 3%.

The figures shown in Table 3.1 do not give any evidence that TL yields lower level of
statistical errors than CL. On may expect that in this case TL will give a better statistics
because some averaging was done “exactly” (without using Monte Carlo). From the other
hand, it is well known that in some cases CL can outperform TL for high collisionality. In
addition, looking at the shown standard deviations one can conclude that the statistical
error is larger than the sources themselves. Large variance of the momentum sources
was a particular concern in [33]. However, using standard deviation for this quantity may
be misleading. One can see in Figures 3.7a, 3.7b that the result obtained with N=105 is
relatively well reproduced by the calculations with N=103, whereas the standard deviation
is very large (100% and more!) in both cases, Figures 3.7c, 3.7d. It is possible, that
the standard deviation which was used to estimate the statistical error fails to serve as a
reliable diagnostic in this case. The issue of the proper way of calculating the momentum
source and estimating its statistical error needs further investigation.

Table 3.1: Comparing the Collisional (CL) and Track Length (TL) estimators

Energy source (W, W/cm3) Momentum source (N, N/cm3)
N=103 N=104 N=103 N=104

CL TL CL TL CL TL CL TL

Inner Target

TOTAL 2.93e6 2.94e6 2.91e6 2.87e6 307 299 302 294

∆, % 0.28 1.2 2.7 2.8

MAX 68.0 69.1 64.6 64.3 1.03e-2 9.10e-3 9.30e-3 9.00e-3

∆, % 1.6 0.47 13 3.6

S max, % 23 26 8.6 9.2 7.6e3 1.1e4 3.0e3 2.9e3

S avr, % 5.8 5.0 1.8 1.6 131 114 69 68

Outer Target

TOTAL 2.69e6 2.75e6 2.93e6 2.94e6 258 243 280 276

∆, % 2.3 0.60 5.9 1.2

MAX 91.8 101 114 115 1.03e-2 9.89e-3 1.25e-2 1.22e-3

∆, % 8.7 0.81 3.4 2.3

S max, % 24 24 7.6 8.1 1.14e3 1.125e3 164 164

S avr, % 7.1 6.2 2.2 2.0 227 214 43.7 42.5
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(a) Inner Target (b) Outer Target

Figure 3.5: Distribution of the parallel momentum sources due to D2+plasma collisions
along the targets for the first two poloidal cells (ix). Plasma background of the case ITER
1055, 104 histories per target.

(a) Inner Target (b) Outer Target

Figure 3.6: Distribution of the energy sources due to D2+plasma collisions along the tar-
gets for the first two poloidal cells (ix). Plasma background of the case ITER 1055, 104

histories per target.
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(a) Inner Target (b) Outer Target

(c) Inner Target (d) Outer Target

Figure 3.7: Comparison of the total (due to atoms and molecules) parallel momentum
sources for the first two poloidal cells (ix) calculated with 103 and 105 histories. Plasma
background of the case ITER 1055. Track Length Estimator. MOL=contribution of
molecules only
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3.2 Hydrogen molecular chemistry

3.2.1 Introduction

In this work the description of the hydrogen reaction kinetics is based on the Collision
Radiative Model (CRM) of Sawada and Fujimoto [40, 41] updated by Reiter and Green-
land [42, 43]. The general ideas of the CRM-approach are sketched in the next paragraphs.

In the most general form the kinetics of one species (different excited states of atoms
and molecules can be treated as separate species) is described by a differential equation:

dn

dt
=
∂n

∂t
+ div (Γn) = Sources − Sinks (3.47)

Here n is the density of the species in question and Γn is its flux density. The right-
hand side of this equation is an algebraic expression without differential operators. For
each species one considers two basic time-scales. The time-scale of transport τtr and
the characteristic time of formation and decay of the species τ (referred below as “life-
time”). The transport time scale τtr is the time which the particle needs to cover the
distance comparable to the spatial non-uniformity of the background parameters (or the
distance to a solid surface). In case of numerical solution it is determined by the size of
the computational grid.

In case of τ < τtr one can neglect the transport in Equation (3.47) and for a steady-state
case it reduces to pure algebraic equation. For the species for which τ > τtr one has to
consider the transport explicitly. The following notation is often used: species with τ < τtr

are called “species of class Q” and species with τ > τtr are the “species of class P” (see
e.g. [105]).

For the conditions of ITER divertor plasma the characteristic transport time is of the
order 10−6..10−5 sec: thermal velocity ≈ 106 cm/s and a spatial scale ≈ 1 cm. An example of
a direct Monte-Carlo estimation of this time is shown in Section 3.3.2, Figure 3.27. The
typical life time of the electronically excited states is 10−8..10−7 sec. It is is determined by the
spontaneous radiative transitions and electron-impact processes. In the current model no
transport is assumed for all electronically excited states. Only the transport of the ground
state species is treated explicitly. Therefore, the P-space is P = [H(1s), H2(X1

Σ
+

g ), H+
2

(X2
Σ
+

g )].
Negative ions H− and molecular ions H+

3
are not taken into account. In fact the molecular

ion H+
2

belongs to Q-class as well because in the current version of the code its motion is
not considered and it is assumed to decompose at the same place where it emerges. The
possibility to treat its motion is reserved for the future.

For the considered problem of H2 chemistry Equations (3.47) without transport and
time-dependence form a set of linear equations for the densities of the excited states.
Most of the coefficients of this set of equations are the collision rates of the electron impact
processes multiplied by ne. The rates themselves are the functions of Te, Formula 3.18,
Section 3.1.2. The densities of the ground states H(1s), H2(X1

Σ
+

g ) and H+
2

(X2
Σ
+

g ) will be
denoted as nH, nH2

and nH+
2

respectively. They enter those equations linearly as parameters.
Therefore, the solution can be expressed as a linear combination of nH, nH2

, nH+
2

and this
yields the following balance equations:

dnH2

dt
= −

(

DH2
+ S H2

+ IH2

)

nenH2

dnH+
2

dt
= S H2

nenH2
−

(

RH+
2
+ DH+

2
+ S H+

2

)

nenH+
2

dnH

dt
=

(

2DH2
+ IH2+

)

nenH2
+

(

2RH+
2
+ DH+

2

)

nenH+
2
− IHnenH + RHnenH+

dnH+

dt
= IH2

nenH2
+

(

DH+
2
+ 2S H+

2

)

nenH+
2
+ IHnenH − RHnenH+

(3.48)

The coefficients in the Equations (3.48) (they are functions of Te and ne) are called
“effective reaction rates”. The corresponding effective processes are listed in Table 3.2.
The effective reaction rates are tabulated in the datafile AMJUEL [106], card H.4. The
rates calculated for Hydrogen are applied for all its isotopes, including the cases with
vibrational kinetics, see below.
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Note that CRM does not include collisions with heavy particles: charge-exchange, elas-
tic collisions. This indirectly involves the assumption that the life time of the excited states
is smaller than the characteristic time of such collisions.

The new model for molecular chemistry was compared to the old one used in EIRENE
1996. This latter is based on the reaction rates from the monograph of Janev et. al [64]
which are stored in database HYDHEL. In addition to the new reaction rates the produc-
tion of molecular ions due to the ion conversion process was added. This later, if followed
by dissociative recombination of H+

2
can give rise to the so called Molecular Assisted Re-

combination (MAR) [109].
A special comment should be made on vibrationaly excited states. In the current model

they are taken into account only in reactions AMJUEL H.4 2.1.5g, AMJUEL H.2 3.2.3
and indirectly in the rates for H+

2
(see Section 3.2.3). In both cases vibrational states

are treated as Q-species: vibrational equilibrium is assumed (Quasi Steady-State, QSS
approximation). Estimations show that for the conditions relevant for a divertor plasma
the time of establishing the vibrational equilibrium is of the order 10−6..10−5 sec [107, 108]
which is the same order of magnitude as for τtr. This means that in principle one has to
consider the transport of excited states explicitly (to treat them as P species). This was
done earlier in the simulations for ASDEX-Upgrade [43] but no serious difference com-
pared to QSS-approximation was found. The EIRENE calculations made in [108] for ITER
for the fixed plasma showed only moderate modification (within 10..30 %) of the principal
particle sources. This estimation backed the application of the QSS-approximation in this
work. However, this approach can be considered as only a first approximation and has to
be revisited in future. Particular concern is the possible energy transport in vibrational
states [111]. Note also that the rotational energy is not taken into account in any of the
atomic physics models at all.

The next two sections describe in more detail the constituents of the effective reaction
rates for H2 and H+

2
. Section 3.2.3 addresses the issue of MAR as well.

Table 3.2: Effective reactions for molecular chemistry model in EIRENE

Effective Process Notation Name Database Entry
in text HYDHEL AMJUEL

H2 + e→ 2H + 2e DH2
Dissociation H.2 2.2.5 H.4 2.1.5g

H2 + e→ H+
2
+ 2e S H2

Ionization H.2 2.2.9 H.4 2.1.9

H2 + e→ H + H+ + 2e IH2
Dissociative H.2 2.2.11 H.4 2.1.10
Ionization

H+
2
+ e→ H + H + 2e RH+

2
Dissociative H.2 2.2.14 H.4 2.2.14

Recombination

H+
2
+ e→ H + H+ + 2e DH+

2
Dissociation H.2 2.2.12 H.4 2.2.12

H+
2
+ e→ 2H+ + 2e S H+

2
Dissociative H.2 2.2.11 H.4 2.2.11

Ionization

H2(ν) + H+ → H+
2
+ H - Ion - H.2 3.2.3

Conversion

3.2.2 Molecules

The following set of equations describes the kinetics of molecules:

∑

q<p

CH2
(q, p)nenH2

(q) −
































∑

q<p

FH2
(p, q) +

∑

q>p

CH2
(p, q) + S H2

(p)

















ne

+

∑

q<p

AH2
(p, q)

















nH2
(p) +

∑

q>p

[

FH2
(q, p)ne + AH2

(q, p)
]

nH2
(q) = 0

(3.49)

Here q and p are the indices of excited states; C and F are the rate coefficients for the elec-
tron impact excitation and de-excitation, A is the spontaneous transition probability and
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S is the ionization rate. The Equations (3.49) as they are shown here do not contain re-
combination of molecular ions H+

2
into molecules. The ion-impact processes are neglected

as well.
To describe the multi-step processes involving the excited atoms Equation (3.49) has

to be coupled to the corresponding model for kinetics of atoms. For further use it is
convenient to introduce the notation:

M(p){nH(p′)} =
































∑

q′>p′

CH(p′, q′) +
∑

q′<p′

FH(p′, q′) + S H(p′)

















ne +

∑

q′<p′

AH(p′, q′)

















nH(p′)

−
∑

1<q′<p′

CH(q′, p′)nenH(q′) −
∑

q′>p′

FH(q′, p′)nenH(q′) −
∑

q′>p′

AH(q′, p′)nH(q′)

(3.50)

Here M(p) is an operator which acts on the vector nH(p′). The meaning of all the coefficients
is the same as in Equation (3.49). Using this notation the balance equation for atomic
excited state H(p′) can be written as:

M(p′){nH(p′)} = EH2
(p′)nenH2

(3.51)

Here EH2
(p′) is the rate of producing the atomic state H(p′) due to dissociative excitation of

molecules (see below). The prime ′ is used for atomic excited states to distinguish them
from those for molecules. In addition in some places below the electronically excited atoms
will be denoted as H(n) or H(m) and vibrationaly excited molecules will be denoted as H2(ν)

For the excited level n = 2 (where n is the principal quantum number) three different
singlet and triplet states are considered. Level b3

Σ
+
u is a repulsive state.It is assumed that

all transitions from the stable states into this state result in dissociation. The transitions
from the stable states to other repulsive states are assumed to auto-ionize and are in-
cluded in S H2

(p). For levels with n > 2 only one singlet and one triplet state is considered.
The levels up to n = 28 are taken into account. The details of the used atomic data can be
found in [40, 41].

The solution of the set of linear algebraic Equations (3.49), (3.51) can be presented in
the form:

nH2
(p) = R

H2

2H
(p, ne, Te)nH2

, nH(p′) = R
H2

H
(p′, ne, Te)nH2

(3.52)

Here R
H2

2H
(p, ne, Te) and R

H2

H
(p′, ne, Te) are the population factors.

The following paths contribute to effective dissociation of molecules.

1. Direct excitation from the ground state X1
Σ
+
g to the repulsive level b3

Σ
+
u by electron

impact:

H2

(

X1
Σ
+

g

)

+ e→ H2

(

b3
Σ
+

u

)

+ e (3.53)

H2

(

b3
Σ
+

u

)

→ H(1s) + H(1s)

2. Dissociative excitation, which produces excited hydrogen atom H(n). This excited
atom can be further excited or de-excited finally reaching the ground state:

H2

(

X1
Σ
+

g

)

+ e→ H(1s) + H(n) + e (3.54)

H(n)→→ H(1s)

Here and below →→ denotes a chain of processes.

3. Excitation of the ground-state molecule to a stable excited molecule H∗
2

by electron
impact. This excited molecule H∗

2
is further excited or de-excited to other stable state

by collisional and radiative processes reaching finally the repulsive state b3
Σ
+
u :

H2

(

X1
Σ
+

g

)

+ e→ H∗2 + e (3.55)

H∗2 →→ H2

(

b3
Σ
+

u

)

H2

(

b3
Σ
+

u

)

→ H(1s) + H(1s)
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The effective dissociation rate is:

DH2
= CH2

(

X1
Σ
+

g , b
3
Σ
+

u

)

+

∑

p′>1

[

AH(p′, 1)/ne + FH(p′, 1)
]

R
H2

H
(p′)+ (3.56)

∑

p>1

[

AH2

(

p′, b3
Σ
+

u

)

/ne + FH2

(

p′, b3
Σ
+

u

)]

R2H
H2

(p)

The first, second and third terms of this formula represent the contributions from the
paths (3.53), (3.54) and (3.55) respectively. The corresponding reaction rate from [64], HY-
DHEL 2.2.5, includes only the direct electron-impact excitation to repulsive level b3

Σ
+

u (3.53)
and electron impact excitation to level a3

Σ
+
g or c3

Πu with successive radiative decay to level

b3
Σ
+
u .

The effective ionization of molecules (formation of molecular ion) includes the following
paths.

1. Direct ionization by electron impact:

H2

(

X1
Σ
+

g

)

+ e→ H+2

(

X2
Σ
+

g

)

+ 2e (3.57)

2. Excitation of the ground-state of the molecule by electron impact. The produced
excited molecule H∗

2
is further excited and finally ionized into molecular ion:

H2

(

X1
Σ
+

g

)

+ e→ H∗2 + e (3.58)

H∗2 + e→→ H∗∗2 + e

H∗∗2 + e→ H+2

(

X2
Σ
+

g

)

+ 2e

The effective ionization rate is:

S H2
= S H2

(

X1
Σ
+

g

)

+

∑

p>1

S H2
(p)RH2

2H
(p)

The first and second terms are the contributions from path (3.57) and path (3.58) respec-
tively. The reaction rate from the old model HYDHEL 2.2.9 includes only the process (3.57).

The dissociative ionization can result from the following paths.

1. Ionization through the unstable molecular ion H+
2

(

X2
Σ
+
g or Σ+u

)

:

H2

(

X1
Σ
+

g

)

+ e→ H+2

(

X2
Σ
+

g or Σ+u

)

(3.59)

H+2

(

X2
Σ
+

g or Σ+u

)

→ H(1s) + H+ + 2e

2. Ionization via excited hydrogen atom H(n) originating from dissociative excitation (3.54):

H2

(

X1
Σ
+

g

)

+ e→ H(1s) + H(n) + e (3.60)

H(n)→→ H(m)

H(m) + e→ H+

The effective rate of dissociative ionization is:

IH2
= S (H+2

(

X2
Σ
+

g or Σ+u

)

) +
∑

p′>1

S H(p)RH2

H
(p′)

The first and second terms are the contributions from path (3.59) and path (3.60) re-
spectively. The old reaction rate from [64], HYDHEL 2.2.10, takes into account only the
process (3.59).

In the model described above it was always assumed that the initial state in any of
the transition is the ground vibrational-rotational state. Vibrational states are taken into
account in the effective dissociation rate AMJUEL H.4 2.2.5g. The model which is used
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to calculate the population of vibrational states includes only the excitation by electron
impact [41, 43]:

H2(ν) + e→ H−2 → H2(w) + e

Here ν and w are the indices of the vibrational levels. The population of excited states
is calculated on the assumption of a vibrational equilibrium (QSS-approximation) using
the excitation and de-excitation rates tabulated in the database H2VIBR [42, 112]. The
current model considers only the electronic ground states. Vibrational population from
the radiative decay of the electronically excited states:

H2(ν = 0) + e→ H2

(

B1
Σ
+

u ,C
1
Πu

)

→ H2(w) + e + hν

is not taken into account. The issue of applicability of QSS was briefly discussed in
Section 3.2.1.

The treatment of the energy balance for the processes in question is the same as it was
for the old model and described in [110]. For the dissociation H2 → 2H it is assumed that
the both resulting atoms have kinetic energy 3 eV [64]. Here and below the kinetic energy
of heavy particles in the centre-of-mass frame is meant. Together with the potential energy
of the molecule 4.48 eV this yields the electron energy loss 10.5 eV per one (effective) col-
lision. For the ionization H2 → H+

2
the electron energy loss is 15.4 eV per one collision.For

dissociative ionization H2 → H + H+ it is assumed that the kinetic energy of the both prod-
ucts (ion and atom) is 5 eV. Together with potential energy 4.5 eV and ionization energy
of the atom 13.6 eV it yields 28 eV of the electron energy loss per one effective collision.
The current treatment of the energy balance is to large extent approximate and has to be
revisited in future.

The calculated effective rates are shown in Figure 3.8 for the range of ne and Te relevant
for divertor plasma. For comparison, the old rates from HYDHEL are shown in the same
figure. In the temperature range in question CRM without vibrational states yields the
same rate of dissociation H2 → 2H as HYDHEL. Including the vibrational states leads to
a somewhat higher rate but the maximum difference is only a factor ≈2. The difference
between AMJUEL and HYDHEL for the ionization rate (H2 → H+

2
) is higher, reaching an

order of magnitude for temperatures below 2 eV. The new effective rate of the dissociative
ionization H2 → H + H+ is an order of magnitude higher than that from HYDHEL. But for
the temperatures less than 30 eV this process is always unimportant compared to the
previous two.
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Figure 3.8: Effective reaction rates for molecules H2 calculated using CRM [41] (AMJUEL,
see Table 3.2) confronted to the old data from [64] (HYDHEL). Thin black line is the reaction
rate for dissociation calculated without vibrational states (AMJUEL H.4 2.2.5)
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3.2.3 Molecular Ion
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Figure 3.9: Rate of Ion Conversion

In addition to ionization (3.57), (3.58) another pos-
sible channel of producing the molecular ion is the
Ion Conversion:

H2(ν) + H+ → H+2 + H (3.61)

This process takes place for vibrationaly excited
molecules starting to be effective from level ν = 4.
In the current model it is described (approximately)
as a charge-exchange like reaction with a tempera-
ture dependend rate. This effective rate was calcu-
lated by means of the QSS-distribution of vibrational
states, the same as for dissociation of molecules, see
Section 3.2.2. It was also assumed that Te = Ti, and
the kinetic energy of H2 is 0.1 eV. As in the case of

molecules the QSS can be considered as a first approximation, see the comment in Sec-
tion 3.2.1.

Three kinds of processes are included in the effective rates for H+
2
.

1. Dissociative recombination:

H+2

(

X2
Σ
+

g

)

+ e→ H(1s) + H(n) (3.62)

2. Dissociative excitation:
H+2

(

X2
Σ
+

g

)

+ e→ H+ + H(n) + e (3.63)

3. Ionization:
H+2

(

X2
Σ
+

g

)

+ e→ 2H+ + 2e (3.64)

Only electronic ground state X2
Σ
+

g is considered but the rates are averaged over the vibra-
tional distribution, see below.

The further evolution of the excited atom H(n) produced in the processes (3.62) and (3.63)
is described in the same way as in the case of molecules, Section 3.2.2. Using the nota-
tion (3.50) the balance equations for excited atoms and their formal solution can be written
as:

M(p′){nH(p′)} =
[

EH+
2
(p′)ne + α(p′)ne

]

nH+
2

nH(p′) =
[

R
H+

2

2H
(p′, ne, Te) + R

H+
2

H
(p′, ne, Te)

]

nH+
2

Here EH+
2
(p′) is the rate of dissociative excitation in which excited atom H(p′) is produced,

α(p′) is the same but for dissociative recombination, R
H+2
2H

and R
H+2
H

are the population factors
for atoms originating due to the processes (3.62) and (3.63) respectively.

The effective dissociative recombination results from the process (3.62) followed by the
decay of H(n) to the ground state:

H+2 + e→ H+ + H(n) (3.65)

H(n)→→ H(1s)

The effective rate is:

RH+
2
=

∑

p′>1

[

AH(p′, 1)/ne + FH(p′, 1)
]

R
H+

2

2H
(p′) =

∑

p′>1

[

α(p′) − S (p′)R
H+

2

2H
(p′)

]

(3.66)

The effective dissociation of H+
2

can result from the following paths.

1. Dissociative excitation followed by further excitation and final ionization of the excited
atom H(n):

H+2 + e→ H + H(n) (3.67)

H(n)→→ H(m)

H(m) + e→ H+ + 2e
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2. Dissociation followed by the decay of H(n) to the ground state:

H+2 + e→ H+ + H(n) + e (3.68)

H(n)→→ H(1s)

The effective rate is:

DH+
2
=

∑

p′>1

{

EH+
2
(p′)R

H+
2

2H
(p′) +

[

AH(p′, 1)/ne + FH(p′, 1)
]

R
H+

2

H
(p′)

}

(3.69)

The effective ionization H+
2
→ 2H+ results from the dissociation followed by multi-step

ionization of the excited atom H(n):

H+2 + e→ H+ + H(n) + e (3.70)

H(n)→→ H(m)

H(m) + e→ H+ + 2e

as well as direct ionization (3.64). The effective rate is:

S H+
2 = S H+

2

(

X2
Σ
+

g

)

+

∑

p′>1

[

S H(p′)R
H+

2

H
(p′)

]

(3.71)

Here S H+2

(

X2
Σ
+
g

)

is the rate of the process (3.64).

The reaction rates for the processes (3.62)-(3.64) are taken from [64]. For dissociative
recombination (3.62) it is the process 2.2.14, for dissociation: 2.2.12 (the product is H(1s))
and 2.2.13 (the product is H(n = 2)), and for dissociative ionization (3.64) the process
2.2.11. Note that in the book [64] the rate 2.2.13 is a factor 10 overestimated because
of a misprinting. Vibrationally excited levels of H+

2
are not taken into account explicitly,

but the rate coefficients are averaged over the vibrational distribution of the products of
the ionization H2 → H+

2
(see [64], reaction 2.2.9). In the old model of EIRENE 1996 the

rates HYDHEL 2.2.11, 2.2.12., 2.2.14 from [64] were applied directly without taking into
account the kinetics of the resulting atom. It was thus assumed that all produced excited
atoms reach the ground state.

As in the case of molecules the energy balance is treated in the same way as in the
old model [110] with one exception. For dissociative recombination H+

2
→ 2H the effective

electron energy loss rate AMJUEL H.8 2.2.14 calculated by CRM is used. This rate can
be roughly estimated as 0.88 · Te per effective collision (old model). The estimation of the
kinetic energy of the products and the electron energy loss for other reactions is based
on [64]. For H+

2
→ 2H the kinetic energy of the both products is taken to be 0.5 eV, for

H+
2
→ H + H+ it is 4.3 eV and for H+

2
→ 2H+ 0.25 eV. Again, it is the kinetic energy in the

centre-of-mass frame. The electron energy loss per one collision for H+
2
→ H + H+ is 10.5

eV and for H+
2
→ 2H+ 15.5 eV. As in the case of molecules this simplified treatment has to

be revised in future.
The comparison of the rates from HYDHEL with those calculated applying CRM [41] for

the range of ne and Te relevant for divertor plasma is shown in Figure 3.10. For higher
density the effective rate of recombination H+ → 2H is lower than that from HYDHEL. The
reason is that the excited atoms produced by dissociative recombination (3.62) can be
further ionized instead of decaying to the ground state. In this case this is a contribution
to the effective dissociation H+

2
→ H + H+ rather than to effective recombination, see Equa-

tions (3.66) and (3.69). This effect causes a strong increase of the effective dissociation
compared to HYDHEL, especially for temperatures below 2 eV. One can also see that for
the temperatures less than 20 eV the effective ionization H+

2
→ 2H+ is unimportant com-

pared to the two previous processes, despite it becomes an order of magnitude higher than
that from HYDHEL.

From Figure 3.10 one can see that the rate of decomposition of H+
2

either by recombina-
tion or by dissociation is always greater than 10−8 cm3/s. Therefore for the electron density
larger than 1014 cm−3 the life-time of H+

2
is always shorter than 10−6 s, thus shorter than

the transport time-scale. This estimation justifies the approach in which no transport of
molecular ion is considered.
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Ion conversion (3.61) followed by the dissociative recombination (3.62) can lead to ef-
fective recombination of H+:

H2(ν) + H+ → H+2 + H (3.72)

H+2 + e→ 2H

This channel of recombination is called Molecular Assisted Recombination (MAR). It was
first proposed by S. Krasheninnikov et al. [109]. Another possible way of this kind of
recombination is via the negative ion H− [109]:

H2(ν) + e→ H− + H (3.73)

H− + H → 2H

Estimates made in [42, 109] show that for the conditions of a divertor plasma this channel
is of smaller importance than the previous one because of the small production rate of H−.

First calculations made with reaction rates from [64] showed that MAR may outper-
form conventional 3-body recombination by a factor of ≈30 for temperatures around 1 eV
because the recombination channel H+

2
→ 2H is stronger than dissociation for tempera-

tures lower than 1.3 eV. But if the CRM is applied, then for the densities greater than
1014 cm−3 this temperature is shifted to 0.4..0.5 eV. In this temperature domain the con-
ventional 3-body recombination is already strong enough. As a result, in the calculations
for ITER plasma the effective recombination through the channel (3.2.3) constitutes only
≈ 20 % of the total recombination, see below in Section 3.3. A similar result was obtained
in [98] (DEGAS-2 simulations for DIII-D plasma conditions). Note also that using the
QSS-approximation for calculating the rate of the ion conversion (3.61) more likely tends
to overestimate the effect rather than to underestimate it.

The ion conversion process (3.61) implemented with the old reaction rates from HYDHEL
can cause numerical instability producing particles with very large statistical weight. The
reason is the following. For inelastic collisions EIRENE uses Russian Roulette to decide
which of the reaction products to follow. This can lead to the following chain of collisions
with increasing statistical weight W:

D2(W = 1)→
(

D2 + D+ → D+2 + D
)

→ D+2 (W = 2)→ (3.74)

→
(

D+2 + e→ 2D
)

→ D(W = 4)→ (D + wall)→ D2(W = 2)

In a wall-collision the atom is re-emitted as a thermal molecule. The weight of the molecule
at the end of this chain is two times larger than the initial weight. As a result, some of the
test particles can gain very high statistical weight, which spoils the Monte-Carlo statistics.
It happens if the absorption processes for D2 are not strong enough to stop the weight-
breading chain (3.2.3) before it becomes destructive. This numerical instability results in
the fatal violation of the particle balances because of too strong statistical variations which
is diagnosed by the code.

3.3 The effect of molecular kinetics

3.3.1 Comparison of the full B2-EIRENE runs

To compare the results of B2-EIRENE calculations made with the old and the new neutral
transport model a series of runs was made for the reference ITER case with 100 MW SOL
input power and full carbon wall. The model set-up is described in Section 1.3.

The comparison of the following models will be shown:

• ITER 828 is the model with EIRENE 1996. No neutral-neutral collisions. The reaction
rates for the electron-impact processes with D2 and D+

2
are taken from database

HYDHEL. No elastic collisions D2+D+ and ion conversion.

• ITER 1048. The model of ITER 828 with added NNC of D, D2 and He with each over
(all possible combinations)

• ITER 1055. The model of ITER 1048 with added elastic collisions D2+D+ and ion
conversion. The reaction rates for the electron-impact processes with D2 and D+

2
are

taken from database AMJUEL.
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Figure 3.10: Effective reaction rates for molecular ion H+
2

calculated using CRM [41]
(AMJUEL, see Table 3.2) compared to the old data from [64] (HYDHEL)
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The basic parameters of the modelling cases are shown in Table 3.3. In this table pPFR is
the average neutral pressure at the edge of the Private Flux Region, S pu f f is the gas puffing
rate. The initial idea was to choose the cases with similar conditions near the inner target
as the region of the strongest expected difference. For this purpose the cases with matched
profiles of the incident heat flux to the inner target were chosen, see Figure 3.15a below.
The neutral pressure pPFR is the key parameter which determines the conditions in the
divertor, see Section 1.3. The cases ITER 1048 and ITER 1055 are significantly different
in pPFR. Nevertheless, to demonstrate the effects which will be considered below this kind
of comparison is justified. Already from Table 3.3 one can see that for the updated model
similar divertor conditions are reached with significantly higher pPFR.

Table 3.3: Parameters of the modelling cases

828 1048 1055

pPFR , Pa 7.0 8.5 10.6

S pu f f , s−1 5.7 · 1022 8.9 · 1022 15.3 · 1022

The plasma parameters in front of the targets for the three modelling cases are shown
in Figures 3.11-3.14. One can see that including NNC and then the updated Molecular
Kinetics (MK) decreases the density in front of the inner target, Figure 3.11a. But a few
centimetres away from the target the maximum of the density gets a factor 1.5 higher,
Figure 3.11c. Note that the density does not increase monotonically towards the targets
any more, showing a “detachment-like” behaviour with a density peak away from the
target. The temperature near the inner target falls down and does not exceed 3 eV for the
new model, Figure 3.12a. At the outer target the maximum of the temperature does not
change but it shifts downwards towards the separatrix, Figure 3.12b. The ion temperature
in front of the targets is almost the same as that of electrons.

The effect can be to large extent explained by the compression of molecules described
in Section 2.5. For elastic collisions D2+D+ (EL) it works in the same way as for NNC:
the density of molecules near the targets increases due to backscattering, see Figure 3.13.
Similar increase is seen for the atoms due to secondary particles produced by dissociation,
Figure 3.14. This effect “presses” the neutrals towards the targets, “pushing” the plasma
in the opposite direction.

This is illustrated once more in Figure 3.17 which shows the contour plots of some
parameters in the inner divertor (in this region the effect is stronger). For the cases when
NNC and MK were switched on a strong concentration of molecules near the strike point
can be seen, Figure 3.17a. At the same time their density in the high temperature re-
gion above the separatrix increases because hotter particles can penetrate deeper into the
plasma. The modification of the molecule density is followed by the atom density, Fig-
ure 3.17b. As a result of this modification of the neutral gas parameters, the “tongue” of
the hot plasma approaches the target closer near the strike point but steps back in the
upper hot region, Figure 3.17c.

One can say that NNC and EL shrink the recycling zone in the poloidal direction. Here
both NNC and EL are referred to as the reason of this effect. But EL alone can cause it
even in the absence of NNC. This is an important note since: i) This effect is likely to occur
even in the devices much smaller and having lower density than ITER; ii) the lack of very
reliable NNC collisionality data discussed in Appendix 2.4 does not affect this conclusion.

The modification of the incident heat flux profile is shown in Figure 3.15. The in-
ner target heat flux profile is the same because it was intentionally matched for those
modelling cases, , Figure 3.15a. The outer target loads become somewhat higher, Fig-
ure 3.15b indicating the increase of the asymmetry between the inner and outer divertors.
The reason may be that the effects related to the compression of molecules are stronger
near the inner target. As expected, the incident heat flux due to neutrals is somewhat
higher for the new model, Figure 3.16. The incident heat flux transferred to the inner
targets by plasma (kinetic and potential energy of ions) is significantly reduced with the
new model, Figure 3.15a, dashed lines. This is partly because of the increased heat flux
related to neutrals, partly due to the shift of the peak of the radiation heat loads down-
wards. This decrease of the plasma heat flux is consistent with the observed decrease of
the temperature and density, because the former scales as ∼ nT 1.5.
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(b) Outer Target

0 10 20 30
0

0.5

1

1.5

2

2.5x 10
21

distance from separatrix, cm

E
le

ct
ro

n 
D

en
si

ty
, m

−
3

ITER 1055
ITER 1048
ITER 828 

(c) Inner Target, 2.4 cm away
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(d) Outer Target, 2.4 cm away

Figure 3.11: Electron density in front of the targets for three modelling cases

The comparison of the 2D distribution of the plasma parameters for EIRENE 1996 and
the current ITER version are shown in Figures 3.18-3.21. One can see that the new model
shows a well pronounced pressure drop near the inner target, Figure 3.20. Such kind
of behaviour is typical for detached conditions. The detachment-like behaviour can be
also seen for the electron particle sources, Figure 3.21 as well as for the electron density
profiles, Figures 3.11a, 3.11c.

The reason for the higher pressure gradient is the strong parallel momentum sink due
to collisions with molecules, Figure 3.22b. For the new model this channel of momentum
removal becomes dominant (see below in Section 3.3.2). Comparing this sink with the
corresponding sink due to charge-exchange in the old model, Figure 3.22a, one can see
that the latter is a factor 3 smaller, but distributed more uniformly in space (to large
extent due to secondary atoms produced from dissociating molecules). The fact that the
momentum sink due to collisions with molecules can be at least not smaller than that due
to atoms was noticed already back in the past in the paper [44].

3.3.2 Analysis for the fixed plasma background

The analysis of the individual contributions of the different model features was made by
applying different models for molecular kinetics on a fixed plasma background. In this
case it was the background of ITER 1055. In addition to the model with full molecular
kinetics (ITER 1055 itself) the two reduced cases were considered. ITER 1055m1, with
the old model for molecular kinetics (but with NNC), and ITER 1055m2 with the old model
for molecular chemistry, but with elastic collisions D2+D+. The effect of NNC on a fixed
plasma background was shown in Section 2.5. The distributions of the neutral parameters
shown below were obtained with test runs of EIRENE with 106 histories. The statistical
error for the neutral density is less than 5% for the domain of interest. The relative error
in the particle balance is smaller than 0.5 %.

The molecule density in front of the targets for the three models is shown in Figure 3.23.
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(b) Outer Target

Figure 3.12: Electron temperature in front of the targets for three modelling cases

0 10 20 30
0

2

4

6

8

10x 10
20

distance from separatrix, cm

M
ol

ec
ul

e 
D

en
si

ty
 (

D
2),

 m
−

3

ITER 1055
ITER 1048
ITER 828 

(a) Inner Target

0 10 20 30
0

2

4

6

8

10x 10
20

distance from separatrix, cm

M
ol

ec
ul

e 
D

en
si

ty
 (

D
2),

 m
−

3

ITER 1055
ITER 1048
ITER 828 

(b) Outer Target

Figure 3.13: The density of D2 molecules in front of the targets for three modelling cases
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Figure 3.14: The density of D atoms in front of the targets for three modelling cases
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Figure 3.15: The total incident target heat flux for three modelling cases. Dashed line: the
incident heat flux due to plasma only
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Figure 3.16: The neutral incident target heat flux for three modelling cases

(a) Density of D2 molecules (b) Density of D atoms (c) Electron Temperature

Figure 3.17: Comparison of the spatial distributions of the neutral and plasma parameters
near the inner target. Red: ITER 828, Green: ITER1048, Blue: ITER 1055
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Figure 3.18: Electron density for the model of EIRENE 1996 (ITER 828) and the current
ITER model (ITER 1055)
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Figure 3.19: Electron temperature for the model of EIRENE 1996 (ITER 828) and the
current ITER model (ITER 1055)
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Figure 3.20: Plasma pressure for the model of EIRENE 1996 (ITER 828) and the current
ITER model (ITER 1055)
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Figure 3.21: Electron particle source for the model of EIRENE 1996 (ITER 828) and the
current ITER model (ITER 1055)
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Figure 3.22: Dominant Parallel Momentum Sinks for the old and new models

Table 3.4: Fluxes incident on the targets, 1024 s−1

Case Inner Target Outer Target
D+ D D2 D+ D D2

ITER 1055 1.03 3.38 6.04 1.73 3.08 4.11

ITER 1055m2 1.03 1.62 4.58 1.73 1.95 3.43

ITER 1055m1 1.03 1.83 1.56 1.73 1.90 7.93

ITER 828 1.83 3.59 0.686 2.32 3.63 0.808

Elastic collisions increase the density near the inner target in ≈2 times. Note, that the
compression due to elastic collisions is additional to that due to NNC, see Section 2.5.
The contribution of the modified molecular chemistry is small, especially for the outer
target. The effect of “compression” is related to the increase of the “back-scattered” flux of
molecules due to elastic collisions. This is illustrated in Table 3.4 which shows the total
incident fluxes on the targets. The total flux of molecules for the case ITER 1055 is an
order of magnitude larger compared to ITER 828 despite lower ion flux.

Including the new molecular chemistry (MC) into the model yields a small difference.
The 2D plots of the parameters related to MC can be found in Appendix D. The strongest
observed effect of MC is the increase of the molecular ion density due to the ion conversion,
Figures D.1.

Table 3.5 shows the constituents of the particle balance for the hydrogenic particles in
the inner and outer divertor for the case ITER 1055: the total sinks of atoms and molecules
due to different processes. “Inner” and “Outer divertor” stands for the regions within 12
poloidal cells near the corresponding targets. The column “Global” are the integrals over
the whole computational domain.The row “Surface, D2” shows the sources of molecules
due to thermal desorption from the wall originated by the incident atoms.

The main primary source of the neutral particles is the target recycling. Volume recom-
bination is in total a factor of 2 lower, but in the inner divertor alone it is almost equal to
the recycling sources, compare Table 3.5 rows RECYCD, RECYCD2

and RCMBD.

The amount of recycled particles leaving the target as atoms and as molecules is
roughly the same, Table 3.5, rows RECYCD and RECYCD2

. Most of the molecules dis-
sociate: the amount of ionized molecules is almost a factor 4 smaller, Table 3.5 rows
DISSD2

, IONIZD2
and Figure D.2.

The main channel of producing D+
2

is the ion conversion: it is an order of magnitude
stronger than the ionization, Table 3.5, rows IONIZD2

, ICD2
and Figures D.2a, D.3a. The
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Figure 3.23: Density of D2 molecules in front of the targets for three different models on a
fixed plasma background. ITER 1055 is the full model, ITER 1055m1 is the old model for
molecular kinetics (but with NNC), ITER 1055m2 is the old model for molecular chemistry
but with elastic collisions of molecules and ions

Table 3.5: Particle balance for the case ITER 1055, s−1

Notation Process Inner Divertor Outer Divertor Global

RECYCD Recycling, D 4.38e+23 6.75e+23 1.14e+24

RECYCD2
Recycling, D2 2.95e+23 5.29e+23 8.38e+23

RCMBD Recombination, D 8.04e+23 5.68e+23 1.39E+24

SRFD2
Surface, D2 1.15e+24 9.50e+23 3.31e+24

IONIZD Ionization, D 1.68e+24 2.16e+24 4.03E+24

DISSD2
Dissociation, D2 5.24e+23 6.77e+23 1.28E+24

IONIZD2
Ionization, D2 9.10e+22 2.42e+23 3.79E+23

DID2
Dissociative
Ionization, D2 4.81e+21 1.26e+22 1.80e+22

ICD2
Ion Conversion 1.29e+24 1.15e+24 2.47E+24

DISSD+
2

Dissociation, D+
2

1.24e+24 1.26e+24 2.57E+24

RCMBD+
2

Recombination, D+
2

1.37e+23 1.22e+23 2.67E+23

DID+
2

Dissociative

Ionization, D+
2

3.3097e+21 7.6868e+21 1.1813e+22
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Table 3.6: Power balance for the case ITER 1055, MW

Notation Type of Energy Inner Target Outer Target Total

Pi
kin

Ions Kinetic 1.0 9.1 11.6

Pi
pot Ions Potential 2.5 4.1 6.9

Pn
kin

Neutrals Kinetic 2.2 2.5 7.0

Pn
diss

Neutrals Diss. 1.0 1.1 3.0

P
p
tot Total in Particles 6.7 16.8 28.5

Prad Radiation 11.5 17.6 70.5

Ptot Total 18.2 34.4 99.0

Radiation in the volume

Inner Divertor Outer Divertor Total

Pn
rad

Neutrals 4.1 3.7 8.1

Pi
rad

Ions 25.0 30.1 62.4

strength of the dissociative recombination of D+
2

is an order of magnitude smaller than
that of the dissociation: Table 3.5, rows DISSD+

2
, RCMBD+

2
and Figures D.3b, D.3c. The

local rate of MAR can be estimated as:

nD+
2

RIC

RIC + RI

RDR ≈ nD+
2
RDR

Here RIC, RI and RDR are the rates of the ion conversion, ionization of molecules and disso-
ciative recombination of molecular ions. Assuming that RIC > RI one can approximate the
rate of MAR by the rate of dissociative recombination (this yields an overestimation!). The
total rate of MAR estimated in this way constitutes only 20 % of the “common” recombi-
nation: Table 3.5, rows RCMBD, RCMBD+

2
and Figures D.3c, D.3d, Appendix D.

Evaluating the particle balance for individual species is one of the primary “fast” diag-
nostics in the EIRENE code. For illustrative purposes a numerical example for the case
ITER 1055 is shown below (see also Table 3.5). All the sources below are expressed in s−1.

The balance for D atoms is:

S OURCE = RECYCD + RCMBD + 2 · DIS S D2
+ DID2

+ DIS S D+
2
+

2 · RCMBD+
2
+ ICD2

= 1.1441 · 1024
+ 1.3880 · 1024

+ 2 · 1.2764 · 1024

+1.8025 · 1022
+ 2.5673 · 1024

+ 2 · 2.6703 · 1023
+ 2.4684 · 1024

= 1.0673 · 1025

S INK = IONIZD + 2 · S RFD2
+ S D

pump = 4.0287 · 1024
+ 2 · 3.3048 · 1024

+ 5.0128 · 1020
= 1.0639 · 1025

Here S D
pump is the pumped flux.

The same for D2 molecules:

S OURCE = IRECYCD2
+ S URFD2

+ S pu f f =

= 8.3772 · 1023
+ 3.3048 · 1024

+ 7.6500 · 1022
= 4.2190 · 1024

S INK = DIS S D2
+ IONIZD2

+ DID2
+ ICD2

+ S D2
pump =

1.2764 · 1024
+ 3.7885 · 1023

+ 1.8025 · 1022
+ 2.4684 · 1024

+ +7.6395 · 1022
= 4.2180 · 1024

Here S pu f f and S
D2
pump are gas puffing and pumping rates. The pumped flux of nuclei S D

pump +

0.5S
D2
pump = 1.538 · 1023 s−1 is equal with a good accuracy (< 0.2 %) to the specified input flux

1.53 · 1023 s−1

For the molecular ion D+
2
:

S OURCE = ICD2
+ IONIZD2

= 2.4684 · 1024
+ 3.7885 · 1023

= 2.8472 · 1024

S INK = DIS S D+
2
+ RCMBD+

2
+ DID+

2
= 2.5673 · 1024

+ 2.6703 · 1023
+ 1.1813 · 1022

= 2.8461 · 1024

The power losses due to particle fluxes to the wall and radiation are shown in Table 3.6.
In this table the row “Ions Kinetic” shows the energy flux related to the kinetic energy
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Table 3.7: Power losses due to neutrals, W

Notation Sinks Inner Outer Total

For electrons due to ...

S EEa Atoms 6.53e+06 7.44e+06 1.48e+07

S EEm Molecules 1.13e+06 1.79e+06 3.17e+06

S EEi Molecular Ion 2.23e+06 2.30e+06 4.68e+06

S EEtot Total Sink 9.89e+06 1.15e+07 2.27e+07

S EErcmb Recombination -3.03e+05 -2.05e+05 -5.08e+05

For ions due to ...

S EIa Atoms -1.51e+06 -1.77e+06 -2.00e+06

S EIm Molecules 2.78e+06 2.53e+06 5.40e+06

S EIi Molecular Ion -1.17e+06 -1.16e+06 -2.40e+06

S EItot Total Sink 9.97e+04 -4.03e+05 -3.03e+05

S EIrcmb Recombination 3.83e+05 2.71e+05 6.75e+05

of the incident ions (“Neutrals Kinetic” is the same for neutrals), “Ions Potential” is the
ion flux multiplied by the ionization energy (for all ion species) and “Neutrals Diss.” is
the flux of molecules produced on the targets times the release of potential energy in
recombinations of atoms (4.48 eV). For neutral particles the net flux is shown: kinetic
energy of the incident particles minus kinetic energy of the emitted particles. All the
numbers for neutrals in Table 3.6 are taken directly from EIRENE and the numbers for
plasma are taken from B2PLOT.

About 70 % of the input power is radiated. The rest is deposited mainly by the incident
ion flux. For the inner target the power deposited due to neutrals is the same as due to
plasma but for the outer target it is a factor 4 smaller. The bulk of the total radiation
comes from impurities. The radiation of neutrals constitutes only ≈ 10 % of the radiated
power. The main radiator is Carbon: for the case in question the total radiation from
Helium is only 0.45 MW and the bremsstrahlung radiation is only 0.1 MW.

Table 3.7 shows the distribution of the plasma energy losses due to neutrals between
different channels (this means that the sign “minus” stands for the energy gained by
plasma). The electrons loose energy for ionization and dissociation of neutrals but can
gain it from recombination. The ions loose energy in charge-exchange and elastic collisions
as well as due to ion conversion and recombination and gain it from ionization. The ion
energy loss due to neutrals is an order of magnitude smaller than that for electrons.

Tables 3.6 and Table 3.7 represent the energy balance from two points of view. If one
considers the plasma and the neutral gas as one system, then the total loss of power is:

PS OL = Pi
kin + Pi

pot + Pn
kin + Pn

diss + Pn
rad + Pi

rad = 11.6 + 6.9 + 7.0 + 3.0 + 8.1 + 62.4 = 99 MW (3.75)

Pn
kin

includes also the kinetic energy of neutrals penetrating into the core (0.4 MW, the atom
flux to the core is 3 · 1021 s−1). Another point of view on the energy balance is to consider
only the plasma (only charged particles) and to take into account its energy exchange with
the neutral gas. In this case the total loss of power is:

PS OL = Pi
kin+Pi

rad+S EEtot+S EErcmb+S EItot+S EIrcmb = 11.6+62.4+22.7−0.51−0.3+0.68 = 96.57 MW

(3.76)
The term Pn

rad
does not enter this sum because it is included into S EEtot. Formula (3.76)

does not include a small term which takes into account the recombination energy of the
pumped atoms. The power loss calculated according to relations (3.75) and (3.76) is within
5 % of the specified input power 100 MW which is a normal accuracy of the energy balance
in B2-EIRENE for ITER modelling. The difference between balances (3.75) and (3.76) is due
to some inconsistencies in the coupled code (linearisation and rescaling of the sources). In
EIRENE alone a small error in the energy balance appears because of using the tracklength
estimators for both particle and energy sources.

The total momentum losses in the inner and outer divertors are shown in Table 3.8. The
quantities there are the integrals of the parallel momentum sources over the corresponding
volumes (within 12 poloidal cells in on the inner and outer side): i.e. the total forces
parallel to magnetic field. The term “loss” is related to a force directed away from the
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Table 3.8: Momentum losses due to neutrals, N

ITER 1055 ITER 828

Inner Outer Inner Outer

Total 2.24e+02 2.36e+02 1.06e+02 4.35e+01

Atoms 8.37e+00 1.01e+01 6.38e+01 1.42e+01

Molecules 2.44e+02 2.50e+02 0 0

Test Ions -5.35e+01 -4.14e+01 8.32e-02 -1.37e-01

Recombination 2.51e+01 1.65e+01 4.23e+01 2.95e+01

target. The dominant mechanism of the plasma momentum loss in divertor for the new
model (ITER 1055) is the collisions with molecules. It includes both elastic collisions
and ion conversion. The contribution of atoms is an order of magnitude smaller. This
is partly because the atomic contribution includes ionization which can be a net source
of momentum. In addition, a molecule transfers on average more momentum to the wall
than an atom.

The reason for this is that on the wall an atom can turn into a molecule (thermal
reabsorption) but not vice versa. As a result the amount of collisions with the wall which
a molecule can experience is limited only by its lifetime in plasma. Whereas for atoms the
probability of the next collision depends on the number of the previous ones. One can see
that the incident flux of molecules is larger than that of atoms, Table 3.4, despite higher
primary sources of the former Table 3.5 (RECYCD and RECYCD2

).

For comparison, the momentum losses for the old model (ITER 828) are shown in the
same Table 3.8. The momentum losses due to atoms are higher than for ITER 1055, be-
cause of different plasma background (larger region with lower temperature, Figures 3.12
and 3.17c). Nonetheless are still a factor 2-3 lower than the loss due to molecules for the
new model. The observed drop in the plasma pressure near the inner target, Figure 3.20,
corresponds to the momentum sink due to elastic collisions D2+D+. The momentum source
due to molecules for the ITER 828 case is very small because it is only due to dissocia-
tive ionization D2 → D + D+. The sources related to D+

2
become two order of magnitude

higher because the density of D+
2

drastically increases due to ion conversion, Figure D.1,
Appendix D. The momentum sink due to recombination is similar in both cases.

As it was shown in Chapter 3.1.3 the expected Mean Free Path (MFP) for elastic colli-
sions D2+D+ can be less than 1 cm. This fact is illustrated in Figure 3.24a which shows
the inverse Mean Free Path estimated in the same way as in Section 2.5. In the most of the
region of interest in the inner and outer divertors it is really shorter than 1 cm, sometimes
reaching 1 mm. The plasma density there is up to 1021 m−3 and even higher, Figure 3.18b.
The MFP for D2+D+ collisions can be even smaller than that for charge-exchange, Fig-
ure 3.24b, because the molecules are slower.

For such a high collisionality one would expect totally hydrodynamic behaviour of the
neutral particles, but it is not exactly the case: kinetic effects can be also important.
As it was already mentioned above, the momentum transfer is largely determined by the
particles which hit the wall several times before being ionized (dissociated). To study
the deviation from the quasi-equilibrium, the Velocity Distribution Function (VDF) was
calculated directly for a number of grid cells for the plasma background of the case ITER
1055p1 (see below in Section 4.3). The examples of VDF for each component of velocity are
shown in Figures 3.25 and 3.26 for atoms and molecules respectively. The “Point 1” lies in
the inner divertor in the first cell after the target between the separatrix and the location of
the maximum heat flux density. “Point 5” has the similar location but for the outer target,
see Table 3.9. This table also shows the macroscopic parameters of the neutrals and ions
for the selected cells. R and Z are the radial and vertical coordinates and θ is the toroidal
coordinate, T stands for the temperature and V for the average (drift) velocity. In both cells
in question the electron density ne >≈ 1021 m−3.

In addition to the calculated VDF Figures 3.25 and 3.26 show the Maxwellian distri-
bution with the same macroscopic parameters as well as VDF of ions. As expected (fast
thermalization due to charge-exchange), VDF of atoms is almost Maxwellian and very close
to that of ions, Figure 3.25. For the molecules, however, one can see a strong anisotropy
of VDF, Figure 3.26, although their temperature is almost the same as the ion temper-
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(b) Charge-Exchange

Figure 3.24: Inverse Mean Free Path of elastic collisions D2+D+ and charge-exchange D+D+

Table 3.9: Parameters of the diagnostic points in Figures 3.25, 3.26

Point R, cm Z, cm Specie T, eV VR, cm/s VZ, cm/s Vθ, cm/s

1 413.6 -374.8 D+ 0.59 -2.3e4 -1.1e4 -3.7e5
ne = 9.7 · 1020 m−3 D 0.55 -4.8e4 -1.1e4 -3.8e5

D2 0.6 7.6e3 -4.1e4 -3.5e5

5 555.2 -439.6 D+ 0.84 2.7e4 -6.5e4 7.2e5
ne = 1.6 · 1021 m−3 D 0.79 4.6e4 -8.3e4 7.0e5

D2 0.77 -5.5e4 -5.3e4 5.9e5

ature. The observed effect may be related to the presence of wall and to the fact that
in each collision the molecule tends to deflect to relatively small angle, quite opposite
to the charge-exchange of atoms. In the next cell away from the target both atoms and
molecules have almost equilibrium Maxwellian distribution with the same temperature
and drift velocity as ions. This example shows that the kinetic description of molecules
can be important in the region close to the wall, in particular for the correct description of
the momentum transfer which may be sensitive to the anisotropy of VDF.

The approximate residence time of atoms and molecules was mentioned before to jus-
tify the application of the QSS-approximation for molecular chemistry. The Monte-Carlo
sampling allows getting a more sound estimation of this quantity. For this purpose the
following estimator was defined:

τr =

∑

i (ti · witi)
∑

i witi)
(3.77)

Here ti is the time interval between two ”interrupting events”, wi is the statistical weight of
the test particle. The sum over i is taken over the all ”interrupting events” in the control
volume (the grid cell). The “interrupting events” are: i) the test particle enters or leaves
the control volume; ii) the test particle changes its state (ionization, dissociation, thermal
re-absorption). The time τr is the time between “interrupting events” averaged other the
velocity distribution. The denominator of this formula is proportional to the number den-
sity. This estimation takes into account that the particles with smaller residence time have
smaller contribution to the density. Note that a more obvious estimation for the residence
time as τr = L/V where V is the average (drift) velocity and L is the characteristic size would
be misleading because it does not take into account that particles move in different direc-
tions. Consider for example two counter beams with equal density and velocity u. Then
τr = L/V yields infinity because the average velocity is 0. Whereas the estimation (3.77) will
give the correct value τr = L/u in this case.
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(c) Point 1
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(d) Point 5
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(e) Point 5
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(f) Point 5

Figure 3.25: Velocity distribution function of D atoms near the target. Point 1 is located
in front of the inner target and Point 5 in front of the outer target, see Table 3.9
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(b) Point 1
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(c) Point 1
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(d) Point 5
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(e) Point 5
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Figure 3.26: Velocity distribution function of D2 molecules near the target. Point 1 is
located in front of the inner target and Point 5 in front of the outer target, see Table 3.9
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Figure 3.27: Estimated residence time for D atoms and D2 molecules. Solid line is the first
poloidal cell after the target and dashed line is the next poloidal cell

The estimation of τr made for the plasma background of the case ITER 1055p1 (see in
Section 4.3 below) is shown in Figures 3.27. This figure shows the residence time of D2

molecules and D atoms in the first two poloidal cells of the computational grid in front
of each target. As expected, the characteristic time-scale is 10−6 s and for molecules the
time is somewhat larger (a factor of 2) than for atoms. For this particular grid the first cell
extends approximately one centimeter from the target surface. If the steep gradients in
front of the target were resolved better, the estimated τr could be even smaller.



Chapter 4

Radiation opacity

4.1 Introduction

All simulations shown in the previous chapters were made on the assumption that the
neutral gas is transparent for the hydrogen line radiation. Simple estimates (see e.g. [113])
show, however, that for neutral densities typical for the divertor region (1013 cm−3 and larger)
the hydrogen Lyα and Lyβ lines are likely to be opaque. This evaluation is backed by ex-
perimental measurements. The investigation of the Dγ/Dα and Dβ/Dα line ratios in Alcator
C-Mod [114] and JET [115] tokamaks show evidence of such re-absorption. The absorp-
tion of the line radiation can increase the effective ionization rate of a hydrogen atom due
to ionization of the photo-excited states. The effect can reach 1-2 orders of magnitude, see
e.g. [113]. This extra channel of ionization can change the whole ionization-recombination
balance in the divertor and, therefore, has to be taken into account in the modelling.

A feasibility study of implementing the radiation transport in the EIRENE code was
done by Sven Wiesen in the framework of his PhD thesis and by Betra Börner for her
diploma work. This work included in particular an experimental benchmarking for auto-
motive lighting industry applications (HID-lamps) [48, 116]. The calculations have been
carred out for ITER [45, 46] and Alcator C-mod [90, 117] tokamaks as well. In those
EIRENE calculations, self-consistency is achieved between the radiation field (photon gas)
and neutral gas, but was restricted to fixed plasma background. The calculations for the
ITER divertor plasma showed a factor ≈5 reduction of the neutral density due to extra ion-
ization from the photo-excited states, with unclear consequences for the divertor plasma
itself. A qualitatively similar effect (a factor ≈ 2 reduction of the neutral density) was ob-
served in the calculations for Alcator C-Mod tokamak. In this latter case EIRENE was
applied to model the transport of neutrals and photons in a fixed plasma background re-
constructed from experimental measurements [90]. A self-consistent modelling of the neu-
tral kinetics including photon trapping effects using the CRETINE code [118] together with
a 1D model of plasma transport based on fluid equations was done recently in [119, 120].
These calculations showed that the plasma reacts to the higher ionization by increasing
its density and decreasing temperature near the target.

The model which is used in this work is different from the original model of S. Wiesen [45,
46]. The current model comprises the Monte-Carlo line radiation transport coupled with
a Collision Radiative Model for the short living hydrogen excited states and a Monte Carlo
kinetic model for the ground state. It was first applied for Alcator C-Mod calculations [90].
In the present work this model is incorporated into self-consistent 2D B2-EIRENE mod-
elling of the divertor plasma. The material of this Chapter can be found partly in the
paper [121].

4.2 The model

4.2.1 Transport of photons

Photon transport is implemented in EIRENE in the same way as the transport of neutral
particles. Photons are represented in the code as a particular neutral species, emitted

81



82 Chapter 4. Radiation opacity

by the corresponding volume sources (from excited states) similar to those for volume
recombination of atoms (from ions). The probability of spontaneous radiative decay Anm

(first Einstein Coefficient) plays the role of the recombination rate. Induced radiation
(“Laser” effect) is not taken into account because the expected density of the radiation
field is not so high. Currently only Ly-series photons are considered. Natural and Doppler
broadening and Zeeman splitting are taken into account in the calculation of the line
absorption and emission profiles. The natural broadening results from the finite life-time
of the excited level. Doppler broadening appears due to non-zero velocity of the emitters:
atoms in thermal motion. Zeeman splitting is the splitting of the atom energy levels in the
magnetic field.

Estimations of the line broadening due to the various mechanisms are shown in Ta-
ble 4.1. The numerical formulas are given for Deuterium atom. The numbers are cal-
culated for the reference point T = 1 eV, ne = 1015 cm−3, B = 6 T which represent typical
parameters near the strike points in ITER. A simple formula from [53] was used for the
Doppler broadening. Zeeman splitting was estimated according to Formula (4.1) below.
Stark broadening results from the microscopic electric fieled of the charged particles sur-
rounding the atom. Formulas 7.3.33-36 from [124] were used for the electron impact
broadening, and Equation 7.3.15 from the same book for the width of the Holtsmark pro-
file (ion impact broadening). This latter estimate is based on the Holtsmark theory and
does not take into account Debye shielding and the ion motion which can reduce the
effect [124, chapt. 7.3.2].

Table 4.1 shows that Doppler broadening is the dominant expected mechanism and the
natural broadening is negligible for the conditions in question. The value of the Zeeman
splitting can be of the same order as the Doppler shift. This estimate also shows that
the ion micro-field Stark broadening, which is not included in the model so far, can be
also important even for the Lyα line. The figures in Table 4.1 and the test calculations
made with electron Stark broadening [116] show that this effect is of minor importance
for the divertor conditions. The broadening due to reduction of the life time of the excited
level which takes place besides the spontaneous radiative decay: electronic de-excitations,
ionization etc., is not taken into account in the current model as well.

Table 4.1: Comparison of the different line broadening mechanisms

Mechanism Formula for ∆E
E0

1 Lyα,
∆E
E0

2 Lyβ,
∆E
E0

2

Natural 4.8·10−17Anm 2.3·10−8 2.7·10−9

Doppler 5.5·10−5
√

T 5.5·10−5 5.5·10−5

Electron Stark 1.6·10−22n4ne/
√

Te 2.6·10−6 1.2·10−5

Ion Stark 6·10−16(n2 − m2)n2/3
e 1.8·10−5 4.8·10−5

Zeeman 4.3·10−6B 2.6·10−5 2.6·10−5

The energy of the emitted photon is sampled in the following way. First, the photon ve-
locity vector vph is sampled isotropically (its magnitude is of course the speed of light). The
initial photon energy is set to the centre-line energy Ec (energy of transition). This energy
is corrected to take into account the Zeeman splitting (Zeeman-Lorentz triplet) [128]:

Ez = Ec + k · µBB, P(k) =
1

4

{

1 + cos2 θ, k = ±1;

2 sin2 θ, k = 0
, cos θ =

(vph.B)

cB
(4.1)

Here P(k) is the discrete probability density for k, B is the magnetic induction, Ez is the
corrected energy of transition and µB is the Bohr magneton:

µB =
e~

2me

= 5.7884 · 10−5 eV

Tesla

Where ~ = h/2π is the Planck constant, me is the electron mass. After that, the energy
of emitted photon E is sampled from the Lorentz profile to take into account the natural
broadening:

I(E) =
1

π

γ

(E − Ez)2 + γ2
, γ =

Anmh

4π
(4.2)
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Finally, the Doppler shift is added:

Ed = E ·
(

1 +
(vph.vn)

c2

)

(4.3)

Ed is the final energy of the emitted photon, vn is the velocity of the emitter. To sample the
velocity vn the Velocity Distribution Function (VDF) of atoms needs to be known.

In order to define this VDF, the excited atoms are split into two groups: atoms produced
due to recombination of ions and atoms produced due to excitation of the ground state.
The corresponding populations are calculated with a Collision-Radiative model, see below
in Section 4.2.2. It is assumed that the particles of each group have a shifted Maxwellian
velocity distribution. The temperature and the drift velocity of the first group are taken to
be the same as those of ions, and for the second group the parameters of atoms are used.
This model does not take into account the heavy particle collisions for excited states. The
validity of this assumption will be addressed below in Section 4.2.2. For the conditions of
the ITER divertor this is not very important because the VDF of atoms is almost the same
as of ions, see Section 3.3.2.

This model also does not include the radiation from excited levels produced due to
dissociative recombination of D+

2
, see Section 3.2.3, process (3.62) and (3.63). This channel

is not very important for ITER conditions, see below in Section 4.3, but can be important
for lower densities, e.g. for linear devices [126]

The same assumption of the shifted Maxwellian VDF is applied for calculating the cross-
section of the photon absorption σa(E). If the absorber moves, then the absorption cross-
section of the photon with energy E in case of natural broadening is [124], Section 7.1.5:

σa(E) =
BmnEc

c

γh

(E − Ec [1 + v/c])2
+ γ2

(4.4)

Here Ec is the line-centre energy, Bmn is the second Einstein coefficient for induced transi-
tion from level m to level n, v is the projection of the velocity of absorber v to the velocity of
the photon:

v =

(

v.vph

)

c
(4.5)

Factor [1 + v/c] describes the Doppler shift. This cross-section has to be averaged over the
velocity distribution of the absorber. In case of shifted Maxwellian distribution this yields
the integral, see [124], Section 7.1.6:

σa(E) =
BmnEch

c

∫ ∞

−∞

γ

(E − Ec [1 + v/c])2
+ γ2

1
√
πv2

T

exp













− (v − u)2

v2
T













dv =

=

∣

∣

∣

∣

∣

ξ =
v − u

vT

∣

∣

∣

∣

∣

=
BmnEch
√
πc

∫ ∞

−∞

γ exp
(

−ξ2
)

(

E − Ec

[

1 + vtξ/c + u/c
])2
+ γ2

dξ =

BmnEch
√
πc∆D

∫ ∞

−∞

γ

∆D
exp

(

−ξ2
)

(

E−Ec [1+u/c]
∆D

+ ξ
)2
+

(

γ

∆D

)2
dξ =

BmnEch
√
πc∆D

[

W

(

E − Ed

∆D

,
γ

∆D

)]

(4.6)

Here vT and ∆D are the thermal velocity and the Doppler width:

vT =

√

2kT

M
, ∆D =

Em

c
vT (4.7)

T is the temperature of atoms, M is the mass of atom. u is is the projection of the (average)
drift velocity of absorber u on the velocity of photon (formula (4.5)). Ed is the line-centre
energy corrected for the Doppler shift:

Ed = Ec

[

1 +
u

c

]

= Ec

[

1 +
(vph.u)

c2

]

(4.8)

The integral (4.6) is expressed in terms of the complex error function (Faddeeva function)
W(x, y), see e.g. [127], Chapter 7:

W(x, y) = W(z = ix − y) = ez2 ·
[

1 − 2
√
π

∫ z

0

e−t2

dt

]

= ez2 ·
[

1 − Erf(z)
]

(4.9)
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Table 4.2: Coefficients of the approximate formula (4.12)

Line Lyα Lyβ Lyγ Hα Hβ

Transition 1→ 2 1→ 3 1→ 4 2→ 3 2→ 4

bmn, 10−15 cm2
√

eV
amu

54.7 8.76 3.05 454 328

As was already mentioned, for the condition of a large divertor plasma the Lorentzian part
is negligible. This general formula is used in the code to keep the possibility to extend the
treatment for the case where the Lorentzian and Doppler parts are equally important. For
the case in question one can take into account only the Doppler broadening for the central
part of the line, but at the wings the Lorentzian part has to be taken into account anyway,
see [124], Chapter 7.1.6.

To take into account the Zeeman splitting the sum over the line centre energies defined
by relations (4.1) with corresponding weights P(m) has to be calculated. Each term in this
sum is calculated for the centre energy corrected for both Doppler shift (4.8) and Zeeman
splitting (4.1). The final result is:

σa(E) =
BmnEch
√
πc∆D

∑

k=−1,0,1

(

Re

[

W

(

E − Ezd

∆D

;
γ

∆D

)]

· P(k)

)

(4.10)

Ezd = Ec

















1 +

(

vph.u
)

c2

















+ k · µBB (4.11)

Here Ec is the initial (“unperturbed”) energy of transition.
There is no model for photon-wall interaction in the code at the moment: it is assumed

that all incident photons are absorbed.
Comparison of the absorption profile obtained using Formula (4.11) with the sampled

emission profile serves as a numerical test of the implementation: for uniform conditions
the emission and absorption profiles must be the same. Some other tests which were
used for the photon transport model are described in [47]: reproducing the Plank profile
for thermodynamical equilibrium and escape factors in cylinder geometry.

The computational experience shows that the self-consistent solution for plasma pa-
rameters is insensitive to the details of the radiation transport treatment because of the
high opacity (a similar conclusion was made in [119]). More accurate treatment of emis-
sion and absorption profiles can be important for devices with lower opacity than ITER
and for the analysis of diagnostic signals.

If B = 0 and u = 0 (neither magnetic field, nor drift) then from the Equation (4.11) one
can get a simple estimate of the absorption cross-section at the line centre (maximum
cross-section):

σmax
a (E) =

BmnEch
√
πc∆D

=
c3h3

8π
√

2π

gn

gm

Anm

E3
c

√

M

T
= 3.091 · 10−20 gn

gm

Anm

E3
c

√

M

T
= bmn

√

M

T
(4.12)

To get the final relation it was taken into account that for the line centre W(0, y) = 1

(assuming y << 1, thus neglecting the natural broadening), ∆D was substituted from (4.8),
and Bmn was expressed through Anm using Einstein relation:

Bmn =
gn

gm

c3h2

8πE3
m

Anm

where gm, gn are statistical weights of the initial and final states respectively. In the for-
mula (4.12) with numerical coefficient T is in eV, M is in amu and the cross-section is
calculated in cm2. The constants bmn for some lines are shown in Table 4.2. The numerical
value of bmn corresponds to the maximal absorption cross-section for hydrogen (M = 1) for
T = 1 eV.

Table 4.2 shows that already for an atom density 1013 cm−3 the Mean Free Path (MPF)
for Lyα is only 2 cm. The absorption cross-section for Lyβ is only 6 times smaller. For the
ITER divertor conditions: densities 1014 cm−3 and larger on a characteristic special scale
1 cm, both those lines are expected to be opaque. For Hα and Hβ lines bmn is more than an
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(a) Ly-alpha (b) Ly-beta

Figure 4.1: Profiles of the photon absorption cross-section for two lines of Deuterium in a
gas without drift velocity and with temperature 1 eV, magnetic field 6 Tesla. Two curves
correspond to the photons which incident along (vph||Bph) and perpendicular (vph ⊥ Bph) to
the magnetic field. Abscissa is the photon energy shifted by the line-centre energy E − Ec

order of magnitude larger than for the Lyman lines. Therefore, it is possible that the lines
of the Balmer series are effectively re-absorbed as well, because the relative population
of the n = 2 level for the conditions in question is 10−4..10−3, see below in Figure 4.4. The
absorption of Balmer lines is not taken into account in the current model.

The figures shown in Table 4.2 are the maximal absorption cross section at the line
centre. At the wings of the line the absorption probability rapidly decreases. An example
of σa(E) profile for Lyα and Lyβ lines of Deuterium is shown in Figures 4.1. The profiles
are calculated for a gas without drift, with temperature of 1 eV and magnetic field 6 Tesla
using Formula (4.11). The two curves correspond to different directions of the photon
velocity: photons which incident along (cos θ = 1 in Equations (4.1)) and perpendicular
((cos θ = 0) to magnetic field. The Zeeman effect results in a profile with two maxima. As
expected, Table 4.1, the splitting due to Zeeman effect is roughly half of the Doppler width.

4.2.2 Photo-induced ionization

The ionization from the photo-excited states is taken into account through a correction
to the effective ionization rate. This extra effective ionization is called here the “photo-
induced” ionization. In the model described below it will be assumed that the transport of
the excited states is negligible and that they do not experience any kinds of heavy particle
collisions, - the assumptions commonly made for Collision Radiative Models (CRM).

The characteristic transport time-scale of recycled atoms is 10−6 s (see e.g. the direct
estimation in Section 3.3.2). It can be easily shown that the life time of the electronically
excited levels of a hydrogen atom is much shorter. Indeed, the rate of radiative decay of
the n = 2 level yields a maximum life time 1/A21 = 2 · 10−9 s, for level n = 3 it is 2 · 10−8 s and
for level n = 4 it is 10−7 s. But already in the case n = 3 the ionization rate for Te = 1 eV is
4 · 10−7 cm3/s. That means that even for ne = 1014 cm−3 the life time regarding this process is
2.5 · 10−8 s (the numbers for the estimates are taken from [64]). Therefore, the life-time of
the excited states, limited either by the spontaneous radiative decay or by ionization is by
two orders of magnitude shorter than the transport time scale. In this way the assumption
of neglecting the transport of excited states is justified.

Neglecting the heavy-particle collisions is a somewhat stronger assumption. In Sec-
tion 3.1.3 it was shown that the collision rate of the charge-exchange for temperatures
around 1 eV is approximately 10−8 cm3/s. For densities ∼ 1015 cm−3 which can be found in
front of the targets, this implies collision time ∼ 10−7 s. The rate of charge-exchange of the
excited states can be much higher than that of the ground state: it scales as n4 with the
principal quantum number [122]. That means that the charge-exchange of excited states
may have the same time-scale as their life time.

The derivation of a CRM which takes into account charge-exchange collisions (assum-
ing velocity independent collision rates) was shown by Krasheninnikov et al. in [123]. In
the presented work all kinds of heavy particle collisions for excited states were neglected.
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However, the approach of paper [123] will be used to show the rigorous way of deriving a
CRM from kinetic equation.

Taking into account the assumptions made, the kinetic equation for one excited state
reads:
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f1 (4.13)

Here fp(v) is the velocity distribution function of the atomic excited state, f +(v) is that
for ions, ne is the electron density, C is the rate of electron-impact excitation, F is the
electronic de-excitation, A is the spontaneous radiative decay, S is the ionization, R is the
recombination, B is the photo-excitation. The subscript pq denotes transition from level p

to level q, p alone denotes transition to (from) continuum, 1 stands for the ground state;

n
1p

ph
is the number density of photons corresponding to transition 1→ p.

The velocity distribution of excited states, produced either due to excitation from the
ground state, or due to recombination, is not perturbed by any collisions. Therefore, the
distribution function fp can only be a linear combination of fp and f +:

fp(v) = n1
p f̂p(v) + n+p f̂ +(v) = r1

pn1 f̂p(v) + r+p n+ f̂ +(v) (4.14)

Here f̂ denotes the distribution normalized to the corresponding density, r1
p and r+p are the

population factors. Further they will be called “the population coupled to ground state”
and “the population coupled to continuum” respectively. Substituting (4.14) into (4.13)
yields two sets of linear algebraic equations for r1

p and r+p :

M{r1
p} = C1pne + B1pn

1p

ph
, M{r+p } = Rpne (4.15)

Here the following matrix operator is introduced (in this definition rp is a vector):
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The kinetic equation for the ground state reads:
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Here d f1
dt

denotes the transport and all processes which are not related to electron-impact
collisions: heavy particle collisions, collisions with wall etc. From the form of Equa-
tion (4.17) it can be readily seen that:
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is the effective ionization rate, and:

R(Te, ne) =
∑

p>1

(

Fp1ne + Ap1

)

r+p + R1 (4.19)

is the effective recombination rate. Population factors are found from the solution of
algebraic equations (4.15). Therefore, S and R are functions of ne and Te.

The rates S (Te, ne) and R(Te, ne) can be also obtained considering the kinetic equation for
ions:
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This yields:

S (Te, ne) = S 1 +

∑

p>1

S pr1
p, R(Te, ne) =

∑

p

Rp −
∑

p>1

S pr+p (4.21)

The reaction rates obtained using Formulas (4.18), (4.19) and Formulas (4.21) must be
equal. This fact provides a numerical test of the calculated effective rates S and R.

The Collision-Radiative Model which is expressed by Equations (4.15), (4.18), (4.19). In
this work CRM of Sawada and Fujimoto was applied [41] to calculate the effective rates
(extended to include the photo-excitation). It is the same model and the same code as in
Section 3.2.

The population coupled to ground state can be split into two parts r1
p = re

p + r
ph
p :

M{re
p} = C1pne, M{rph

p } = B1pn
1p

ph
(4.22)

The part re
p may be called “the population due to the electron impact excitation” and r

ph
p is

“the population due to the photon-impact excitation”. The effective ionization rate can be
split accordingly:
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Here S e is the “ordinary” optically thin ionization and S ph is the additional effective ioniza-
tion rate due to absorption of radiation. It is called here “the photo-induced” ionization.

Another approach is often used to take into account the influence of absorption of
line radiation on the ionization-recombination balance, see e.g. [113, 119, 125]. If one
considers the sum of the balance equations (4.15) and transfers the photon absorption
rates Bpqn

pq

ph
to the left hand side, then one can introduce the so called radiation escape

probability factor P
p
esc:
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The coefficient P
p
esc is thus the fraction of the radiation which is not re-absorbed. This

transformation yields to a set of linear equations, similar to (4.15), without photo-excitation
term but with a modified matrix M. This matrix defines now the so-called kinetics with
suppressed radiative transition. The equation can be split into ionization and recombina-
tion parts:

M{r(1,op)
r } = C1pne, M{r(+,op)

p } = Rpne (4.25)

Population factors r
(1,op)
p and r

(+,op)
p obtained by solving this set of equations can be substi-

tuted then into Formulas (4.18), (4.19) or (4.21). The resulting effective ionization and
recombination rates S op and Rop will be called here “the opaque rates”. The “opaque
rates” for hydrogen atom calculated on assumption of total opacity (P

p
esc = 0) are shown

in Figure 4.2a. For comparison, the corresponding “optically thin” rates are shown in Fig-
ure 4.2b. The recombination rate Rop is more than an order of magnitude lower than in
the optically thin case.

The opaque rates are different from the rates S and R calculated before. The relation
between these rates can be found from the condition that both approaches must yield the
same net particle source in the continuity equation, and therefore:

Rn+ − S n1 = Ropn+ − S opn1, S = S op
+ (R − Rop)

n+

n1

(4.26)

Here n+ and n1 are the ion and atom (ground state) density. Two special cases of this
relation are shown in Figure 4.3. In case of zero recombination S = S op. And if the
“opaque” ionization is completely balanced by the “opaque” recombination, then:

Ropn+ = S opn1, S = S op R

Rop
(4.27)
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(a) “Opaque” rates
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(b) “Optically thin” rates

Figure 4.2: “Opaque” (a) and “optically thin” (b) rates for hydrogen atom calculated with
CRM [41]. Numbers in the legends are the electron densityes in cm−3. For ”opaque” rates
total suppression of the radiative transitions was assumed (P

p
esc = 0)

The rates shown in Figure 4.3 are calculated on assumption of the complete opacity. The
optically thin ionization is shown in the same figure for comparison. For temperatures
below 5 eV the “equilibrium rate” (4.27) is more than an order of magnitude higher than
the optically thin rate. It is the same effect as shown in Figures 4.2. The difference is
smaller for higher densities where the electron-impact excitation becomes stronger. Note
also that the “optically thick” rates are much less sensitive to the electron density.
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Figure 4.3: The “equilibrium” effec-
tive ionization rate, Formula (4.27),
the “opaque” ionization rate and the
optically thin ionization rate

The approaches of using “the photo-induced
ionization rate” or “the opaque rates” are com-
pletely equivalent only in terms of the continuity
equation. In terms of the kinetic equation they
are equivalent only if velocity distribution func-
tions of ions and atoms are equal. The reason
is that “opaque” rates assume in fact that recom-
bining atoms have the same VDF as ions. This
assumption is correct in general only if the time
scale of the excitation of ground state is shorter
than that for the transport and the elastic col-
lisions. The approach of photo-induced ioniza-
tion is more general. As it was shown before, it
is strictly correct in terms of the kinetic equation
within the assumptions taken for CRM. However,
for the conditions of an ITER-like divertor plasma
this difference is not important because the ions
and atoms have almost the same velocity distribu-
tion as it is shown in Section 3.3.2.

Figures 4.4 show the comparison of the relative population of two excited levels (n = 2

and n = 3) calculated either with assumption of an optically thin system, or using the model
with a full suppression of radiative transitions. In both cases (optically thin and completely
opaque) the population of the n = 2 level coupled to ground state reaches 10−3..10−2 for
temperature around 10 eV and the population coupled to continuum can be 10−4..10−3

for the temperature below 1 eV. For the n = 3 level these figures are roughly an order of
magnitude lower. Like for the ionization rate, the effect of the radiation opacity is weaker
for a higher density.

The extra electron energy loss due to photo-induced ionization S
ph

E
can be calculated
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(c) Level n=3, Optically Thin

0.5 1 10 25
10

−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

electron temperature, eV

re
la

tiv
e 

po
pu

la
tio

n
5e13
5e14
5e15
H(3)/H+

H(3)/H(1)

(d) Level n=3, Opaque

Figure 4.4: Relative population of the levels n = 2 and n = 3 coupled to ground state (in red)
and to continuum (in blue) calculated on assumption of an optically thin system and for
the case of total opacity.
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Figure 4.5: The electron energy loss per one ionization event for the optically thin case
(blue) and extra energy loss for the effective ionization due to absorption of Lyα photons
(red).
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as:

S
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E
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Cpq∆Epqr
ph
p −
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Fpq∆Epqr
ph
p =

= S 1E0 +
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Apq∆Epqr
ph
p −
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p>1

B1pn
1p

ph
∆E1p,

r1 = 1, E1 = 0, ∆Ep = E0 − Ep, ∆Epq = |Ep − Eq| (4.28)

where Ep is the energy of the level p, E0 = 13.6 eV is the ionization energy. The energy loss

per one ionization event (that is S
ph

E
/S ph) in the case if where only Lyα line is absorbed is

shown in Figure 4.5. It does not depend on the photon absorption rate because the popu-

lation factors for any specific line r
ph
p in both Formulas (4.23) and (4.28) are proportional to

this rate. For the temperature below 1 eV the energy loss is negative. This means that the
electrons effectively gain energy due to de-excitation from the photo-excited states. The
energy loss for the ”optically thin” ionization is shown on the same figure.

Power balance for ionization and recombination of atoms can serve as a run-time con-
sistency check of the implementation. This balance reads:

S E − E0S N
=

∑

p

∑

q

ApqEpqn1rp −
∑

p

∑

q

BqpEqpn
ph
qp + β (4.29)

Here S E is the total energy loss of electrons for ionization of atoms, S N is the total sink
of atoms, β is the energy loss due to radiative recombination, other notations are the
same as for Formula (4.28). S E and S N include both ionization and recombination (with
corresponding signs). The right hand side of this equation is the radiated energy calculated
directly. This balance is valid not only globally but for each control volume as well, e.g for
each cell of the computational grid. For practical purposes it is not necessary to calculate
the right hand side of Equation (4.29) exactly. It is enough to take only the photons whose
transport is taken into account explicitly: in all studied cases the contribution of Lyα and
Lyβ to the global balance is dominant.

The relation (4.29) can be used to calculate the radiation energy heat flux qrad:

div (qrad) = QE − QA = S E − E0S N (4.30)

Here QE is the volume source of emitted radiation energy and QA is the absorbed radiation
energy. The Equation (4.30) shows that qrad can be calculated in the same way as for the
optically thin case using the difference S E − E0S N as the volume source of the radiated
energy. It automatically takes into account the absorption. The radiation heat loads are
calculated in B2PLOT in exactly this way which is thus correct for the optically thick case
without modification.

Technical aspects of the implementation of the radiation transport coupled to CRM in
B2-EIRENE code are described in Appendix A.5.

4.3 The effect for the ITER divertor plasma

A series of calculations was performed for the ITER set-up described in Section 1.3. The
initial model corresponds to the case ITER 1055 with full molecular kinetics and neutral-
neutral collisions. The model was updated with the transport of the 5 first Ly-lines (α..δ)
coupled with CRM as described in the previous sections.

Two cases, referred below as the LP and HP cases, are considered in detail. The cal-
culations with updated model are compared to the cases with a similar average divertor
pressure. The LP (Low Pressure) case is the case with S pu f f = 10·1022 s−1, PPFR = 7.0 Pa (Case
1055p1). It is compared with a case without photon trapping and with : S pu f f = 7.6·1022 s−1,
PPFR = 6.4 Pa (Case 1049). The HP (High Pressure) case has S pu f f = 17·1022 s−1, PPFR = 10.7 Pa

(Case 1055p3) and compared with a case with S pu f f = 15.3 ·1022 s−1, PPFR = 11.3 Pa (Case
1055).

Trapping of photons can significantly increase the ionization source in the low tempera-
ture regions with high neutral density. Here and below “low temperature” means Te < 2 eV.
These regions in the inner and outer divertors are shown in Figure 4.6. The picture is made
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for the HP case. The filled domain there is the region where the photo-induced ionization
rate exceeds the ordinary ionization (due to the electron impact only). It corresponds
approximately to the domain with Te< 2eV and with atom density nD > 5 · 1014 cm−3.

Figure 4.6: The regions in the in-
ner and outer divertors for which
the photo-induced ionization is
greater than the ordinary ioniza-
tion. Dashed line is the isotherm
with Te = 2 eV, solid line is the
contour of constant atom density
nD = 5 · 1014 cm−3

The extra particle source due to photo-induced
ionization increases the plasma density in this re-
gion. The high density (ne > 1015 cm−3) region ex-
tends further towards the low temperature area,
Figures 4.7, 4.8. The maximum electron density in
the inner divertor rises by almost a factor two, Fig-
ure 4.7. The dominant recombination mechanism
there is the 3-body recombination, which scales as
∼ n3

e, whereas ionization scales approximately as
∼ n2

e. As a result, the recombination source rises
more strongly with density, compensating the ex-
tra photo-induced ionization source. It is predom-
inantly the recombination source rather than the
target recycling source that balances the increase
of the ionization sources due to photon trapping,
Figure 4.10.

The effect of photon trapping is stronger for the
inner divertor where the plasma is cooler, although
it can be seen in the outer divertor as well, Fig-
ure 4.10, Table 4.3. Figures 4.8 show that the in-
crease of the plasma density is accompanied by a
decrease of the temperature in front of the targets.
The neutral density for a given PPFR becomes higher,

following the increase of the plasma density, Figure 4.9. The degree of ionization does not
change significantly, compare Figures 4.7 and 4.9. This may be due to a mitigation of the
neutral diffusion (reduction of the diffusivity) from the targets to the channel underneath
the dome because of the higher plasma density. Qualitatively a similar effect (increase of
the plasma density and reduction of temperature near the target) was obtained in 1D mod-
elling by Adams and Scott [119, 120]. They associated this with the shift in the balance of
ionization and recombination to lower temperatures as the optical thickness increases.
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Figure 4.7: Electron density near the inner target with (solid line) and without (dashed
line) photo trapping. Dotted line is the result obtained with “totally opaque” rates. x is the
(poloidal) distance from the target.

The global opacities and the contribution from individual lines to the total ionization
sources are shown in Table 4.3. The main contribution to the total photo-induced ioniza-
tion source is from the Lyα (≈ 90 %) and Lyβ (the remaining ≈ 10 %) lines, and the effect of
higher levels is negligible. A similar result was reported in [119, 125] and [117]. The global
opacity for Lyα line is around unity (> 75 %) even for the LP case. The data in Table 4.3
suggest that higher lines (n > 3) can be neglected in the modelling for ITER conditions.

Table 4.4 shows the total population of individual excited levels in the inner and outer



92 Chapter 4. Radiation opacity

−5 0 5 10 15 20 25
0

2

4

6

8

10

distance from separatrix, cm

E
le

c
tr

o
n
 T

e
m

p
e
ra

tu
re

, 
e
V

with opacity
w/o opacity
totally opaque

x=0.6 cm 

x=2.4 cm 

(a) Low Pressure

−5 0 5 10 15 20 25
0

1

2

3

4

distance from separatrix, cm

E
le

c
tr

o
n
 T

e
m

p
e
ra

tu
re

, 
e
V with opacity

w/o opacity
totally opaque

x=0.6 cm 

x=2.4 cm 

(b) High Pressure

Figure 4.8: Electron temperature near the inner target with (solid line) and without
(dashed line) photon trapping. Dotted line is the result obtained with “totally opaque”
rates. x is the (poloidal) distance from the target.

(a) Low Pressure (b) High Pressure

Figure 4.9: Neutral density near the inner target with (solid line) and without (dashed line)
photon trapping. x is the (poloidal) distance from the target.

divertors associated with different populating mechanisms. The population originating
from the ground state was calculated by CRM for a fixed plasma background with given
photon absorption rates. Populations due to recombination of D+ and dissociation of D2

and D+
2

were calculated using the population factors from [106] (similar to that shown
in Figures 4.4). The two latter mechanisms were not taken into account for the photon
sources in the B2EIRENE modelling. According to Table 4.4, the main populating mech-
anism for the level n = 2 is the excitation of the ground state. For higher levels (n > 2) the
recombination channel prevails. Population due to dissociation of D2 is negligible, because
of very low relative population of D(n) originating from D2 in low temperature domain. The
relative population of D(n) originating from D+

2
can be rather high (∼ 10−3, the highest ratio

is for n = 3). The corresponding processes were considered in Section 3.2.3. But the ob-
tained density of D+

2
in the region in question is low (1010..1012 cm−3) and even for level n = 3

it can support less than 10 % of the total population. This mechanism would be more
important if the density of D+

2
was higher, which is the case e.g. in linear devices [126].

Transitions due to the absorption of Balmer series photons could increase the population
of n = 3 level as well.

The figures in Table 4.3 suggest that the ITER divertor is almost completely opaque
for the hydrogen line radiation. Therefore, it is plausible to assume that the modelling
with ionization and recombination rates calculated with totally suppressed spontaneous
transitions (see Formulas (4.26) in Section 4.2.2) will give approximately the same result
as with explicit transport of photons. Such calculations were made for the cases with the
same set-up as ITER1055p1 and ITER1055p3. The results are shown in Figures 4.7, 4.8
with dotted lines. As expected, the difference is not very large. The difference is small
because for the ITER divertor most of the atoms are ionized in “optically thick” conditions.
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Figure 4.10: Principal sources and sinks of D atoms in the inner (dark bars) and outer
(open bars) divertors without (left side) and with (right side) photon trapping. R is the
target recycling sources, VR is the volume recombination, I is the total ionization sources,
Iph is the photo-induced ionization sources.

Table 4.3: Opacity and ionization related to individual lines

Opacity (absorbed/emitted), % Contribution to ionization, %
Line LP-case HP-case LP-case HP-case

Inner 1 Outer 1 Inner 1 Outer 1 Inner 1 Outer 1 Inner 1 Outer 1

Total 2 — — — — 66 28 80 54

Lyα
3 96 79 98 90 88 90 88 88

Lyβ
3 84 58 90 77 9.1 7.8 9.2 9.2

Lyγ
3 76 46 84 66 2.0 1.4 2.1 1.9

Lyδ
3 65 35 75 56 0.64 0.40 0.72 0.61

Lyǫ
3 55 25 67 43 0.36 0.14 0.31 0.23

1 Integrals over the inner and outer divertors
2 Contribution of the photo-induced ionization to the total ionization source
3 Contribution of the individual lines to the photon-induced ionization source

For other parameters (lower densities) it can be that most of the atoms are ionized in
“optically thin” conditions. In this case one has to distinguish at least two kinds of the
ionization rates: “totally opaque” for one region and “optically thin” for another one. The
(crude) role of taking into account the photon transport in EIRENE is in fact in finding the
boundary between these two regions “automatically” without enforcing it by some external
assumptions.

Practically all the calculations for ITER done in this work were performed on identical
computational grid (28 radial and 74 poloidal cells, 12 cells in each divertor, 8 rings in
the core) to exclude possible discretisation effects when comparing the different physical
models, as well as for performance reasons. One test calculation was made for the same
set up as the case ITER 1055p1 but with a finer grid. The refined grid had 96 poloidal
and 36 radial cells, 24 poloidal cells in the inner divertor and 22 poloidal cells in the outer
divertor. Therefore, doubling the poloidal resolution in the divertors.

The resulting plasma profiles in the divertor region have similar shape but the numbers
can be somewhat different. Some examples are shown in Figures 4.11. These figures
present distributions of some parameters along selected flux surfaces which are denoted
by their distance from separatrix along the target y. For the temperature, the selected flux
surface was the flux surface of the maximum incident heat flux. For the densities: the
flux surfaces where the maximum of the electron density is reached.

The strongest difference can be seen for the densities, especially at the inner target,
Figure 4.11b. The position of the maximum and the density drop are poorly resolved
even with the refined grid. The same can be seen for the atom density, Figure 4.11c.
However, the shape of the profile is similar in both cases. The effect is smaller for the
outer target because the density peaking is less pronounced, Figures 4.11e, 4.11f. The
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Table 4.4: Comparison of the different mechanisms of populating the excited levels

Population (%) LP-case HP-case
originated from: 1 D(1s) D+ D2 D+

2
D(1s) D+ D2 D+

2

n = 2, Inner 84 15 0.04 0.61 80 20 0.02 0.54

n = 2, Outer 88 10 0.43 1.6 83 16 0.14 0.85

n = 3, Inner 27 70 0.03 3.0 21 77 0.02 2.3

n = 3, Outer 35 56 0.39 8.0 26 70 0.14 4.0

n = 4, Inner 5.7 93 0.01 1.1 4.0 95 0.01 0.77

n = 4, Outer 9.6 87 0.16 3.5 5.7 93 0.05 1.5
1 Fraction of the total population of excited state in the inner and outer divertors

difference observed for the temperature profile is much smaller: for the outer target the
profile almost does not change, Figure 4.11d and for the inner target the same problem of
resolving the position of the drop as for the densities is seen.

Despite observed differences in the poloidal profiles, the parameters in front of the tar-
gets calculated with different grids are not much different, Figure 4.12. No significant
difference was found for the global particle and energy sources (total ionization, recombi-
nation etc.), neither as for the operational parameters of the divertor, see below in Sec-
tion 5. The conclusion may be that it is desirable to make calculations with finer greed
for the detached plasma where strong gradients in poloidal direction are observed. The
relatively coarse grid is still used for the modelling because the finer grids needs more time
for calculations and reduces numerical stability. However, the main features of the system
and principal output parameters are found to be not very sensitive to the grid size.
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Figure 4.11: Electron temperature and the density of electrons and atoms along selected
flux surfaces in the inner and outer divertors calculated on the standard-size and refined
grid. y is the radial coordinate of the flux surface (at the target). ”Distance along separatrix”
is the poloidal projection
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Figure 4.12: Electron temperature and density in front of the targets and the total incident
heat flux calculated on standard-size and refined grid.
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Chapter 5

Impact on the ITER modelling

The main engineering output of the modelling are the parameters which characterise the
effectiveness of impurity pumping and the target heat loads. As it was already mentioned
in Section 1.3, extensive simulations made with B2-EIRENE code show that the principal
parameter for the scaling is the neutral gas pressure in the divertor [50, 66, 68, 69]. Here
it is represented by the average pressure at the edge of the Private Flux Region.

Four series of calculations with different models were performed for the ITER set up
described in Section 1.3. The gas puffing rate was varied to obtain the pressure scans.
The results are shown in Figures 5.1- 5.5. The first series was calculated with the old
EIRENE 1996 model (calculations made by A. Kukushkin, ITER IT, Garching). It is shown
in blue dashed lines. In the second series the Neutral-Neutral Collisions (NNC), Chapter 2,
were added (green line with triangles). Series number three is the series with NNC and
improved Molecular Kinetics (MK), Chapter 3, which is the standard model for ITER at
the moment [50]. It is shown in red solid lines with diamonds. Finally, the photon trans-
port coupled with CRM, Chapter 4, was added to this standard model: black solid lines
with squares. In addition, the two points with totally opaque rates (solid black points)
and the point obtained with refined grid (red circle) are shown in the figures as well, see
Section 4.3.

The parameteres of the effectiveness of impurity pumping are shown in Figure 5.1. The
effective charge at the separatrix, Figure 5.1a, does not change much for the different
models. It is somewhat higher than the limit 1.6 (see Section 1.3) but does not exceed 2.
The separatrix concentration of He, Figure 5.1b, becomes somewhat higher for the model
with full molecular kinetics. But it still can be pushed well below the constrain 6 % for
the high neutral pressures, Figure 5.1b. The radiation opacity decreases this concentra-
tion for the lower densities as well, possibly because of the high divertor densities, see
Figures 4.7, 4.9, Section 4.3.

The peak incident heat flux density for the inner and outer targets is shown in Fig-
ures 5.2. Adding the NNC and then improved MK increases those peaks for the same
neutral pressure compared to the old model. This can be also described as a shift of the
scalings towards higher pressure. The shift can be explained by the fact that in the new
model the temperature of molecules is much higher. Therefore, the same neutral pressure
is achieved for the lower neutral density. A similar but less pronounced shift can be seen
in Figure 5.1b as well. The increase of the neutral pressure reduces the heat flux. But
even for the pressures almost twice as high as before (for the old model) the peak outer
heat flux density is a factor of 2 higher than in the the old model: 4 MW/m2 instead of
2 MW/m2. This is still below the allowed steady-state limit 10 MW/m2. The new model
shows also some increase of the assimetry in the power loads between the inner and outer
targets. The radiation opacity does not change the target heat loads at all.

The increase of the the peak heat flux density is related mainly to the higher peaking
of the profiles of the plasma parameters in front of the targets, see Section 3.3.1. The total
radiated power in all the considered cases is 60-70 MW. It is lower for lower pressures
and its dependence on the used model is weak. This parameter (radiated power) is in fact
an input parameter of the modelling because it depends mainly on the carbon sputtering
yield which is specified externally (by the modeller).

The shift towards the higher pressures can be also clearly seen in Figure 5.3a which
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Figure 5.1: Effectiveness of impurity pumping in ITER. Blue dashed line is the calculations
with EIRENE 1996, green line (triangles) is the calculations with NNC, red line (diamonds)
is the calculations with NNC and improved MK and the black line (squares) is the series
with NNC, MK and the radiation opacity
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Figure 5.2: Peak target heat flux density. See caption of Figure 5.1

shows the dependence of the divertor neutral pressure on the gas puffing rate. The sepa-
ratrix electron density or the density at the Core-Edge interface is usually specified in the
SOL modelling as the boundary condition. In this work it was not fixed but was obtained
in the calculations. The result is shown in Figure 5.3b. This density is approximately the
same for the model with EIRENE 1996 and for the new model. It varies in a relatively
narrow range between 2.4 · 1019 m−3 and 2.8 · 1019 m−3.

Some scalings of the target plasma parameters are shown in Figures 5.4, 5.5. For
both targets the maximum electron density and temperature show “detachment-like” be-
haviour: they decrease when the gas pressure (or the separatrix electron density) in-
creases. This indicates at least the partial detachment for both targets. With NNC added
to the model, the densityes increase because more neutrals are retained near the target
(higher ionization sources). Adding improved MK decreases the target density because, as
shown in Section 3.3.1, Figures 3.11, the density does not increase monotonically towards
the target any more. It forms a maximum away from the target and then drops. This can
be associated with the extra momentum loss due to elastic collisions of molecules with
ions. Finally, the radiation opacity leads to the increase of density. This effect was dis-
cussed in Section 4.3. The behaviour of the target temperature is more monotonic: it
reduces with each new added model feature, Figure 5.5. The point calculated with the
refined grid does not deviate much from the results of the reference model (coarse grid) for
the engineering output parameters, Figures 5.1- 5.3. But some deviation can be seen for
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Figure 5.3: Parameters related to particle balance. See caption of Figure 5.1

the calculated plasma parameters, Figures 5.4, 5.5.
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Figure 5.4: Maximum electron density in front of the inner and outer target. See caption
of Figure 5.1



100 Chapter 5. Impact on the ITER modelling

4 6 8 10 12 14 16
0

2

4

6

8

10

12

In
ne

r 
E

le
ct

ro
n 

T
em

pe
ra

tu
re

 [e
V

]  
   

   
   

  

Divertor Neutral Pressure, Pa

(a) Inner Target

4 6 8 10 12 14 16
10

15

20

25

O
ut

er
 E

le
ct

ro
n 

T
em

pe
ra

tu
re

 [e
V

]  
   

   
   

  

Divertor Neutral Pressure, Pa

(b) Outer Target

Figure 5.5: Maximum electron temperature in front of the inner and outer target. See
caption of Figure 5.1



Chapter 6

First experimental validation for
JET

6.1 The experimental and model set-up

In this chapter the first confronting of the SOLPS4.2 package with experiment is presented.
The benchmarking was done for JET (Culham, UK). It is a large tokamak with a major
radius of about 3 m and with divertor magnetic configuration similar to ITER. The details
on the device relevant for SOL modelling will be given throughout the text below. The
series of shots #58353-#58357 was chosen for this study. These are the shots with plasma
current 3 MA (toroidal field 3 Tesla) and relatively high line averaged density ≈ 8 · 1019 m−3.
Divertor structure is Mk2GB-SR with carbon targets. The magnetic equilibrium is the
so called Diagnostic Optimised Configuration with Low X-point (DOC-L), see Figure 6.1.
NBI heating power is 14..15 MW, gas puffing through inner divertor (GIM11), Figure 6.1b.
The forward direction of the magnetic field (B × ∇B drift is directed downwards). A similar
configuration was considered in [20].

The first shot #58353 with gas puffing rate S pu f f = 2 · 1022 s−1 was an H-mode. Then
S pu f f was increased to 4 · 1022 s−1 and an L-mode was obtained in the shot #58354. The
shots #58355 and #58356 were similar H-mode shots with S pu f f = 3 · 1022 s−1. The shot
#58357 was an H-mode with lower density (S pu f f = 1022 s−1). Type-I ELMs took place in all
the H-mode shots in question. ELM frequency 10..15 Hz. The study was made for a quasi
steady-state period of the discharges between 57 sec and 61 sec (between 57 and 59.5 for
#58355).

Exactly the same code and the same model as for ITER (but without helium) were used,
including neutral-neutral collisions and photon opacity. The only difference was that
the neutral-neutral collisions for carbon atoms (all possible combinations, s0 = 1010, see
Section 2.4, Table 2.1) were added. The grid was generated for the magnetic equilibrium
of the shot #58355, time instant 60 sec. The equilibrium is reconstructed with EFIT
code (routine diagnostic at JET). Identical grid, shown in Figure 6.1b, was used for the
all shots. As in the case of ITER, it comprises a quasi-orthogonal grid for B2 and an
additional triangular grid in the “plasma free” region. The model plasma consists of D+ and
the 6 charge states of C. The anomalous transport coefficients were specified according
to the previous modelling experience [20, 129, 130]: diffusion coefficient D⊥ = 0.5 m2/s,
temperature diffusivity χe

⊥ = χ
i
⊥ = 1 m2/s. The coefficients were fixed for the all modelling

cases. All the results shown below were obtained after extra “smoothing runs” of B2-
EIRENE (which followed each ”main” run): 1000 steps with time step 10−6 sec and 100
sec for EIRENE (approximately 10.000 histories for neutrals) to reduce the Monte-Carlo
noises. Some noise still can be see, especially on the temperature profiles. The reason is
partly the complicated shape of the B2 grid at the targets, Figure 6.1b.

The modelling in this work is fully steady-state. Therefore, the ELMs have to by elim-
inated from the analysis. The approach similar to that used in [131] was applied. The
power flux from the core PS OL was reduced by the estimated averaged power of ELMs PELM .
It was assumed that in this case the simulations correspond to the inter-ELM period. The
ELM peaks were removed from the all experimental signals.
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(a) (b)

Figure 6.1: a) General view of the vacuum chamber and magnetic configuration with lines
of sight for some diagnostics. b) The grid and structure for numerical simulations

The algorithm of removing ELMs works as following. On the first step the mean square

average
√

S 2 and the time variance var(S ) of the signal S are calculated:

√

S 2 =

√

√

∫ tmax

tmin
S 2dt

tmax − tmin

; var(S ) =

√

√

∫ tmax

tmin
(S − S )2dt

tmax − tmin

(6.1)

After that all data points S i for which:

|S i −
√

S 2| > A · var(S ) (6.2)

are taken out. The routine is repeated for the remaining points. The iterations continue
until no points which satisfy the condition (6.2) are left. The parameter A should be small
enough to ensure good filtering of pikes and at the same time not too small to ensure that
a statistically significant amount of points will be left after the processing. It was found
empirically that A = 1.5 provides good filtering and works sufficiently reliable.

This algorithm is heuristic and has no solid theoretical basis. In fact it looks for the
value around which most of the points are concentrated. By visual analysis it was found
that for most of the signals this method gives reasonable “inter-ELM” values. It effectively
removes not only the ELM peaks but also the traces of arcing for Langmuir Probes and
the post-ELM deeps for Hα radiation. Some examples are shown in Figure 6.2. The raw
signals are shown in blue and the red horizontal line shows the obtained inter-ELM level.
For some signals, e.g. particle flux measured by the Pressure Gauge, this technique
shows obviously overestimated values, Figure 6.2e. In the case of the data without strong
peaks the average level can be slightly (≈10 %) underestimated, Figure 6.2f. The quality
of processing for the all signals was controlled visually. The values obtained from the
Langmuir probes for #58354 for the inner target were cross-checked with smoothing which
was made independently by S. Jachmich.

The data acquisition and processing is performed by the set of MATLAB scripts in-
stalled on JAC (JET Analysis Cluster). Those scripts use CODAS MATLAB interface (CO-
DAS=Control and Data Acquisition Systems) [83].

The SOL input power PS OL for the modelling was calculated as

PS OL = PNBI + Pohm − Pcore
rad − PELM

Here PNBI is the NBI heating power, Pohm is the ohmic heating power (it is an order of
magnitude lower than PNBI ), Pcore

rad
is the core radiation measured by the KB4 bolometry
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Figure 6.2: Examples of the calculated average signals with removed ELMs. Figures (e)
and (f) show negative examples when the smoothing technique does not work
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system (vertical view), PELM is the average power of ELMs. This latter was estimated as the
time average of the time derivative of the diamagnetic energy (signal MG3/WPD) taking
into account only the negative part (the energy lost by plasma):

PELM =
1

te − ts

∫ te

ts

∣

∣

∣

∣

∣

d(MG3/WPD)

dt
< 0

∣

∣

∣

∣

∣

dt

The time interval for averaging was from ts=57 sec to te=59.5 sec for all shots because for
t>59.5 sec too strong oscillations in the MG3/WPD signal were found (indicating possible
problems with measurements or data processing?). For the specified time interval the
difference between integrals over the negative and the positive derivatives is less than 5 %
(consistency check). PELM estimated in this way takes 20..24 % of the total input power
Pinp = PNBI + Pohm. The data published elsewhere show somewhat higher figures [134, 135,
136]. If the technique which is used here is applied to the shots from those publications,
then the obtained PELM is up to 30 % lower than the published values. The estimated power
radiated in ELMs Prad

ELM
takes 45-75 % of the ELM power which backs the consistency of

the data processing. The Prad
ELM

is calculated as the difference between the unsmoothed and
smoothed total radiation measured by bolometers (DDA BOL4/TOPI).The conclusion may
be that the technique which is used in this work gives a reasonable estimate of PELM but
should be used carefully.

The way of density control was similar to that used for ITER modelling. The density
at the core boundary (at the separatrix) was not fixed but controlled via the neutral pres-
sure in the divertor. A small particle influx from the core was specified S core = 1021 s−1

to compensate the neutral influx to the core, to take into account the NBI flux and for
the numerical stability. In a real device in addition to “intentional” pumping due to cryo-
pumps the wall can absorb a significant amount of hydrogen. To take into account those
two kinds of pumping the two albedo coefficients were introduced: Ap on the entrance to
the cryo-pump slots, Figure 6.1b and Aw on all the other surfaces except targets.

The albedo Ap and Aw were adjusted to match the septum neutral flux Fn = 5.8 ·
1022 m−2/s measured by the Pressure Gauge PG23, see Figure 6.1b. This ionization pres-
sure gauge [132] measures the density of molecules inside itself. This density depends
linearly on the incoming particle flux (measured in equivalent molecules). The accuracy of
PG measurements is ±20 % for L-mode in case of good calibration. It can be significantly
perturbed by ELMs [133]. Therefore, the adjustment was made only for the L-mode shot
#58354 and the same values of Ap and Aw were used for all modelling cases. The ratio
between Ap and Aw was taken to keep the ratio of wall pumping to cryo-pump pumping ap-
proximately 2:1. This value was found in [137] for the similar JET shots. The gas puffing
rate in the model was the same as in the experiments: S pu f f = 1..4 · 1022 s−1. The possibility
of wall outgasing was not considered.

The carbon sputtering yield Ychem was adjusted to match the divertor and X-point radia-
tion Prad measured by the bolometry KB4. It was assumed that the all surfaces are covered
by carbon. Therefore the total radiation Prad is in fact an input parameter. This assump-
tion is more or less arbitrary but the model for carbon which is used at the moment is
rather primitive anyway (a constant sputtering yield, no molecules, perfect sticking). The
obtained Ychem = 0.45 % for L-mode and Ychem = 0.7 % for H-mode are relatively low. This
could be due to reduction of Ychem for high incident fluxes [63].

The input data for all the modelling cases and corresponding experimental shots are
summarised in Table 6.1. The match of the radiation power Prad is relatively good (the
difference is less than 10 %) for all the cases except #58357. The measured control neutral
flux Fn was matched well only for the shot #58354. For H-mode shots the discrepancy can
be a factor 2..3, but it is not clear how reliable are the PG data in the presence of ELMs.
For this diagnostics the corresponding figures for the H-mode were taken approximately
from the plots, because the smoothing algorithm described above clearly failed to find the
inter-ELM level.

The diagnostic signals were taken from the JET CODAS database. The list of the all
signals used in this work is shown in Table 6.2. The last column shows the corresponding
markers in the databases (DDA, Diagnostic Data Area). The experimental data which were
compared to the calculations include: midplane electron density measured by Li-beam
charge-exchange spectroscopy Ky63; divertor Langmuir Probes KY4D; Hα spectroscopy
KS3; the reconstruction of the incident target heat flux base on the infrared (IR) cameras
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measurements (KL3) [134]; the tomographic reconstruction of the total radiated power
(bolometers KB1). The lines of sight for Ky63 and KS3 are shown in Figure 6.1a. The Ky63
data including error bars were taken from the RADISP analysis application. In analysing
the mid-plane profiles it has to be taken into account, that the error of the reconstruction
of magnetic equilibrium (position of separatrix) can reach ±1 cm.

Table 6.1: Input data for modelling cases

Shot #58357 #58353 #58355, #58356 #58354

S pu f f , s−1 1 · 1022 2 · 1022 3 · 1022 4 · 1022

Pinp, MW 15.9 16.2 14.5, 16.3 14.6

Pcore
rad

, MW 1.9 1.9 1.5, 1.8 0.9

PELM , MW 3.8 3.6 2.9 L-mode

Prad
ELM

, MW 2.2 2.7 1.3,1.9 L-mode

PS OL, MW (model) 10 10 10 14

Fn, m−2/s ≈ 3.0 · 1022 ∗ ≈ 3.0 · 1022 ∗ ≈ 4.5..5.0 · 1022 ∗ 5.8 · 1022

Ap, % 3.2 3.2 3.2 3.2

Aw, % 1.4 1.4 1.4 1.4

Fn, m−2/s (model) 1.5 · 1022 2.8 · 1022 4.2 · 1022 5.6 · 1022

Prad, MW 4.0 3.8 4.5, 4.4 4.7

Ychem, % 0.7 0.7 0.7 0.45

Prad, MW (model) 2.9 3.8 4.3 5.0
∗ approximate “inter-ELM” values from the time tracing plots

Unfortunately, signals from the high resolution CCD cameras KL2 were not available for
the studied discharges. The low resolution spectroscopy KS3 has only 3 points in the inner
divertor and 3 points in the outer divertor. The error of the spectroscopic measurements
(for the total photon flux of the selected line) is estimated as ±10 % [140].

Table 6.2: Diagnostic signals

Quantity Diagnostic Signal

Divertor neutral flux Pressure Gauges KY5 PG23/FLUX

Gas Puffing Rate - GASM/G11R

Total input power - MG3/YTO

Coupled NBI power - NBIP/GTT

Ohmic heating power Magnetic diagnostic KC1D MG2/YHO

Core radiation Bolometry KB4 BOL4/TOPU

Divertor and X-point radiation Bolometry KB4 BOL4/TXPN

Diamagnetic Energy (fast) Magnetic diagnostic KC1D MG3/WPD

Upstream density Li-beam spectroscopy KY63 RADISPLAY

Target ion flux Langmuir Probes KY4D KY4D/JSAT

Target electron temperature Langmuir Probes KY4D KY4D/TE

Divertor H-alpha Spectroscopy KS3 EDG7/DAPR

Incident Heat Flux Infrared Cameras KL3 KL3J/J3D

Deposited Energy Calorimetry KD1D DVTC/ETJ

Total Radiation (tomography) Bolometry KB1 -

The Langmuir Probes (LP) measure the target incident ion flux Ii and the electron tem-
perature Te. Ii is calculated directly as the probe ion saturation current divided by wetted
area. Te is restored from the I-U characteristics. It is well known, that LP always tend to
overestimate Te if it is lower than 3..5 eV [139]. This was the reason, why Ii but not the
electron density ne was chosen for the comparison. The calculation of ne involves the tem-
perature and is therefore unreliable for the low temperature region. 5 LP were available
on the inner target and 6 LP on the outer target. The error of LP measurements can reach
±30 % [139]. Like in the case of the mid-plane profile, the error of the reconstruction of
magnetic equilibrium can be 1-2 cm. An analysis of the profiles obtained during a verti-
cal shift of the strike points in the time intervals 50-52 sec and 62-65 sec was made by
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S. Jachmich. It shows that the real position of the strike points is 1..1.5 cm lower than
obtained from the magnetic reconstruction (for both targets).

IR cameras KL3 allow to restore the surface temperature by measuring the emitted in-
frared radiation. This temperature is then used to reconstruct the incident heat flux [134].
The KL3 measurements were available for all the studied shots except #58357. The total
heat fluxes on the inner and outer targets were cross-checked with the divertor calorime-
try KD1D [141], Table 6.3. In this table “inner” corresponds to the tiles 1 and 3 (inner
target) and “outer” stands for the tiles 6 and 7 (outer target). The average power deposited
on each tile was estimated as the deposited energy (DDA DVTC/ETJ, MJ) divided by the
duration of the NBI heating (duration of NBIP/GTT signal). For KL3 the time averaged
signals KL3I/GnSP (where ’n’ is the index of the tile) were used. Table 6.3 shows that
whereas the mismatch of two diagnostics for the inner target is 30 % and less, for the
outer target KL3 gives a factor 2 higher power for #58355, #58356 and even a factor 3
higher for #58354. In the latter case the KL3 signal shows a constant increase of the heat
flux density which finally reaches unrealistic values ≈100 MW/m2. This indicates possible
problems with KL3 data for the outer target. The possibility that the reconstructed outer
heat flux could be overestimated should be kept in mind when comparing this diagnos-
tics with the modelling. The divertor calorimetry allows also to estimate the global power
balance: the fraction of the total input power which lands at each divertor target.

Table 6.3: Cross check between KL3 and KD1D diagnostics

Shot Inner Power, MW Outer Power, MW
KL3 KD1D KL3/KD1D KL3 KD1D KL3/KD1D

58353 1.8 2.3 0.78 6.7 5.8 1.16

58355 2.7 2.3 1.17 9.8 5.0 1.96

58356 2.8 2.4 1.17 11.0 5.5 2.0

58354 3.0 2.3 1.30 20.0 6.3 3.18

The error bars shown on the plots below were calculated as
√

var(S )2 + ∆2 where ∆ is the
prescribed experimental error (instrumental error) and var(S )2 is the variance of the signal,
Formula 6.1 (on the last iteration of smoothing).

6.2 Comparison with experiment

The upstream density profile (mapped along the magnetic surfaces to the outer midplane)
is shown in Figure 6.3. The experimental profiles were shifted by ≤1.0 cm to account
for uncertainties in the reconstructed magnetic equilibrium. Applying such a shift, it is
always possible to get a good match outside the separatrix. Near and inside the separatrix
the discrepancy is large because no attempts were made to emulate the transport barrier
in the modelling. Note, that for the density control procedure applied, the absence of the
perfect match of the upstream profile is not crucial.

In Figures 6.4-6.7 the incident target ion flux Ii and electron temperature Te are com-
pared with LP measurements. The profiles are mapped to the outer midplane (the same
as in Figure 6.3). The experimental points were shifted vertically by -1.5 cm for the outer
target and by -1.0 cm for the inner target to account for the errors in the magnetic re-
construction. Applying this shift gives a good agreement for the outer Ii for all shots,
Figure 6.5. Inner Ii profile is relatively well reproduced for the H-mode shots, Figures 6.5a-
6.5c, but the drop of Ii above the separatrix in #58354 is not reproduced in the modelling,
Figure 6.5d. Calculated Te above the separatrix is always a factor 1.5-2 larger than the
measured one, Figures 6.6, 6.7. The largest difference is found for the inner target for
#58354, Figure 6.6d. It is very likely that the LP TR06 and S31C overestimate the temper-
ature because it falls below 3 eV under the separatrix. The extremely high temperatures
(> 20 eV) shown by S32B could be caused by the direct losses of the fast (suprathermal)
particles in the vicinity of separatrix.

The comparison of the Hα signal integrated over the lines of sight (see KS3 in Fig-
ure 6.1a) is shown in Figure 6.8. There are in fact only 3 points in the inner divertor
which allow meaningful comparison because the data on the outer side do not touch the
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Figure 6.3: Upstream density profile (experimental profiles were shifted outwards)
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(d)

Figure 6.4: Ion flux density incident on the inner target
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(d)

Figure 6.5: Ion flux density incident on the inner target
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(d)

Figure 6.6: Electron temperature in front of the inner target
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(d)

Figure 6.7: Electron temperature in front of the outer target

target region at all. The agreement is relatively good for the H-mode shots, Figures 6.8a-
6.8d. For #58354 the calculated maximum is a factor 2 lower than the measured one,
Figure 6.8d.

Figures 6.9, 6.10 show the comparison of the reconstructed and calculated incident
heat flux. The agreement for the outer target looks good. One should recall, however, that
the ”measured (reconstructed) flux could be overestimated, see Section 6.1, Table 6.3.
The reconstructed heat flux for the outer target for #58354 is not shown because it was
obviously overestimated, see Table 6.3. For the inner target the calculated maximum is
a factor 1.5-2.5 higher than the measured one. The calculated profiles are more peaked.
Similar results: good agreement for the outer target and a factor 2 disagreement for the
inner were shown in [20].

The asymmetry of the power distribution between two divertors Pout/Pin and the frac-
tion of the total power which goes to the targets Ptarg/Pinp are shown in Table 6.4. The
experimental figures are obtained using divertor calorimetry. The measured asymmetry of
2.2..2.7 is somewhat higher than the calculated one (1.6..1.8). Recent studies show that
this quantity can be better reproduced by the modelling if the parallel classical drifts are
taken into account [129, 143, 144]. The measured Ptarg/Pinp (≈<60 %) is somewhat lower
than ≈>70 % obtained in the simulations. No significant difference is seen for Pout/Pin and
Ptarg/Pinp for L- and H-mode shots.

Table 6.4: Power distribution

Shot Pout/Pin Ptarg/Pinp, %
Experiment Model Experiment Model

58357 2.3 1.9 56 83

58353 2.5 1.8 57 73

58355 2.2 1.6 57 72
58356 2.3 55

58354 2.7 1.8 63 73

Examining the experimental data shown in Figures 6.4- 6.10 one can see that the dif-
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(a) (b)

(c) (d)

Figure 6.8: Line integrated Hα radiation (lines of sight are shown in Figure 6.1a)
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(c)

Figure 6.9: Heat flux density incident on the inner target
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Figure 6.10: Heat flux density incident on the outer target
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Figure 6.11: Measured and calculated distribution of the radiated power (inter ELM) for
the shot #58353 (Low Density)
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Figure 6.12: Measured and calculated distribution of the radiated power for the shot
#58354 (High Density)

ference between the H-mode shots with different gas puffing rate is very weak (subfigures
a,b,c). A similar insensitivity is found in the modelling as well. Clear difference is seen
between those shots and the L-mode shot #58354 (to compare subfigures a,b,c with d).
In the modelling the “L-mode” and “H-mode” cases are differ only in input power PS OL,
Table 6.1. The measured outer Ii is higher for #58354, Figure 6.5d, and this increase
is also seen in the modelling. The temperature above the separatrix increases as well,
Figure 6.7d, but in the modelling it remains nearly on the same level.

The most significant discrepancy can be seen for the inner target. The experimental
data show signs of detachment at the upper divertor tile. The ion flux drops several times,
Figure 6.4d (compare with sub-figures a,b,c). The temperature also decreases by almost
a factor 2, Figure 6.6d. At the same time, the intensity of the Hα radiation increases,
Figure 6.8d. All these three features are well known experimental characteristics of de-
tachment [14, 16, 135]. The simulations do not reproduce them: the modelling results
which correspond to #58354 are largely similar to those for the cases with lower density.

The difference in the results which is seen between #58354 and the H-mode cases is
predominantly due to the different power input rather than the different gas puffing rate.
To show this two extra cases were considered for #58354: with S pu f f = 6 · 1022 s−1 and with
S pu f f = 3 · 1022 s−1. The results are shown in Figures 6.8d, 6.9c marked as “model, HD” and
“model, LD” respectively. The difference is small. The difference for Ii and Te (not shown)
is even smaller.

The comparison of the spatial distributions of the measured and calculated total radi-
ated power is shown in Figures 6.11, 6.12. The shown experimental distribution is the
tomographic reconstruction of the KB1 bolometry measurements made by A. Huber. This
reconstruction was made for two time instants inbetween ELMs (in case of H-mode). The
reconstructed distribution shows that the area of the dominant radiation is localised be-
neath the X-point and on the inner side in front of the upper divertor tile, Figure 6.11.
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In the high density case the light blob reaches the target tile, Figure 6.12. The modelling
shows completely different picture: concentration of the radiated power along the separa-
trix with strong peaks near the strike points. However, the old KB1 diagnostic had very
bad resolution and the error in the reconstruction can be very large, see e.g. [142].

Some effects which are not included in the model so far but can in principle be strong
enough to help to explain the observed discrepancies with experiment. The explicit trans-
port of vibrational excitations of molecules can significantly change molecular kinetics [43]
and provide an extra channel for the cross-field energy transport [111]. Including classical
drifts [129, 143, 144] and ballooning-like radial dependence for the transport coefficients
(∼ 1/r) could substantially change the in/out asymmetry of the particle and power flows.
Finally, the neutral gas leakage from the sub-divertor volume can in some cases produce
a strong effects as well [51, 89, 90].

6.3 Comparison of different models

To study the influence of the individual new features in the model on the self-consistent
solution, a series of calculations was performed with stepwise updates of the model. The
corresponding modelling cases are described in Table 6.5. Model 1 corresponds to the
initial version EIRENE 1996. In model 2 the improved molecular chemistry, Section 3.2,
was added. Model 3 is the model 2 with added elastic collisions D2 + D+, Section 3.1. The
neutral-neutral collisions (NNC), Chapter 2, were added in Model 4. Model 5 corresponds
to the reference case including the photon opacity, Chapter 4. This latter model was used
in the all calculations described above. The model 3 is the same as the model of EIRENE
1999 (the hydrogen part) which was used for example by M. Wishmeier [73].

The calculated target profiles of the electron temperature and density and the incident
heat flux are compared in Figures 6.13, 6.14. The strongest effect is seen after the transi-
tion from Model 2 to Model 3. That is, after including the elastic collisions D2 +D+. For the
electron temperature in the inner divertor the strongest effect is seen due to the updated
molecular chemistry (transition from Model 1 to Model 2). The non-linear effects: NNC
and photon opacity, yield only a very weak modification. The most pronounced effect of
the NNC is a higher molecule temperature near the septum plate: 0.1..0.15 eV instead of
the wall temperature of 0.05 eV.

Table 6.5: Modelling cases with stepwise update from EIRENE 1996 to the current version

Marker Description Fn, m−2/s Prad, MW

1 EIRENE 1996, same input as #58354, Table 6.1 7.1 · 1022 8.1

2 Model 1 plus improved Molecular Chemistry 7.0 · 1022 8.1

3 Model 2 plus elastic collisions D2 + D+ 6 · 1022 5.9

4 Model 3 plus neutral-neutral collisions 5.5 · 1022 5.1

5 Model 4 plus photon opacity (reference model) see Table 6.1

HD model 1 adjusted with #58354 case, Table 6.1
Ap = 4.2 %, Aw = 1.7 %, Ychem = 0.15 % 5.9 · 1022 5.3

LD model 1 adjusted with #58353 case, Table 6.1
Ap = 4.2 %, Aw = 1.7 %, Ychem = 0.25 % 2.9 · 1022 3.8

The analysis shown above aimed at finding the model feature which produces the
strongest effect (a sensitivity analysis). It was not intended to provide a physically mean-
ingful comparison of the old and the new model because the parameters Ap, Aw and Ychem

were fixed, hence Prad and Fn could be different, Table 6.5. For a physically correct com-
parison, the same Prad and Fn have to be matched for the old and new model. This was
done for the two modelling cases: one corresponded to #58353 and another to #58354.
They will be referred to below as “the low density” (LP) and “the high density” (HD) cases
respectively, Table 6.5. The results of those calculations are shown in Figures 6.3- 6.10c,d
with dashed lines (marked as “EIRENE 1996”).

The calculations with EIRENE 1996 show broader density profiles, Figure 6.4 6.5c,d,
and Te profiles shifted upwards, Figure 6.6, 6.7c,d. The difference of the maximum heat
flux density can reach a factor of 2, Figure 6.10c. The difference between the two models
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Figure 6.13: Parameters in front of the inner target: comparison of different models,
Table 6.5
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Figure 6.14: Parameters in front of the outer target: comparison of different models,
Table 6.5
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becomes smaller for lower density but does not vanish. The 2D distributions of the plasma
parameters obtained with the two models are shown in Appendix E. The most striking dif-
ference is seen in the distribution of the atom density, Figures E.5, E.12 and the molecule
density, Figures E.3, E.10. This difference is mainly due to the elastic collisions of the
molecules with ions. The calculations made with EIRENE 1996 show that the ionization
front detaches from the inner target, Figure E.5a, whereas in the new model it is attached,
Figure E.5b.

Comparing with the available experimental data it is difficult to say which model (old
or new) yields better agreement. The new model gives a better match for the incident ion
flux, Figures 6.4, 6.4c,d. At the same time, the target temperature shown by the old model
is closer to the experiment, Figures 6.6, 6.6c,d. Both models show similar Hα profiles for
the low density case, Figures 6.8b, and both of them failed to reproduce the measurements
for the high density case, Figures 6.8d. The calculated incident heat flux is similar for both
models for the low density case, Figures 6.9a, 6.10a. For the high density case the inner
target profile obtained with EIRENE 1996 is close to the measured one. Note, that for
the old model the correct total radiated power was achieved with only Ychem=0.15-0.25 %,
Table 6.5, which can be partly explained by higher (by 30-50 %) total incident ion and
atom flux. The fact that the old model provides in some cases a better match for some
parameters does not mean that it is more correct. The general philosophy is that all
effects, which are known to be operative, have to be included in the modelling. The fact
that sometimes it brings the results further away from experiment can not serve as the
excuse to neglect those effects, due to the large number of remaining other uncertainties
in the divertor plasma modelling.

The radiation opacity is the only effect which was included in the JET simulations but
is currently not included (by default) in the standard ITER model [50], despite its avail-
ability. The global opacity for Lyα line is found to be close to unity, see Table 6.6. Here
“global opacity” means the total number of absorbed photons divided by the total num-
ber of emitted photons of the specific line. This conclusion coincides with experimental
observations [115]. The regions near the strike points where the atom density nD is large
(nD >≈ 1019 m−3) and the Private Flux Region (PFR) (nD ≈ 1018 m−3) are opaque for the Lyα
radiation, Figure 6.15a. But distinct from the ITER calculations, Section 4.3, the overall
effect on the divertor performance is weak. The domain where ionization due to the photo
excited levels can be comparable to, or larger than, the “ordinary” (optically thin) ionization
occupies only a relatively small part of the ionization region, Figures 6.15b, 6.15c. It is
the main mechanism of ionization in PFR but even for the case with the highest density its
contribution comprises only 15 % of the total ionization source (22 % in the inner divertor
alone). This is illustrated also in Figure E.7, Appendix E. As a result, the influence of the
radiation opacity on the plasma parameters is weak. The key difference compared to ITER
conditions is believed to be the higher temperature in the region of interest, which reduces
the effect of extra ionization via photo-excited states. This can be seen from Figure 4.3,
Section 4.2.2. For temperatures higher than 2 eV the recombination is very weak, there-
fore the effective ionization rate is represented almost purely by the opaque ionization S op,
see Equation 4.26, which is not much larger than the ordinary “optically thin” rate.

Table 6.6: Photon opacity effects

#58354 #58355,6 #58353 #58357

Global Opacity, Lyα, % 67 66 58 44

Global Opacity, Lyβ, % 30 28 20 12
Photo-induced Ioniz.

total Ioniz.
, % 15 15 11 7

For the JET conditions the Molecular Activated Recombination (MAR) [109] can be even
stronger than common 3-body recombination. For #58354 the total calculated ion sink
due to common recombination is 1.8 · 1022 s−1 and the sink due to MAR is 2.0 · 1022 s−1. For
lower density shot #58353 the corresponding figures are 0.4 ·1021 s−1 and 1.4 ·1022 s−1 respec-
tively. The maximum total rate of MAR reaches 4 · 1018 cm−3/s for #58354 (the same value
as for the 3-body recombination). The key difference compared to ITER, Section 3.3.2, is
the lower density which reduces the ordinary recombination but is favourable for MAR.
At the same time for the studied JET shots both MAR and 3-body recombination are not
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important at all because they are at least an order of magnitude smaller than the recycling
sources.



116 Chapter 6. First experimental validation for JET



Chapter 7

Conclusions

In this work a new version of the coupled B2-EIRENE code packages SOLPS4.2 has been
mounted and tested. The package comprises a 2D multispecies plasma fluid transport
code B2.4 [25, 28] and a Monte-Carlo neutral transport code EIRENE [26, 27]. This version
of the B2 code is adjusted specifically for meeting the demands of modelling the reactor
scale ITER divertor plasma. In the new configuration the old version of EIRENE code from
the year 1996 was replaced by the most recent version. This upgrade has made the model
more relevant for the conditions of relatively cold (several eV) and dense (≈1021 m3) large
divertor plasmas, i.e. for ITER.

The previous isolated upgrades of the EIRENE code have been combined together
and implemented in the self-consistent (between plasma, neutral gas and radiation field)
B2-EIRENE modelling. These isolated upgrades include the neutral-neutral collisions
(C. May [38, 39]) and the model for the line radiation transport (S. Wiesen [45, 46, 47],
P. Börner [48, 49]), coupled to atomic kinetics. The up to-date model for the hydro-
gen molecular chemistry is based on the Collision-Radiative Model of Sawada and Fu-
jimoto [40, 41] for electron impact processes with H2 molecules and H+

2
molecular ions,

which was revised and updated by D. Reiter and P. Greenland. It takes into account
electronically and, in some cases, vibrationally excited states [42, 43, 106]. The Molecu-
lar Assisted Recombination (MAR) reaction chain initiated by the ion conversion process
H2 + H+ → H+

2
+ H [109] has been added to the model as well.

The new model also includes elastic collisions of the hydrogen molecules with ions
based on the cross-sections of P. Bachmann and D. Reiter [44]. In frame of the present
work the momentum and energy transfer rates between neutrals and plasma due to elastic
collisions were calculated and applied in the Track Length estimator for the corresponding
sources. Although it did not lead to the improvement of numerical accuracy for the ITER
conditions, comparing Track Length and Collision estimators provides a good numerical
test of the implementation.

To assess the effect of the new model features on the modelling results, three series of
calculations have been made for ITER and one series for JET. The ITER reference model
used in this thesis is the set-up with full carbon wall and 100 MW SOL input power.
The choice of the chemical sputtering yield ensures that 60..70 % of the input power is
radiated.

The strongest effect for the ITER modelling (in terms of the divertor plasma parameters
and the ITER operational scalings) was found to be due to updated molecular reaction
kinetics and neutral-neutral collisions. The obtained effect of MAR for the ITER conditions
is insignificant because of high plasma densities (>> 1020 m−3). The analysis showed that
the molecule-ion elastic collisions were responsible for the strongest modification of the
results. The elastic collisions (together with NNC) heat up the molecules and hinder their
transport away from the divertor targets. The neutral density forms sharp peaks near the
strike points. The plasma momentum sink due to its collisions with neutrals becomes a
factor of 2-3 higher facilitating the onset of detachment.

The upgrades of the computational model result in a higher calculated peak flux density
incident on the divertor targets even for the higher divertor gas pressure. The old model
predicted that this peak can be reduced down to 2 MW/m2 by increasing the neutral
pressure (the gas puffing rate). For the new model this figure is 4 MW/m2 even for a factor

117
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1.5..2 larger average neutral pressure in the divertor.
It is further shown that for ITER conditions the opacity of the hydrogen line radiation

can lead to a significant (a factor of 2) increase of the plasma density in front of the
targets. The maximum density can reach 4..5 · 1021 m−3. The extra ionization via photo-
excited states is compensated mainly by the enhancement of volume recombination: the
calculated recombination sources become larger than the surface recycling sources. At
the same time, the effect of the radiation opacity on the ITER operational parameters, e.g.
on the target peak heat flux density, is weak.

The sensitivity analysis made for the JET case confirmed that the strongest effect of the
new model appears due to the ion-molecule elastic collisions. The effect of the updated
molecular chemistry can be also significant. On the contrary, the impact of the non-linear
effects has found to be insignificant for JET conditions. The divertor plasma opacity with
respect to the line radiation is high (up to 70 % of Lyα is absorbed). However, the extra
photo-induced ionization is concentrated mainly below the separatrix providing no clear
influence on the plasma parameters.

The calculations made for JET were compared with experimental data for 5 shots with
the line average density ≈ 8 · 1019 m−3, forward magnetic field, auxiliary heating power of
14..15 MW and a gas puffing rate of 1..4 · 1022 s−1 in the DOC-L (Diagnostic Optimised
Configuration - Low) magnetic configuration. The following diagnostics were involved in
the comparison: target Langmuir probes (incident ion flux and electron temperature), Li
beam spectroscopy (upstream density), IR-cameras (reconstruction of the target incident
heat flux), divertor calorimetry and divertor Hα spectroscopy. The agreement is relatively
good (within a factor of 2) for the outer tagret, but a significant discrepancy between the
modelling and the experiment is seen in the inner divertor.

The SOLPS4.2 package is installed at the moment on computer systems at IPP, FZ-
Jülich, at the ITER International Team, Garching and on the JET Analysis Cluster, Cul-
ham. It is now used routinely (version without photon opacity) for the ITER divertor mod-
elling, see the recent publications [50, 51, 52].

Further development of the ITER divertor modelling tools will be driven by validation
applications as the one for JET described in this work. Independent of that is it clear that
all of the edge plasma physics elements, which are known to be operative, even if their
experimental identification in tokamaks remains limited, will have to be implemented.
Amongst these are the following features:

• Correct description of the transport of molecular vibrationaly excited states;

• Modification of the BGK algorithm for neutral-neutral collisions to get the correct
Prandtl number: Elipsoidal-BGK, see e.g. [35, 36, 37, 84]);

• Including the hydrocarbon molecules;

• Replacing the old version of B2.4 by the state of the art version from the SOLPS5.0
package [28] which can take into account all kinds of classical drifts, electric currents
at the edge and has improved numerics.
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Appendix A

Technical notes

A.1 Software and hardware

The version of the B2-EIRENE code which was used in this work comprises the B2.4 code
of the ITER IT and the most recent EIRENE version (2003-2004). B2-EIRENE is only the
computational kernel of the package called SOLPS (SOL Plasma Simulation). It includes
also a number of tools for preparing the models and post-processing as well as service
scripts. In frame of this work the almost identical copy of the configuration of ITER IT,
Garching was installed on the computer system of IPP, FZJ. The package which was used
for ITER simulations before 2004 has index SOLPS 4.0. The package, upgraded in frame of
this work got the index SOLPS 4.2. All the software works under operating system Linux
(SuSe Linux 9.0 in case of IPP, FZJ).

For creating the models SOLPS has a graphical (X-window) application DG [76]. It
allows to define the geometry and the parameters of the model (including the properties of
the surfaces, material etc.) in a user friendly “Windows-like” way. It also produces the data
for grid generator. The quasi-orthogonal grid for B2 is generated by the code CARRE [77].
This is a rather robust grid generator for single-null divertor topology. It can also generate
the grid for a double-null geometry but in this case it may work unstably.

The output of the DG code is processed by a driver UINP which produces the input files
for B2 and EIRENE. This driver was updated for the new version of EIRENE. However, the
preparation of the input files for the new version is still not completely automated. The
user has to specify the new atomic physics data manually (or by “copy-paste”).

In the new version of the package B2 and EIRENE work on different grids. The region
between B2 grid and the wall (additional surfaces) is filled by triangular grid generated by
the code TRIA [78]. The B2 grid is divided into triangles and connected with the TRIA-
grid by the driver TRIAGEOM. The process of grid generation is controlled by a Korn Shell
script TRIANG [79]. A similar script is used to operate CARRE.

B2.4 requires the following files to run. Input file “b2.parameters”, CARRE grid file
and database STRAHL (fort.25) which contains atomic data for impurities. The name of
the EIRENE input file is not hardwired, usually “input.eir”. The triangular grid is stored
in three files: fort.33 (coordinates of nodes), fort.34 (table of triangles), fort.35 (table of
neighbours). EIRENE also uses the atomic databases HYDHEL, AMJUEL, METHANE and
PHOTON, a file with parameters for calculating sputtering coefficients SPUTER and TRIM
tables for reflection of fast particles: for example “D on C” for reflection of D on carbon
surface. For a stand alone run (without B2) EIRENE also needs files with B2 grid (fort.30)
and with plasma background (fort.31). They are generated automatically by B2.

During the run B2 periodically stores the status of all its arrays in the file B2SXDR.
Besides that the diagnostic information is stored in B2SDIAG and the information about
the time behaviour in b2time.nc. B2 also produces ASCII files with time tracings of some
variables (printed from subroutines DIAGNO). The time-tracings can be then plotted “on-
line” by the script TRC. EIRENE also stores some data in file ”fort.13”. The data stored
by both codes can then be used to continue the calculation from the point where it was
stopped. Since the amount of data to be stored can exceed hundred megabites it would be
too much load for the system to store them on each time-step (which usually takes less
than one CPU minute). The data are stored periodically (for example every 4 hours). This
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is controlled by the accompanying scripts which run in parallel with the code. In fact they
make periodic back-ups of the whole state of the calculations. All the messages from both
codes are piped into a log-file (usually b2.log).

The basic tool which is used in SOLPS for plotting and data processing is the separate
application B2PLOT [81]. In particular, B2PLOT calculates the radiation loads on the wall.
In addition to B2PLOT there is also a driver TIME DEP which is used to produce extra
time-tracings (using the information stored in file ”b2time.nc”). Special scripts are used
to collect the results from several modelling cases to produce summary plots [80]. An
example of such plots is shown in Section 5. To eliminate the noise produced by the
Monte-Carlo code, the summary data are smoothed over a certain number of last time-
steps (script “last 2d”)

In this work B2PLOT was used only to produce the ASCII text output. All the data-
processing and plotting the 1D plots was performed with MATLAB 14 installed at IPP,
FZJ. 2D colour plots were produced with free application GMSH [82] (version 1.58) using
output of EIRENE tallies into separate files. A driver CNV11 was written to convert the
data between different formats: in particular, between triangular and rectangular grids.

The current version of EIRENE is written in FORTRAN 90/95. The B2.4 and all accom-
panying software (UINPUT, B2PLOT) are written in FORTRAN 77. The compilation was
done with Portland Fortran compiler PGF90. The calculations were mainly performed on
several workstations (INTEL P4 3.2GHz based platform) in IPP FZJ and on JAC (JET Analy-
sis Cluster, Culham UK) using remote access. A number of cases were run by A. Kukuskin
on the facilities of ITER IT. The data acquisition and processing for the JET modelling was
done using a set of specially developed MATLAB scripts and the CODAS MATLAB inter-
face [83] (CODAS=Control and Data Acquisition Systems).

A.2 Some technical information about EIRENE
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Figure A.1: Flow-chart of the cou-
pled B2-EIRENE code

The main subroutine of the code is the subroutine
MCARLO. Subroutine INPUT which is called prior to
MCARLO reads the input file and makes some pre-
calculations. In particular, the collision rates are cal-
culated in each cell of the computational grid. After
the particle sampling the printing routines (OUTEIR)
and the user specified post-processing subroutine
MODUSR can be called.

The relative position of the test particle regard-
ing the grid and surfaces is controlled in subrou-
tines TIMER (standard surfaces, triangular grid) and
TIMEA (additional surfaces). EIRENE has a set of flag
arrays for optimising the geometry module (IGJUM0,
IGJUM1, IGJUM2). In some cases they can help to
increase the performance significantly.

The sources are sampled in subroutine LOCATE.
The truncated Maxwellian distribution for the parti-
cles incident to the wall (1.44) is sampled in subrou-
tine VELOCS. Subroutine SHEATH is used to calcu-
late the sheath acceleration (1.31). The sputtering
is treated in subroutine SPUTER, reflection from the
wall - in subroutine REFLEC.

Subroutine FOLNEUT performs the sampling of the trajectories of the neutral parti-
cles (including photons). The selection of the type of collision and the sampling of the
type of secondary particles is done in subroutine COLLIDE. The estimators are calcu-
lated (updated) in subroutine UPDATE. The sampling of the post-collision velocity for the
charge-exchange and elastic collisions is performed in subroutines VELOCX and VELOEL
respectively.

The flow-chart of the coupled B2-EIRENE code is shown in Figure A.1. As it was men-
tioned in Section 1.1.1 EIRENE is used for calculating the particle, momentum and energy
sources S n, S mu‖ , S e

E
, S i

E
. In turn, B2 provides EIRENE with plasma background: electron
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and ion temperatures Te and Ti, the density of ions nα and their flow velocities Vα. The
main data transfer is performed via two modules: BRAEIR to transfer the data from B2 to
EIRENE and EIRBRA to transfer the data in the opposite direction. In addition, the mod-
ule EIRDIAG transfers some extra diagnostic data to B2. The interfacing subroutine which
processes the data from B2 on EIRENE side is INFCOP. Other subroutines related to the
coupling are: UPTCOP, which updates the estimators of the coupling-specific parameters
(momentum source S mu‖ ); WNEUTRALS, which calculates diagnostic data transferred to B2
and produces the file fort.44 for B2PLOT (see also Appendix A.1); GEOUSR, which aligns
some EIRENE additional surfaces with the corners of B2 grid (to avoid gaps). On the B2
side EIRENE is called in subroutine NEUTRALS via interface EIRSRT. Currently different
versions of the module INFCOP and related subroutines have to be applied for different
grid options. In the coupled code EIRENE is normally used to find the steady state neutral
solution although a time-dependent mode of operation is also possible.

A.3 Implementing BGK in the EIRENE code

The BGK approximation for neutral-neutral collisions was implemented in EIRENE code
by Christof May [38], [39]. To describe the implementation it is convenient to write the
Equation (2.1) in the following form (using the notation νi j =< σv >i j n j):

S tBGK( fi) =

N
∑

j=1

< σv >i j (Ti j)n j ·
[

ni f̂ M
i j (v, r; Ti j, ui j) − fi(v, r)

]

Here f̂ M
i j
= f M

i j
/ni (normalised Maxwellian distribution). For the cross collisions the number

of collisions of species i with j is equal to the number of collisions of species j with i:
νi jni = ν jin j. Each term of this equation describes the scattering of the test particles i

by the background of particles j with density n j. The corresponding collision frequency
is < σv >i j. The test particles emerging after collisions have shifted Maxwellian velocity
distribution f̂ M

i j
.

This nonlinear equation is simulated by EIRENE in an iterative way. On each iteration
EIRENE samples trajectories of test particles taking into account collisions with artificial
BGK background. The parameters of the BGK background are taken from the previous
iteration (see below). Note that in general for cross-collisions f̂ M

i j
, f̂ M

ji
, therefore, the

collisions of species i with j and collisions of species j with i have to be represented by
two different artificial background species. For example, considering D and D2 one in-
troduces artificial species ’D’ to simulate self-collisions of D atoms and artificial species
’DD2’ to simulate collisions of D with D2. For D2 molecules one needs a species ’D2’ for
self collisions and a second species ’D2D’ for collisions of D2 with D. After sampling the
trajectories the parameters of the self-collision terms (background) are calculated using
relations (2.6). The cross-collision temperatures and average velocities are calculated us-
ing the relations (2.14) and (2.16) with α = 1:

ui j =
miui + m ju j

mi + m j

, Ti j = Ti +
2mim j

(

mi + m j

)2

(

T j − Ti

)

+
mim j

3k
(

mi + m j

)2

(

ui − u j

)2

After that EIRENE begins the next iteration. In case of B2-EIRENE the BGK iterations are
combined with the time steps of the B2 code.

For the scoring of neutral trajectories EIRENE has a possibility to add an extra tri-
angular grid in the region between the B2 grid and the wall of the vacuum vessel, see
Section 1.3. The grid is generated by TRIA code [B. Küppers, FZJ] and combined with the
B2 grid by TRIAGEOM driver [P. Börner, FZJ], see also Sections A.1 .

The tests of the BGK approximation implemented in EIRENE are shown in [38] (see
also [39]). Two problems with known analytical or numerical solutions were used: equi-
libration of two gases with different initial temperatures and Couette flow between two
parallel plates (see e.g. [88]). An application conditions of a real tokamak was made for
Alcator-C-Mod [89, 90]. In this case EIRENE was used to simulate the neutral pressure in
the divertor plenum (gas box) with plasma background reconstructed from the experimen-
tal measurements. The first attempt to model it with DEGAS 2 code gave results a factor
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10 lower than the measured pressure 25 mTorr. Including, in particular, neutral-neutral
collisions lead to a calculated pressure 11 mTorr. However, neutral-neutral collisions were
only one among the new features implemented in those calculations. It is difficult also to
say what is responsible for the remaining discrepancy with experiment, especially taking
into account uncertainties in the reconstruction of the plasma background.

A.4 Implementing the Track Length Estimator for trans-

fer rates

A.4.1 Technical description

The standard option in EIRENE is calculating the momentum and energy sources using
the Collisional Estimator (CL). CL calculates directly the momentum and energy trans-
ferred in each collision. The resulting sources are the sums over all collisions. The ap-
proach described in Chapter 3.1 allows to employ the Track Length Estimator (TL). This
could in principle decrease the level of Monte-Carlo noise in the sources in question. How-
ever, the numerical tests made so far have shown no clear evidence of such improvement
(see Section 3.1.8).

For implementation of TL one first has to calculate the functions Rpt(E, T ) and I(1,2)(E, T )

according to formulas (3.36) and (3.39) and to tabulate them. The standard double log-
arithmic parametric dependence (3.22) is used to fit the data. The corresponding fitting
parameters were placed into AMJUEL database [106]: Section H.6 for Rpt(E, T ) and Section
H.9 for I(1,2)(E, T ). The functions Rpt(E, T ) and I(1,2)(E, T ) for H2+H+ collisions are shown in
Figure 3.4.

In the text below, in the names of subroutines and variables the suffix CX corresponds
to the Charge Exchange and the suffix EL to the Elastic Collisions. The same markers
are used in the EIRENE input file in Block 4 “Input Data for Species Specification and
Atomic Physics Module”. The main difference between CX and EL process in EIRENE is
the following. For CX EIRENE assumes that the scattered particles have the velocity dis-
tribution of the incident background ions. It corresponds to the scattering of the particles
with equal masses by the angle π in the centre-of-mass frame (subroutine VELOCX). For
EL processes (subroutine VELOEL) EIRENE uses the approach described in Section 3.1
and Appendix B.2.

The usage of the pre-computed transfer rates is controlled in the input file, Block 4B,
data for individual species, flags IESTCX=2, IESTEL=2 (variables NSECX4 and NSEEL4
inside the code). If this option is switched on, then EIRENE reads Rpt(E, T ) and I(1,2)(E, T )

from AMJUEL in subroutines XSTCX and XSTEL and reduces them to dependencies on
E only. The information is stored in arrays MOMCX3 and MOMEL3 for Rpt(E, T ) and in
EPCX3, EPEL3 for I(1,2)(E, T ). The mass rescaling is performed. Formulas (A.1) and (A.3)
are used for charge-exchange and formulas (A.2), (A.4) for elastic collisions. See discussion
in Section 3.1.3 and [103]. The masses mp1 and mt1, see Appendix A.4.2, are taken from
the Block 4A, ”Data for reaction rates” and mp2, mt2 are taken from Block 4B, “Specification
of individual species”.

During the particle sampling Rpt and RE are calculated for the given kinetic energy of
the test particle ER (energy in the rest frame for plasma!) in subroutines FPATHA and
FPATHM. The first one works with atoms and the second one with molecules. The energy
ER is mass-rescaled accordingly. The energy transfer rate in the laboratory frame RL

E
is

calculated using formula (3.42). Rpt and RE are stored in the arrays VSIGCX, VSIGEL
and ESIGCX, ESIGEL respectively. Variables ESIG* are used then in subroutine UPDATE
to update the energy sources due to atom-plasma and molecule-plasma collisions: tallies
EAAT and EAML respectively. Variables VSIG* are used in subroutine UPTCOP to calculate
the parallel momentum sources (tallies COPV) using formula (3.41).

A.4.2 Mass rescaling

As it was mentioned in Section 3.1.3 the cross sections calculated for one isotope can be
scaled for other isotopes of this element. Two kinds of scaling for the cross-section are
considered here: σ(l)(vr) (3.21) and σ(l)(Er) (3.21).
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Let assume that the integral I
(l,n)

1
has been calculated for masses mp1 and mt1 and one

needs to calculate a similar integral I
(l,n)

2
but for masses mp2 and mt2 assuming certain

scaling law for σ(l).

For the scaling σ(l)(vr), vr =

√

2T
mp
ξ following the definition of I(l,n) (3.36) one finds:
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In the same way for the scaling σ(l)(Er), Er =
mrT
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Formulas (A.1) and (A.2) for I-integrals allow to obtain the similar scaling for momen-
tum transfer rate (3.39). For σ(l)(vr):
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For σ(l)(Er):
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The energy transfer rate RE does not need special rescaling because it can be calculated
using Rpt and I(1,2), relation (3.40).

A.5 Implementation of the photon transport coupled to

CRM

The radiation transport option in EIRENE code was developed in the framework of the PhD
Thesis by Sven Wiesen [47] and the Diploma Thesis by Petra Börner [48]. The coupling
of photon transport and CRM was first implemented for Alcator-C-mod simulations [90]
and is further revised in the present work. The current implementation has still a number
of drawbacks because some design solutions were taken based on their convenience for
programming rather than on the numerical efficiency.

The sampling of the photon trajectories is performed by the same subroutines LOCATE
and FOLNEUT as the sampling of neutrals. The photon sources have to be defined as
recombination sources in the Input File, Block 7. The spontaneous transition probability
serves as a ”recombination rate” and the excited states play the role of the ”recombining
species”. They have to be defined in Block 6. Two ”recombining species” for each line are
considered: for the population coupled to continuum n+p and for the population coupled

to the ground state n1
p. This splitting into two parts is needed to sample the Doppler

shift of the energy of emitted photons, see Chapter 4.2.1. The density n+p is calculated (in
subroutine PLASMA DERIVE) using the pre-calculated population factors (two examples
of them are shown in Figures 4.4a, 4.4a) tabulated in the AMJUEL database. The density
n1

p is taken from the previous time-step where it is calculated by the CRM, see below. The
neutral background for the sampling of photon trajectories (the ground state density n1)
is taken from the previous time-step as well. During the sampling the photon absorption

rates Qp = B1pn
1p

ph
are estimated.

These absorption rates are then used in CRM (4.15) to calculate the populations n1
p and

the effective ionization rate (4.18). This rate is used on the next time step for the atoms in-
stead of the prescribed ionization rate AMJUEL H.4 2.1.5. Technically all the subroutines
related to the CRM are contained (hidden) in the module CCRM. This module is semi-
self-closed: it uses global variables from other EIRENE modules but it has no own global
(public) variables but only public subroutines. Subroutines of module CCRM are called in
INPUT (READ CRMS) and FIND PARAM (FIND CRMS) to read the definition of CRM from
the input file (Block 4E), in subroutine SETAMD (XSECTEE PARAM and XSECTEE) to
overload the appropriate reaction rates. The CRM itself (subroutine MODPHT) is called
from MODUSR (after MODBGK). MODPHT makes an explicit call of the reduced Sawada
code H COLRAD (the part related to atoms only). The effective reaction rates are saved
together with the background parameters in file FORT.13 (subroutine WRPLAM). On each
time-step EIRENE does no extra iterations: the iterative solution of the non-linear prob-
lem for photon opacity is combined with the time steps in B2, like for the neutral-neutral
collisions.

In the current implementation both the total ionization rate S and the total recombi-
nation rate R are calculated by the CRM and passed to the next time step. On one hand,
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if S was calculated for the plasma parameters (ne, Te) from the previous step and R was
calculated for (ne, Te) from the current step, then it could spoil the numerical stability be-
cause of appearance of an artificial particle sources (inconsistency between ionization and
recombination). In the previous implementation only the photo-induced ionization S ph was
calculated using the CRM, and S e and R were calculated on the current time-step using the
data from AMJUEL. On the other hand, using the reaction rates from the previous time
step could slow down the convergence because of introducing an artificial inertia. How-
ever, no difference in the numerical stability between these two approaches was found.
The reason for this insensitivity is apparently the fact that B2-EIRENE has to use small
time steps anyway.

One may feel a temptation to calculate S ph and n1
p before the Monte-Carlo sampling

using the rates Qp from the previous time step. An attempt to do this led to a numerical
instability appearing as an onset of strong oscillations. The reason is not completely clear.
It could be an inconsistency between the number of emitted and absorbed photons (artifi-
cial photon flux “from the past” or “to the future”). In principle, the fact that populations
n1

p and n+p are calculated on different time-steps can also produce the same inconsistency.

But in the problems which were considered the total population of n1
2

was always an or-
der of magnitude larger than that of n+

2
and this level (n=2) is the most significant in the

particle balance.
Despite remaining inconsistencies the coupled code (B2-EIRENE) can work sufficiently

stable even for severe ITER conditions (”severe” because of high density and large di-
mensions). The implementation of the iterations will have to be revisited in future. In
particular, it will be probably better to sample photons and to calculate the effective rates
before sampling the neutrals on each time step. It should be also mentioned that calling
the CRM in the iterated code was found to be unpractical because it can take cpu-time
comparable to the time needed for the Monte-Carlo sampling itself. The tabulated reaction
rates and population coefficients have to be used in future.
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Appendix B

Some details of the model for
elastic collisions

B.1 Sampling the incident velocity

To sample the collision event one needs to know the velocity of both colliding partners.
The test particle velocity is known by definition. The velocity of the background particle
has to be sampled from the distribution with the following probability density:

p(vp) = σt(vr)vr fp(vp), vr = |vt − vp| (B.1)

Here fp(v) is the probability density for the velocity distribution of background particles
(shifted Maxwellian, Formula (3.10)). It is clear that in general the distribution of the
incident particles p(vp) is not the same as the velocity distribution of the background
particles fp(vp). They are equal only if σt(vr)vr = const.

To sample a random variable which has the probability density (B.1) one can use a
rejection sampling technique, see e.g. [60], Chapter 7.3. The idea of the rejection sampling
as it is applied to this particular case is the following. First, the velocity vt which obeys the
distribution function fp(v) is sampled. Then the quantity:

X = u ·max
[(

σ(vr)
tvr

)

fp(vt)
]

is calculated. Here u is a random value distributed uniformly between 0 and 1. The points

X fill uniformly the volume under the hypersurface Z = max
[

(

σt(vr)vr

)

fp(vt)
]

in (vt, Z) space.

The hypersurface Z = p(vt) lies under this surface. The subset of the set X which meets the
following inequality:

u ·max
[(

σt(vr)vr

)

fp(vt)
]

< p(vt) = σ
t(vr)vr fp(vt) (B.2)

will fill uniformly the volume under p(vt). Therefore, the corresponding points vt will obey
the distribution function (B.1).

This algorithm is implemented in EIRENE in subroutine VELOEL. The implementation
is straightforward. The incident velocity vt is sampled from the shifted Maxwellian dis-
tribution. After that u is sampled. If this pair (vt, u) meets the inequality (B.2), then the
sampled vt is accepted as the incident particle velocity. Otherwise the next pair (vt, u) is
sampled and checked.

Instead of rejection sampling an alternative way would be to sample the incident veloc-
ity from the shifted Maxwellian and to apply an appropriate modification of the statistical
weight, see [44], Section 6. This method was implemented in EIRENE before but it was
found that it results in too strong variation of the particle weight causing very bad statis-
tics.

A simplified approach, - sampling the incident velocity from the shifted Maxwellian
distribution (that is assuming that p(vp) = f (vp)), - is used in EIRENE as a default option.
Although this issue was not studied properly, the experience of calculations shows that
the result is not much different from that obtained with rejection sampling.
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B.2 Scattering angle

This description follows [44], Section 2. In the case of H2+H+ collision to describe the shot-
range repulsive - long-range attractive interaction a Morse-like potential [100] is used:

V(r) = ǫ

[

e2g
(

1−g r
rm

)

− 2eg
(

1−g r
rm

)
]

, g =

{

g1, r < rm

g1g2, r ≥ rm

(B.3)

This function has four free parameters: the potential depth ǫ, equilibrium separation rm

(radius of the minimum potential) and fitting parameters g1 and g2. For H2 + H+ collision
they were taken from [101].

To calculate the deflection function (3.5) one first has to find the root of the equation:

r2
√

1 − V(r)/Er − (b/r)2 = 0 (B.4)

to get the parameter r∗. The root-finding routine was optimised making use of the specific
properties of the potential (B.3). The important characteristic parameters of this function
are the root r0 and the point of inflection rw:

r0 = rm

(

1 − ln 2

g

)

, rw = rm

(

1 +
ln 2

g

)

(B.5)

If α = Erb
2 is larger than a certain αc the potential (B.3) becomes monotonic function (with-

out minimum). The critical parameters αc, rc are found by solving the algebraic equations:

Ve f f = V(r) +
α

r2
,

dVe f f

dr
= 0 and

d2Ve f f

dr2
= 0

Therefore, eliminating α yields:

h(r) =
3

2

dV

dr
+

r

2

d2V

dr2
= 0

Solving this algebraic equation one finds rc. Other parameters at the critical point can be
calculated as:

p =
rcg

rm

, Erc = ǫ
(p − 3)(p2 − 3p + 3)

(2p − 3)2
, (B.6)

bc =
prc

√

p2 − 3p + 3
, αc = Ercb2

c

For the known parameters r0, rm, rw, rc the location of the root r∗ is summarised in the
scheme below:
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(B.7)

The sampling of the deflection angle Θ (or deflection function χ) is implemented in
EIRENE as following. The data array:

R = {ǫ, g1, g2, rm, r0, rw, rc, bc, Erc, Er0}

is read from the datafile AMJUEL [106], Section H.0 (e.g. AMJUEL H.0 0.3T for H2). The
energy Er is calculated from the known vt and vp, see Section B.1. Here bmax is found
from the condition: σt

= πb2
max. After that r∗ is calculated by solving the algebraic equa-

tion (B.4) using its properties (B.7) (subroutine RSTERN, uses modified bisection method).
To find the deflection function χ the integral (3.5) is calculated using a Gauss-Mehler type
quadrature rule with 16 nodes (subroutine GAUMEH), which is enough to achieve the
relative error less than 1 % [44].



Appendix C

Notations for vector and tensor
operations

To avoid misunderstanding the notations for the tensor and vector operations used in
Chapter 2 of this thesis are listed in this appendix. Here ”tensor” means tensor of rank 2.
The notations are the same as in the monograph of Chapman and Cowling [58].

Dyadic of two vectors a =
(

ax, ay, az

)

and b =
(

bx, by, bz

)

is a tensor defined as:

ab =





















axbx axby axbz

aybx ayby aybz

azbx azby azbz





















= aαbβ

Note that in general ab , ba. This operation should not be mixed up with the scalar product
(!):

a · b =
(

axbx, ayby, azbz

)

Let us define a tensor w:

w =





















wxx wxy wxz

wyx wyy wyz

wzx wzy wzz





















= wαβ

A tensor, conjugate to w is defined as w = wβα. Its matrix is transposition of that of w.

A symmetrical tensor corresponding to w: w = 1
2
(w + w)

Divergence (Spur) of the tensor: wxx + wyy + wzz

Upon defined a unit tensor U = δαβ (Kronecker Symbol, unit matrix), a non-divergent
tensor corresponding to w can be written as:

ẘ = w − 1

3
(wxx + wyy + wzz)U

A product of a vector a and a tensor w:

(a.w)α =
∑

β

wαβaβ

The result is a vector with coordinates found from matrix multiplication.
A simple product of two tensors w and w′:

(w.w′)αβ =
∑

γ

wαγw′γβ

The result is a tensor with coordinates found from matrix multiplication.
A double product of two tensors:

w : w′ =
∑

α

∑

β

wαβw
′
βα = w′ : w

The result is a scalar equal to the divergence (Spur) of w.w′
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Appendix D

Hydrogen molecular chemistry in
ITER: some examples
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(a) model of EIRENE 1996
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Figure D.1: Density of molecular ion D+
2

for the old and new model for molecular kinetics
(on a fixed plasma background)
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Figure D.2: The total ionization (D2 → D+
2
) and dissociation (D2 → 2D) sinks of D2 molecules
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(b) Dissociation D+
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+ e→ D + D+ + e
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(c) Recombination D+
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+ e→ 2D
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(d) Recombination D + 2e→ D + e, D + e→ D + hν

Figure D.3: Processes relevant for molecular ion D+
2

and the rate of atomic recombination
for comparison
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Appendix E

Results of the JET modelling

2D distributions of the plasma parameters in the divertor of JET calculated with EIRENE
1996 and new EIRENE.

E.1 Shot #58354 (”High Density”)
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(b) with new EIRENE

Figure E.1: Electron temperature
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Figure E.2: Electron density
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Figure E.3: Density of D2 molecules
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Figure E.4: Density of D atoms
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Figure E.5: Ionization sink of D atoms
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Figure E.6: Photo-induced ionization source and the temperature of molecules
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Figure E.7: The effect of the line radiation opacity: zoom in the inner divertor

E.2 Shot #58353 (”Low Density”)
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Figure E.8: Electron temperature
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Figure E.9: Electron density



E.2. Shot #58353 (”Low Density”) 147

305295285275265255245235
-180

-170

-160

-150

-140

-130

-120

01

1e+11 4.6e+11 2.1e+12 9.6e+12 4.4e+13 2e+14
Molecule Density (D2), [cm-3]

(a) with EIRENE 1996

305295285275265255245235
-180

-170

-160

-150

-140

-130

-120

01

1e+11 4.6e+11 2.1e+12 9.6e+12 4.4e+13 2e+14
Molecule Density (D2), [cm-3]

(b) with new EIRENE

Figure E.10: Density of D2 molecules
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Figure E.11: Density of D atoms



148 Chapter E. Results of the JET modelling

305295285275265255245235
-180

-170

-160

-150

-140

-130

-120

01

1e+14 1.6e+15 2.5e+16 4e+17 6.3e+18 1e+20
Ionization sink (D), [cm-3/s]

(a) with EIRENE 1996

305295285275265255245235
-180

-170

-160

-150

-140

-130

-120

01

1e+14 1.6e+15 2.5e+16 4e+17 6.3e+18 1e+20
Total ionization sink (D), [cm-3/s]

(b) with new EIRENE

Figure E.12: Ionization sink of D atoms


