
Modification of EIRENE neutral particle Monte Carlo
Code for improved Computing performance and
application to ITER Edge Plasma Modelling:

Final Report on Contract FU07-CT-2007-00007
(EFDA/07-1577)

Vladislav Kotov, Petra Börner, Detlev Reiter
Institut für Energieforschung - Plasma Physik,

Forschungszentrum Jülich GmbH

April 28, 2008

1

Contents

1 Overview 4
1.1 Parallelization Status of EIRENE prior to this project 4

1.1.1 Stratified Sampling in EIRENE . 4
1.2 Work done under present contract FU07-CT-2007-00007 5

2 General code revisions and upgrades 6
2.1 Parallelization based on MPI . 7

2.1.1 MPI: version and its installation . 7
2.1.2 Parallel (test flight generation) part, and stratified source sampling 8
2.1.3 serial (root) process: B2, pre-and post processing, and interface . . 8

3 Backward compatibility tests 9
3.1 Code verification, backward compatibility 9
3.2 Description of the code verification tests 10

3.2.1 EIRENE stand alone . 10
3.2.2 B2-EIRENE, one single time-step 11
3.2.3 B2-EIRENE, multiple time-steps 11
3.2.4 Installation of upgrades at ITER Cadarache 11

4 Parallel code performance tests 13
4.1 Profiling of the first parallelized version . 13
4.2 Parallel performance of the current version 15

5 Technical description I: Modification of the code 16
5.1 General upgrade and cleaning-up . 16
5.2 MPI-related code . 17
5.3 Further modifications and bug fixes . 21

6 Technical description II: Installation and usage 22
6.1 Installing MPICH . 22
6.2 Compiling and running the code with MPI 24
6.3 Modifications required in B2 . 27

7 Automatic load balancing 27
7.1 Outlook . 27
7.2 Collecting the run-time information . 28
7.3 Estimating the run-time of each stratum 29
7.4 Distributing processors into bands . 30
7.5 Distributing strata between bands . 31

8 Conclusions, Outlook 31

2

9 Appendix 33
9.1 Patch for neutral radiation in B2 . 33
9.2 User features, added to EIRENE . 35

3

1 Overview

1.1 Parallelization Status of EIRENE prior to this project

In linear Monte Carlo transport applications the performance is not measured by the
number of test particles (histories) in a given CPU-time, but instead by the variance per
cpu time [1, 2], which is the true figure of merit of a Monte Carlo code.

Improving efficiency of Monte Carlo Codes hence requires both programming and
algorithmic optimization.

Beyond this, and in order to gain efficiency in terms of turn around time on a
specific computing system, as it is e.g. essential for high density ITER SOL simulations,
parallelization of Monte Carlo transport solvers is an alternative, and very powerful option.

The Monte Carlo transport algorithm is inherent suitable for parallelization [3, 4].
The Monte Carlo particle trajectories are independent of each other, as long as the real
(physical) particles do not interact with each other but only with their background host
medium.

Interaction between test particles (such as neutral-neutral or neutral-photon interac-
tions in EIRENE) are treated in EIRENE by successive linearization and iteration [5] ,
hence the above statements fully apply to the EIRENE code.

A complication arises because of the special feature in EIRENE to “stratify sources”,
i.e. to de-compose the primary source for test particles into a sum of sub-sources (=“strata”)
and to obtain the final result by linear superposition of results from such individual strata
(see [1], under “stratified sources sampling”)

This option has severe consequences for the parallization strategy. On the one hand
it provides further flexibility for optimization but on the other hand it also leads to load
balancing issues which have to be dealt with. Most of the material (except for the purely
technical descriptions in Section 5 and 6) in the report below is related to this issue.

The status of parallelization of stand alone EIRENE prior to the present project,
which was mainly developed in 2000–2003 for stand alone applications and for the (single
stratum-) interface to the 3D edge code EMC3, is described in detail in diploma-thesis
[6].

In the present project this material is used, implemented into the ITER code version
of B2-EIRENE and extended from the present single stratum EMC3-EIRENE (3D edge
code) concepts towards multi-strata B2-EIRENE (2D edge code) applications.

1.1.1 Stratified Sampling in EIRENE

As the “stratified source sampling concept” of EIRENE is essential for understanding the
rest of this report, a brief description of this concept is given next:

The splitting up to the total primary source for neutral particles (including photons)
into different strata can be done according to various criteria, but in particular also
according to the different physics involved for different primary source particles, such as
their species (hydrogen, atoms, molecules, impurities, etc. and/or according to their birth
location(e.g. inner target, wall, outer target, gas puff, volume recombination).

4

This means that the primary source distribution can be decomposed into a sum of
independent sources: Q =

∑
i Qi and the solution is obtained by linear superposition of

the solutions for each sub-source (“stratum”) Qi.
The stratified sampling technique is a well known statistical procedure, see any text-

book on statistics or Monte-Carlo methods.
It sometimes can significantly affect the efficiency of a Monte-Carlo run. This can go

both ways, depending upon the particular problem and the particular stratification used.
Therefore, as with the non-analog options in EIRENE too, no general recommendation
can be made. ”Optimal stratification” is case dependent.

The stratification with “proportional allocation” provided as one of the default option
in EIRENE guarantees, however, that a case with stratified sampling is always at least
not worse than without (and in most real cases better in terms of code efficiency).

The effects of stratification, however, are usually more easy to assess (predict) than
with general non-analog methods.

In order to make connection with the textbooks we need to note here only the following:
EIRENE provides estimates of linear functionals (“moments”, “responses”)

< g, φQ >=< Q, φ∗g > (1)

As described in [1], g is the detector function (“weighting function”) φQ is the solution
to the kinetic transfer equation (Boltzmann eq.) in which Q was used as (inhomogeneous)
source term. φ∗g is the solution of the corresponding adjoint equation, with g as source
term.

The above equation means that EIRENE estimates can simply be regarded as Monte-
Carlo estimates of multi-dimensional integrals, namely of the adjoint function φ∗g inte-
grated over phase space with Q defining a distribution in phase space.

It is then obvious that one can split that integral into a sum of integrals by arbitrarily
decomposing the domain of integration, i.e., by decomposing the source Q into sub-sources
(“strata”) Qi with Q =

∑
i Qi.

This is the concept of stratified sampling, which, for Monte Carlo particle transfer
procedures in particular actually turns out to be a “stratified source sampling”.

Further details about this in our particular context are given in the description of
input block 7 of the EIRENE online manual [1].

1.2 Work done under present contract FU07-CT-2007-00007

B2-EIRENE [7, 8] was originally developed under NET contracts in the late eighties and
early nineties of the last century at FZJ, in close collaboration with ERM Brussels and
UKAEA Culham.

In the frame of the present contract the ITER version of the B2-EIRENE plasma edge
modelling code, which was derived and has evolved from that original B2-EIRENE code
package (and is referred to as SOLPS4.2 now) has been upgraded in order to allow parallel
calculations on multiprocessor systems. Only the EIRENE module, which provides vol-
umetric sources and sinks for the plasma fluid components treated in B2, is parallelized.

5

The B2 module, a 2D finite volume solver for highly un-isotropic and strongly nonlinear
flow problems remains serial.

This feature: parallel kinetic (often Monte Carlo) modules linked to serial macroscopic
fluid solvers is also encountered in other applications in simulation sciences, such as micro
macro (polymer) models [9], radiation transfer in astrophysics and many more. This is
because a) Monte Carlo solvers allow easy parallelization (farming technique) and it is
usually these microscopic sub-modules which limit convergence of the overall code systems,
due to the inherent statistical noise involved in Monte Carlo terms.

In what follows only the EIRENE code part, including its interface module EIRCOP
to link EIRENE to edge fluid codes is described, because predominantly this part has
been modified in the present project.

The following steps have been achieved:

• MPI-based technology is used (MPI=Message Passing Interface).

• Full backward compatibility of the calculations made with various different numbers
of processors on various computer systems with the previous serial cases has been
proved.

• The code has been installed and tested on several computer systems (a “self-made”
cluster of ITER Team at Cadarache, the JET Analysis Cluster at JET, Culham,
and the IBM Cluster JUMP in FZJ).

• The new version of the code has been delivered to ITER, first results have been
presented jointly with the ITER team at the PSI and EPS conferences 2008. The up-
graded code package is referred to as SOLPS4.3 (the old, serial code was “SOLPS4.2”)
and it is currently in use both at FZ Jülich and at ITER-Cadarache for design op-
timization studies.

• The technical changes carried out to achieve this parallel performance of the B2-
EIRENE code are described below in this document.

2 General code revisions and upgrades

The EIRENE version maintained at ITER-Cadarache has a number of specific features. It
is only occasionally (once per year) synchronized and updated with the EIRENE master
maintained at FZJ Jülich, to the extend that the code developments by ITER allow such
a version management without loosing the ITER team’s own features.

As a first stage of the upgrade under the present contract such a ”partial synchro-
nization” was carried out again: the variable set of the ITER version of EIRENE was
made equal to that of the current reference version maintained at FZJ under CVS and
SUBVERSION systems as master. A number of new technical features of that EIRENE
master version 2007 (see www.eirene.de) have been transferred into the ITER code
system simultaneously with the current upgrading for parallelization.

6

Some parts of the B2-EIRENE (SOLPS4.2) code have been cleaned up during the
present upgrade, rudimentary features (diagnostics, balance correction, C-preprocessor)
have been removed. For the time being, the new definition of the reaction rate data
and new atomic-molecular data structures of EIRENE (e.g., for ADAS and hydrocarbon
databases) are not yet supported by this ITER version.

The present version of EIRENE does not use any external libraries any more (except
MPI).

2.1 Parallelization based on MPI

The main objective of the present task was to enable full parallelization of the kinetic
(EIRENE) part of SOLPS4.xxx. The EIRENE stand alone code was already parallelized
with MPI. In the present project this option was extended for use in B2-EIRENE. Since
the Monte Carlo particles (“histories”) in EIRENE are independent, they can be rela-
tively easy distributed over many processors (farming technique). The performance gain
depends on the quality of synchronization between processors and relative importance of
the remaining serial part:

a) Overhead: pre- and post processing;
b) Communications: data transfer between processors.

These two parts are not yet parallelized in the present project. For further optimization
of the overall code package B2-EIRENE those parts will also have to be parallelized (for
example by domain decomposition), and iteration strategies with longer Monte Carlo
loops (more test-particles per iteration) have to be developed. Such options are now fully
available and will be explored in the future. In the next subsections technical aspects of
MPI parallelization are described.

2.1.1 MPI: version and its installation

Current realization of Message Passing in EIRENE and its code interface module EIRCOP
is based on MPI-2 standard. The related subroutines are located mainly in EIRENE
directory broadcast.

One of the best known open source implementation of the MPI-2 standard is the library
MPICH (MPI-CHameleon) developed by Argonne National Laboratory. This was chosen
for installation at the ITER computer system. At the time when this project started (July
2007) the most recent stable version was 1.0.5p4 (downloaded from the developer’s site).
The library and supplemented process manager (MPD) have been successfully installed
and tested both at FZJ and on the computers of ITER edge modelling group in Cadarache.
The installation instruction can be found in Section 6.1.

Available MPI distributions allow, in principle, parallelized runs on any set of machines
connected in a network (e.g. Ethernet). No special hardware is required, but fast (Gbit/s)
network connection is very desirable.

7

2.1.2 Parallel (test flight generation) part, and stratified source sampling

The parallel Monte Carlo sampling procedure has remained quite similar to the one al-
ready in plasma for stand-alone EIRENE runs and for parallelized EMC3-EIRENE runs
(see section 1.1).

The various strata (see 1.1.1) can be distributed between processors in a more flexible
way than before: e.g. one can sample all strata on each processor or allocate several
processors only to one stratum or a subset of strata, etc. The corresponding control-
ling variables (like strata-processor correspondence table PROCFORSTRA) are defined in
module CPES: either automatically, see Section 7), or read from the input file (Block
INFORMATION_FOR_MPI).

The input, geometry and atomic data is broadcasted from the root to all processors.
The results are gathered (reduced) separately for each stratum. This allows to apply
exactly the same way of the particle balance control and re-scaling as in serial runs. See
for more details of the implementation in Section 5.2. Performance diagnostic data such
as the sampled number of particles and consumed time on each processor is printed into
an extra file mpistat.dat.

2.1.3 serial (root) process: B2, pre-and post processing, and interface

B2, and EIRENE pre-and post processing:
B2 and initializing routines of EIRENE (INPUT etc.) as well as its post-processing

routines (OUTPUT, MODUSR etc.) are executed only on the (serial) root process. No
changes as compared to the earlier stand alone parallel version of EIRENE have been
implemented.

Interface: B2-EIRENE

There are, in principle, two versions of the EIRENE interface module INFCOP to
run with the B2 plasma code for transferring data from B2 (SOLPS4.XX) to EIRENE
and vice versa: for the standard grid option (EIRENE directory couple_B2) and for the
triangular grid option (EIRENE directory couple_Tria). This latter version (EIRENE
geometry level: LEVGEO=4) is the most flexible and also most frequently used option in
SOLPS4.XX now, therefore, only this interface has been upgraded and tested with MPI.
The historically older “Standard grid” option (LEVGEO=3) in which EIRENE directly
uses the B2-grid without any further processing, has not been used for ITER modelling
since 2004.

Besides the interface, two extra calls have to be added to B2: B2_MPI_INTERFACE at
the beginning of the program and FINALIZE_EIRSRT by the end of the main loop. See
also Section 6.3 for more details.

Some more technical notes:

8

It is quite likely that the user needs permission to modify the file /etc/hosts to be
able to change the systems hostname (if it was localhost). The need for this can be
queried by command mpdcheck -l. The Process Manager distributed with MPICH is
called MPD. An MPI-ring of machines which can be used for parallel runs can be created
by command mpdboot using prescribed list of hosts. This command requires SSH to
work without password. If this is not possible, then one can create the ring manually, by
calling mpd on each machine to be added. A multiprocessor run is started through script
mpiexec. Since this script has problems to read long files from standard input, EIRENE
expects input file in fort.1 when running on more than one processor. Section 6.2 gives
some examples of using MPD and running B2-EIRENE on it. Without mpiexec the code
compiled with MPI library can be run in exactly the same way as the serial version.

3 Backward compatibility tests

3.1 Code verification, backward compatibility

To verify the program changes of this upgrade, the results of the old ITER version (re-
ferred below as “old version”) and the present MPI-version (running either on one or on
several processors) have been benchmarked. The compared numerical data of the different
versions have been the EIRENE sources passed to B2 (particle sources SNI, momentum
sources SMO, energy sources SEI and SEE) and data stored on file fort.44. All data have
been compared as text files with 8 decimal digits.

The chosen test cases were ITER 1055 and 1080. They are characterized by: divertor
structure F12, full carbon wall, 9 fluids in plasma (D, He, C), full package for molecular
kinetics (MAR, elastic collisions), neutral-neutral collisions.

The new version was run on one, two and four processors. In the latter case all kinds
of communications were tested (including collecting data for one stratum from several
processors, CALSTR).

Sequential and multiprocessor runs had the same sequences of random numbers, there-
fore it was possible to match single time-step B2-EIRENE runs exactly, hence proving
the full backward compatibility.

For two and more time steps the exact match (up to 8 digits) could not be achieved:
the solutions on different numbers of processors were different due to numerical round-off
errors. This did not change even if the accuracy of floating point operations prescribed
by IEEE standard was enforced: options -O0 -Kieee -pc 64 -Mnobuiltin -i4 -r8 for
Portland compiler and -O0 -fp-model strict -pc64 -fp -mp -fltconsistency -i4

-r8 for INTEL compiler. Therefore, for the coupled B2-EIRENE runs the time-traces of
some key parameters have been compared: control variables printed by B2 on each time
step (total sources and fluxes, balances, temperature and density in peculiar points). It
was shown that those time traces do not contain any anomal features (such as “disconti-
nuities”) when the code is restarted (continued) with the different number of processors.
By continuing the steady time traces obtained with the old serial version after convergence
both short (∼10 time-steps) as well as long (5000 time steps) runs have been compared

9

in this way on 1, 2, 4 and 8 processors, again proving full backward compatibility
of the new version also in iterative mode with B2.

Initially the long run tests revealed a serious memory bug in library MPICH (see below
in Section : Bugs and Bug-fixes, ??), which has been fixed meanwhile.

More details on the performed tests can be found below in sub-section 3.2. At present
the standard case chosen for tests of EIRENE stand-alone is ITER 1055p6 be: similar to
ITER 1055 but with Be wall, Be ions in plasma and photon transport.

It has been also found useful to carry technical test runs with all possible compiler
checks switched on (control of array bounds etc.): for Portland compiler -C -Mbound

- -Ktrap=fp -Mchkstk, for INTEL compiler i4 -r8 -debug all -traceback -check

all -ftrapuv -debug-parameters all -g -inline-debug-info -fpstkchk.

3.2 Description of the code verification tests

To prove the correctness of the code upgrade the results of the old version of B2-EIRENE
(so called “photon version” from 2005-2006, or: SOLPS4.2) have been compared with the
new version, both run on a single and on several processors. On the debugging stage the
modelling case ITER 1055 was taken for the tests. It is a case with divertor structure F12,
full carbon wall, 9 plasma species (D, He, C), complete package for molecular kinetics and
neutral-neutral collisions (actual standard model for ITER).

3.2.1 EIRENE stand alone

For stand-alone EIRENE runs the arrays of sources passed to B2 and file fort.44 were
compared. The sources (sum over all strata) are printed by subroutine PRINT_EIRBRA

called after INF3COP (from PRTUSR): sniX.eir is the particle source, smoX.eir is the
momentum source, sei.eir and see.eir are the energy sources for electrons and ions.
Here X is the index of species. File fort.44 printed from WNEUTRALS contains neutral
data to be passed to B2PLOT (neutral density, temperature, fluxes etc.). Files *.eir and
fort.44 are ASCII files and keep 8 decimal digits. To compare different runs two drivers
have been written: CFL compares all numerical data in two text files, CMP44 compares
two files fort.44. They print maximum absolute and relative difference, difference of
maximums and sums, number of non-equal elements, CMP44 does it for each array.

The first test case can be found in ipp247:/home/kotov/cases/iter1055.mpi.test

(see file dirinfo). The tests were made with “virtual parallelization”: emulating several
processors on one physical machine. The total number of particles: 5500. All data files
produced by the “photon version” and the upgraded version on one processor are exactly
the same. Serial runs have been compared with runs on 2 and 4 processes (subsequently,
without and with CALSTR): the results are exactly the same.

The results of 2 and 1 processor runs are exactly the same, for 4 processor run a small
difference has been found for variable srcml from fort.44: the absolute difference is
5.5E-014. This can be attributed to round off error during communications (see ??).

10

3.2.2 B2-EIRENE, one single time-step

The single time-step runs of B2-EIRENE can be compared in the same (exact way) as
stand alone EIRENE runs: they differ from EIRENE stand-alone cases only because
some input for EIRENE is still provided via B2 in SOLPS4.xxx. (This risky coding has
been completely eliminated in the current FZJ master of EIRENE and B2-EIRENE).
Again perfect matching of results (down to machine precision) from the original and the
upgraded code has been achieved.

3.2.3 B2-EIRENE, multiple time-steps

Two time step runs on 1 and 2 processors could be compared in exact way if the code
was compiled with option -Kieee -pc 64 (floating point arithmetic strictly in accordance
with IEEE standard). In case of 4 CPU run the exact comparison did not work anymore:
for some sources calculated by EIRENE (those with high statistical noise: momentum
source and ion energy source) the difference reaches locally 30 %. Similar features can be
seen for 2 CPU tests with 3 time-steps: the difference can reach 60 % (momentum sources
for He). An investigation showed, that neutral-neutral collisions render the coupled sys-
tem very sensitive to round-off errors during communications. An investigation showed,
that neutral-neutral collisions makes the system very sensitive: due to round-off errors
during communications the neutral background for the next time step becomes slightly
different (the difference in 15th decimal digit) on the different number of processors. And
subsequently correlation between the two test cases is lost.

The conclusion was that it is reasonable to apply the exact comparison (all digits)
only for single time-step runs and to compare (visually or by post processing tools) B2
time-traces of important physical quantities for the longer runs. The ”time-traces“ chosen
here are the neutral particle source terms, total plasma fluxes to targets and some plasma
parameters (upstream density and temperature, maximum density and temperature in
both divertors), printed on each time step to directory tracing. These tests have been
fully successful and hence have verified the upgraded code (see next subsection).

3.2.4 Installation of upgrades at ITER Cadarache

After having passed all these tests in FZJ the code and the MPI software were installed
on the computer system of ITER Team (server eskimo.iter.org). The test case was
ITER 1080 (same geometry and plasma content as 1055).

The first technical problem was that the results obtained with INTEL Compiler (used
by ITER Team) differ slightly from those obtained with Portland Group Compiler (used
in IPP FZJ), see ??. Applying compiler options -O0 -Kieee -pc 64 -Mnobuiltin -i4

-r8 for Portland and -O0 -fp-model strict -pc64 -fp -mp -fltconsistency -i4

-r8 for INTEL (enforce IEEE-prescribed accuracy for floating point operations) did
not help to reduce the difference. An investigation showed that the discrepancy can
be reduced (down to maximum relative difference 1e-4) only if the subroutine GAUMEH
(Gauss-Mehler integration for scattering angle integral in elastic collisions) is commented

11

out, proving that the numerical round off errors in Monte Carlo particle trajectories are
mainly originating from this routine. Further investigation was not carried out, since
the resulting difference is of no practical importance anyway (smaller than the level of
statistical noise).

The test runs for ITER 1080 are saved in directory
iter.eskimo.org:/home/kotovv/cases/iter1055.mpi.test.

The results of the stand-alone EIRENE runs of the old ITER version of EIRENE
and the actual version were also different. The reason was a minor inconsistency in the
actual Jülich version of EIRENE. Sputtering of carbon was not taken into account in re-
calculating the scaling factors for global particle balance for each atomic species. Globally
this source is usually small compared to recycling sources, therefore, this bug had little
or no influence on the results. After this was fixed, the results of the that-time ITER
version of EIRENE and of the current Jülich version of EIRENE could again be matched
exactly.

In those tests two physical machines were used, in 4 processor runs the subroutine
CALSTR was called. For 4 processor runs a small difference was found for variables
srcml and edissml from fort.44 (maximum relative difference <1e-2) and flux wldna

(zero and non-zero value). With 2 and more time-steps the solutions become different and
can not be matched exactly. However, when compiled with options -fp-model strict

-pc64 the maximum relative difference (for the neutral particle sources transferred to B2)
for 2 time-steps on 2 processors did not exceed 1e-6.

Comparison of the time traces of the short coupled run was done in the following way:
20 time steps (dt=1e-6 sec) of the reference ITER version, then 10 time steps of the new
version on one processor, then 10 steps on 2 processors, then 10 steps on 4 processors
and then 10 steps on 10 processors (all strata on each processor). No anomalies larger
than statistical noise could be seen on the time traces. After that, a long run test was
performed: the run ITER 1080 was continued for 5000 time steps (dt=1e-6 sec) on 4
processors, then for 5000 steps on 4 processors and then 5000 steps of the old version.
Also the long run test was successfully completed.

Apart from runs in FZJ and Cadarache the code was technically tested on the IBM
cluster JUMP in FZJ and on JET Analysis Cluster (uses OpenMPI) on up to 32 physical
processors. On JAC the time tracings for the case iter.D10 on 1 and 4 processors were com-
pared in addition: this is a reduced ITER case with deuterium only. Technical stability
was proved by compiling the code with extra checks (array bounds check etc.). Corre-
sponding options for Portland compiler: -C -Mbound -Ktrap=fp, for INTEL compiler:
i4 -r8 -debug all -traceback -check all -ftrapuv -debug-parameters all -g

-inline-debug-info -fpstkchk.
The ”maximum“ case which is suggested for stand alone EIRENE tests is the moment

reference case ITER 1005p6 be. It is a case with divertor structure F12, beryllium wall
(and Be ions) and photon transport. In addition to neutral sources and fort.44 the
particle sources and sinks for Lyα and Lyβ photons are compared. The results of the
actual version of EIRENE on 1 and 2 processors match exactly the ”photon“ version for
this case.

12

4 Parallel code performance tests

Modelling case ITER 1055 was chosen for the performance tests. The number of particles
was fixed: 2000 for each target, 1000 for volume recombination, 2000 for the gas puff, 500
for each PFR boundary (entrance into dome region) and 10000 for main chamber wall
recycling (18000 in total). Those numbers are larger than the numbers usually used for
this case: it was done in order to emulate a case with slightly longer EIRENE runs, as it
is anticipated for routine applications with parallelized EIRENE in SOLPS4.3.

”Standard“ ITER grid size: B2 grid 28×76, 5589 cells in triangular grid. The measure-
ments were performed on the second time-step of two-steps B2-EIRENE runs (starting
each time from the same solution). The time is measured by Fortran subroutine cpu time.

4.1 Profiling of the first parallelized version

The tests were performed in Cadarache (machines edge29,30), in Jülich on Jülich Multi-
Processor - JUMP (an IBM cluster of symmetric nodes) and at Culham on JET Analysis
Cluster JAC (a Beowulf cluster consisting of off-shell workstations, tests were performed
at the end of 2007). The results are shown in Table 1. In all cases, except ”JAC (opt).”
all strata were running on all processors: the most inefficient option in terms of com-
munications. In Table 1 “B2-EIRENE” is the total time of the time-step, “Sampling” is
the time spent by EIRENE for the particle sampling, “B2” is the time consumed by B2,
“Communications” is the time spent for data transfer between processors and “Overhead”
is the time consumed in EIRENE not for sampling. “Sampling”, “Communications” and
“Overhead” are shown for root process. “Overhead” is mainly related to integration of
tallies and correction of particle balance for each stratum (rescaling of tallies).

From Table 1 one can see, first of all, that influence of multiprocessing on performance
strongly depends on the hardware. The runs in Cadarache were twice as fast as those in
Jülich partly because of faster processors and partly because of better compiler optimiza-
tion (with INTEL compiler). It is very important to have fast network: in this case (ITER
machines and JUMP) one can reduce the total run time by a factor 3 on 4 processors, but
on 8 processors the performance gain saturates. In this case the saturation comes not due
to communications but due to EIRENE’s overhead. On the cluster JAC which has a slow
network the gain hardly reaches a factor of 2 on 8 processors. However, applying more
clever distribution of strata between processors can improve the situation. The results
shown in the rows “JAC (opt)” were obtained with the following distributions (same fixed
number of particles):

NPRS=2, NSTRA=8

TTTFFFFF

FFFTTTTT

NPRS= 4, NSTRA= 8

TFFFFFFF

FTFFFFFF

13

Table 1: Run-time for the reference case ITER 1055 (one time-step)
Machine B2-EIRENE Sampling B2 Communications Overhead
ipp754 106.2 95.0 3.7 0.0 7.4
edge29 54.6 47.4 2.3 0.0 4.8

edge29,30 31.2 23.4 2.3 0.4 4.9
JAC 1 CPU 92.0 81.6 1.8 0.0 8.5
... 2 CPU 62.5 35.4 2.6 14.3 5.5
... 4 CPU 63.7 21.1 2.8 24.3 8.2
... 8 CPU 41.9 8.8 2.3 18.6 5.6

JAC (opt) 2 CPU 48.8 36.7 2.4 2.0 2.9
... 4 CPU 41.1 21.3 2.7 7.8 3.1
... 8 CPU 44.8 18.6 4.3 9.7 3.7

JUMP 1 CPU 156.2 133.1 10.4 0.0 12.7
... 2 CPU 84.7 61.2 10.6 0.5 12.3
... 4 CPU 52.8 30.1 10.1 0.8 10.8
... 8 CPU 41.1 15.0 10.5 1.1 14.3

FFTTTTFF

FFFFFFTF

NPRS= 8, NSTRA= 8

TFFFFFFF

TFFFFFFF

FTFFFFFF

FTFFFFFF

FFTTFFFF

FFFFTTFF

FFFFFFTF

FFFFFFTF

FFFFFFTF

In this case a factor of 2 improvement can be achieved already on 2-4 CPU’s, but this
almost immediately saturates at this point when moving to more processors. Note that
the JAC results are scattered because of inhomogeneity of the system: in different runs
the task manager could send the task to different processors. In the “optimized” runs
in most of the cases one strata was calculated on one processor: this leads to significant
reduction of required communications. Besides that, the overhead reduced as well because
integrating and rescaling was performed for different strata in parallel. The overhead
increases when the number of strata and the grid size is increased. Therefore, applying
optimized distribution of strata between processors can be useful even for systems with
fast communications.

14

4.2 Parallel performance of the current version

5

10

15

20

25

30

5 10 15 20 25 30

R
e
l
a
t
i
v
e

S
p
e
e
d
-
U
p

Number of Processors

ITER 1436

JUMP
JAC

linear

Figure 1: Relative speedup factor vs.
number of processors, measured by
time spent on one time step of B2-
EIRENE (case ITER 1436, very high
divertor density) on different systems.

Based on the results of the study described in
the previous section, the code was further opti-
mized: the overhead was reduced, run-time syn-
chronization of strata was implemented (see Sec-
tion 5.3), automatic distribution of strata be-
tween processors was added, Section 7. Perfor-
mance tests of this partly optimized code have
been performed on the same three systems as
in the previous section for the modelling case
ITER 1436. This model has 9 ion species and is
characterized by extremely dense divertor (peak
heat power only 2 MW/m2). It normally takes
10. . . 30 min for one time-step depending on the
machine. EIRENE run-time was fixed at 1800
sec on JAC and at 1000 sec on JUMP. In addi-
tion, the code was given the following minimum
number of particles: 400 for strata 1 and 2 (tar-
gets), 100 for strata 3 and 4 (PFR), 5000 and

2000 for 5 and 5 (SOL boundary and gas puff, fastest strata) and 200 for 7 (volume re-
combination, slowest strata). The specified run-time ensured that ≈40000 particles (±30
%) were sampled in each run.

The results are shown in Figure 1. The speed up is linear only up until 4 processors,
the maximum gain is a factor of 18 on 32 processors. In absolute numbers that means
the following. On JUMP one time-step takes 60 sec on 32 processors instead of 1000 sec
on one processor. B2 takes 10 sec, overhead of EIRENE: 2 sec, communications: 4 sec.
On JAC: 200 sec on 12 processors, instead of 1800 sec on one processor, 5 sec are taken
by B2, 2 sec: overhead in EIRENE, 80 sec: communications (JAC has a relatively slow
network).

The saturation of speed-up takes place not only due to serial part and communications.
There is also an issue with synchronization. The cpu-time, spent for each single trajectory
can be very different. Even if time synchronization is applied, it can still happen that
a very long trajectory occurs on one processor, and other processors are then waiting
(idle) until it finishes. In case of high density divertors very long trajectories may appear
because of Monte Carlo splitting. For the reference test case the lost time due to this
effect can reach 10 % on 8 processors and 30 % on 32 processors. This problem will have
to be resolved in the future either by avoiding Monte Carlo splitting techniques, or by
applying dynamic redistribution of particles between processors.

In general one can say that for regular ITER cases or for reduced cases on finer grids the
typical robust speed-up is at least a factor of 3 on 4 processors and at least a factor of 6 on 8
processors (typical processor numbers currently used at ITER Cadarache). Parallelization
of EIRENE overhead (re-scaling, MODUSR) and improved synchronization for the cases

15

with long histories can further improve the scalability.

5 Technical description I: Modification of the code

5.1 General upgrade and cleaning-up

The ITER version of the code was upgraded from the CVS repository master version main-
tained at FZJ. The main point of this upgrade was to synchronize the variable set of the
FZJ repository version with the ITER version as well as to transfer all MP-related code.
Consequently, the following entire modules were replaced with the FZJ master: PARMMOD,
CESTIM, COMUSR, CUPD, COUTAU, CSPEI, CTRCEI, CLOGAU, CADGEO, CGEOM, CGRID,

CLGIN, CTETRA, CESTIM, CSTEP and subroutine SETPRM (assigning indexing of the tal-
lies). Module COMPRT was modified accordingly. In the repository (master) version the
definition of reaction rate data was completely re-written (REACDAT instead of CREAC) to
adopt it to further atomic database formats and the FZJ-hydrocarbon databases. This
modification was not yet taken over to the ITER version for the time being. Therefore,
module COMXS was left unchanged.

The upgraded variable set has some new tallies, like momentum flux (VGENA, VGENM,

VGENI, VGENPH), primary particle (PPAT, PPML, PPPHT) and energy (EPAT, EPML, EPIO,

EPPHT) sources. Not all of them are updated in the current version, but all their infras-
tructure (allocation-deallocation etc.) works. In the new version each tally has a logical
switch, e.g. LPDENA for PDENA etc. which allows to switch it off if necessary (consequently,
not to spend memory for this variable etc.). This storage saving option is not completely
cleaned up in the ITER version of EIRENE: it still can be that extra IF statements are
missing in some places.

To allow one more possibility of memory optimization in the new version variable NPLS
(number of plasma species) was complemented by two over variables: NPLSTI (number of
different background ion temperatures) and NPLSV (number of different background ion
velocities). If in the input INDPRO(2)≤0 is specified (normal case for ITER applications),
then NPLSTI=NPLS, otherwise (INDPRO(2)<0) NPLSTI=1. The same is with NPLSV and flag
INDPRO(4). Note, that this option has until now been tested in the ITER version only for
the default case NPLS=NPLSTI=NPLSV. Variables NVOLTL and NSRFTL (number of volume
and surface tallies) are defined now in SETPRM instead of PARMMOD.

The subroutine MCARLO has been cleaned up. Some parts of its code were condensed
into subroutines

16

scal volav tallies.f normalizing the volume tallies with the total fluxes and
cell’s volumes;

integrate tallies.f calculating integrals over the volume tallies;
scal surf tallies.f scaling total surface fluxes with the sources strength;
sum average.f sum of the total fluxes over all strata;
scale tallies.f calculating the scaling factors (particle balance, subroutine

GETSCL) and rescaling the all tallies;
sumostra.f updates the sum of integrals over all strata;
stat sumostra.f sum over all strata for standard deviation;
scale deviation.f rescaling the standard deviation;

Treatment of recombination sources in IF3COP was slightly modified. The particle
source due to recombination is added to PAPL, the energy sources for electrons and ions:
to EAEL and EAPL respectively. Only the array CPPVR (momentum sources due to
recombination) is left locally in INFCOP.

Some obsolete or rudimentary parts have been removed from the code:

• C preprocessor (subsequently, all extension changed to f);

• EIRENE does not use any external libraries (except MPI) any more;

• subroutine eirpbls (extra correction of balances);

• subroutine srfprvsl (some graphics diagnostic);

• special subroutines for output (textoutput, out transrates);

• specification of chemical sputtering data in INFCOP;

• input for all removed features (Blocks 9..11) and corresponding variables in EIRDIAG.

Subroutine FINALIZE EIRENE(NLLAST) which cleans all the EIRENE allocated memory
is an entry of subroutine EIRENE now.

New user features are described in Appendix.

5.2 MPI-related code

The MPI library is not linked to the code directly: it has to be compiled through the
script mpif90 (for Fortran 90) instead of regular compiler’s name.

The code related to the Message Passing is mainly concentrated in directory BROADCAST

and module CPES. The code is taken from the repository version of EIRENE and then
modified (in some cases significantly). The corresponding parts of the code are described

17

below:
broadcast.f broadcasts all variables from root process;
allocate modules.f allocates modules on non-root processes;
broadsput.f broadcasts some variables from SPUTER;
broadref.f broadcasts some variables from REFLEC;
broad eirsrt.f broadcasts variables passed from B2 in EIRSRT;
broad pedist.f broadcasts MPI-related variables from PEDISTS;
broad mpistat.f broadcasts run-time distribution on each processor;
calstr.f collects data for one strata;
collect coutau.f collects data for sum over strata;
collect infcop.f collects sources for B2 (SNI, SMO, SEE, SEI);
collect census.f collects census array;
b2 mpi interface.f an interface to be called at the beginning of B2;

Variables related to MPI are defined in module CPES.f:
MY PE index of actual process;
NPRS number of processes;
PROCFORSTRA(NSTRA,0:NPRS-1) logical table, marks for each strata processors on

which it is run;
NPESTR(0:NSTRA) for each strata: number of processes on which it is

calculated;
NPESTA(0:NSTRA) index of processor on which the sum for this stratum

to be calculated;
NSTRPE(0:NRPES-1) number of strata for each process;

(NSTRA) is the number of strata).
A flow chart of the MPI implementation in EIRENE is shown in Figure 2.
Table PROCFORSTRA allows a flexible way of distributing the strata between processors.

Only if PROCFORSTRA(I,J)=.TRUE. stratum I will be launched on processor J. This array
is set up in subroutine PEDIST (module CPES). It is either read from the input file
(subroutine READ_PROCFORSTRA), see section 6.2, or automatic distribution, see Section 7,
is used. After obtaining PROCFORSTRA subroutine PEDIST corrects the cumulative time
allocated to sample each strata (array XTIM) to match the total allocated time on each
processor.

In EIRENE all numerical input and definition of the atomic data (subroutines INPUT,
SETCON, SETPRM) is performed only on the root process (MY PE==0). After that it is
broadcasted (by subroutine BROADCAST, MPI_BCAST) to other processors (the subroutine
ALLOCATE_MODULES allocates memory on the non-root processors).

In subroutine MCARLO the sampling for the stratum is launched if the correspond-
ing PROCFORSTRA(ISTRA,MY_PE).EQ..TRUE. (here ISTRA is the index of a current stra-
tum). If one stratum is sampled on several processors, then the results are collected
on the process NPESTA(ISTRA) by subroutine CALSTR. This subroutine collects (reduces,
MPI_REDUCE) data over intra-communicators created in advance in entry CALSTR_INIT

(uses MPI_COMM_SPLIT). After that, for the processors on which the stratum data were col-
lected (MY_PE.EQ.NPESTA(ISTRA)) rescaling is performed and sum over strata is updated:

18

Figure 2: Flow-chart of the subroutines EIRENE and MCARLO running with MPI in-
terfaces (NPRS>1).

19

subroutines STATS2, SCAL VOLAV TALLIES, INTEGRATE TALLIES, SCAL SURF TALLIES,

SUM AVERAGE, SCALE TALLIES, ALGTAL, SCALE DEVIATION, IF3COP, SUMOSTRA. After
finishing the strata loop (1000 CONTINUE) data for sum over strata are collected (sub-
routine COLLECT_COUTAU) as well as census array (COLLECT_CENSUS). COLLECT_COUTAU
gathers data over intra-communicator containing only processes listed in NPESTA(ISTRA).

This operation is followed by the serial part, which is performed only on MY_PE==0:
moving sum over strata back to ESTIMS, ESTIMV etc., writing files fort.10 (WRSTRT) and
fort.11, printing routines (OUTPLA, OUTEIR, DIAGNO etc.) and MODUSR.

Arrays of source terms for B2 (SNI, SMO, SEE, SEI) are collected on the root proces-
sor in subroutine COLLECT_INFCOP using point-to-point communications (MPI_SEND and
MPI_RECV). Subroutine WNEUTRALS was modified to read the volume parameters of the
neutrals (dab2, tab2, etc.) only in the entry WNEUSAVE: called in IF4COP in the serial
part. Flux variables (wldnek, wldnep, etc) are calculated individually for each stratum
and collected on the root by COLLECT_INFCOP.

The applied technique of parallelization allows exactly the same way of rescaling (to
enforce perfect particle balance despite statistical errors) as in the serial EIRENE runs.

EIRENE requires a library which supports standard MPI-2. It uses two features
of this standard: statement MPI_IN_PLACE in subroutine MPI_REDUCE and subroutine
MPI_FINALIZED. MPI_IN_PLACE is needed to avoid aliasing: using the same variable as
input and output. It is prohibited by Fortran standards, although some compilers allow
this (e.g. IBM compiler on JUMP).

Some other changes, already in place on the stand alone FZJ EIRENE master, had to
be implemented into the ITER version in order to adopt the code for parallel runs.

• The index of output stream was changed everywhere to IUNOUT (using driver chgun).
IUNOUT=6 on the root (standard output) and 7 on all other processors.

• The index of input stream STANDARD INPUT is now a variable which is equal to 5
(standard input) on one processor and 1 for NPRS>1.

• Subroutine EXIT was replaced by EXIT OWN which calls MPI ABORT to stop all par-
allel processes.

• The initialization procedure scheme was somewhat changed. CALL ALLOC_CESTIM(1)

was moved to stay in front of ALLOC_COMUSR(1). CALL ALLOC_CSPEI was moved
from INPUT to EIRENE. ALLOC_CESTIM(2) is now called from SETPRM instead of
EIRENE.

In subroutine EIRSRT (the interface program which is called from B2) variables trans-
ferred through dummy arguments are broadcasted by BROAD_EIRSRT. To pass around
B2 on all processors except root, subroutine B2_MPI_INTERFACE has to be called at the
beginning of a B2 run. This subroutine makes a call to EIRSRT for MY_PE.GT.0. Subse-
quently, this process is waiting then for the root to call BROAD_EIRSRT which synchronizes
them. Subroutine BROAD_FLUX is used to broadcast the strength of B2 sources (EIRSRT’s
argument FLUXES).

20

New performance diagnostics which measures CPU time spent in different parts of
the code has been added. The corresponding code is located in module CPES. Detec-
tor functions UPDATE_MPISTATDATA, TIME_OF_EIRENE_START and TIME_OF_EIRENE_END.
Subroutine PRINT_MPISTATDATA prints a text file mpistat.dat which shows on each pro-
cessor the time spent for sampling of each strata, number of particles, time for spent for
overhead subroutines (INPUT, rescaling, MODUSR etc.) and for communications.

The procedure of automatic distribution of strata between processors is described in
Section 7.

5.3 Further modifications and bug fixes

General modifications and bug fixes:

1. Module ADSP added: AK’s option for calculating the incident spectra. All related
code (including broadcast) is hidden in the module, access through subroutines with
prefix ADSP_.

2. A bug with NLMPGS has been fixed (see below).

3. Switch NLTRIMESH to use EIRENE only for grid generation.

4. Bug with input in block 5 (FIND_PARAM) has been fixed.

5. WRPLAM can now read fort.13 in both old (2004) and actual formats, distinguishing
between them automatically.

6. Subroutine WNEUTRAL_FLUXES which calculates EIRENE fluxes mapped to the edge
of B2 grid has been added (called in WNEUTRAL).

The fix of the bug with NLMPGS has to be described in more detail. If spatially resolved
surface tallies are applied, then the size of corresponding arrays (variable NLMPGS) depends
of the number of triangles belonging to B2 surfaces. In turn, the code can learn this
number only in IF0COP. In the old version of the code those variables were not corrected
properly after this place. Such a correction has been added, all related arrays can be
allocated only after this point. Module CESTIM was already allocated at the right place.
In modules CGEOM and COMUSR this had to be changed.

In CGEOM array AREAG (surfaces of wall elements, now perhaps obsolete) made a sepa-
rate array (not a part of RCGM1). ALLOC_CGEOM was splitted into two parts, ALLOC_CGEOM(2)
is used to allocate AREAG. In the module COMUSR entry ALLOC_COMUSR(3) was added to
allocate arrays SAREA (surfaces of wall elements) and FLXOUT (array of incident flux for
Roth formula, not yet used). In subroutine EIRENE, CALL ALLOC_CGEOM replaced by
CALL ALLOC_CGEOM(2).

Now the procedure work as follows. Number of triangle sides belonging to B2 surfaces
is calculated in IF0COP, variables NGITT and NLMPGS are re-initialized where, if previously
estimated values (calculated in if0prm) were too small. After that, ALLOC_CGEOM(2) and

21

CALL ALLOC_COMUSR(3) are called in INPUT. Local variable SAREA0 is introduced in INPUT

to temporary replace SAREA when it is not yet initialized. Besides that, extra checks added
to modules CESTIM, CSDEI, CSTEP, PARMMOD.

Optimization of memory usage:

1. Unused tallies switched off in SETPRT (EAPHT...,VXDENA,...,MAPL...);

2. For tallies, not related to BGK, the size is now defined by variable NPLS_TAL, not
NPLS. NPLS_TAL counts only real ion species, excluding BGK species;

For the test cases ITER 1055 (9 ions + 9 BGK species) and ITER 1055p6_be (13 ions
species + 9 BGK species + 5 photons) this optimization allowed to reduce EIRENE
overhead (excluding MODUSR) by a factor of 1.5.

To add Message Passing operations to the modules, wrappers around MPI library sub-
routines are used (file mpi_wrappers.f). This allow replacing them with dummies when
compiling without MPI. Subroutines PEDIST, BROADCAST_MPISTAT, BROADCAST_PEDIST
moved to module CPES. Strata running in parallel on more than one processor are now
explicitly synchronized in time when running with prescribed minimum number of his-
tories. On each processor the startum runs for a fixed amount of time XTIM(ISTRA).
When this time is over, the stratum stops and calls subroutine CPES_SYNCHRONIZE (in
MCARLO). This subroutine adds up the number of particles, which have been sampled on
all processors on which this stratum is running. It checks, is this number is larger than
the prescribed minimum. If not, then the estimated time required to sample the left
trajectories is calculated, and the run is continued. CPES_SYNCHRONIZE is also called if
the maximin specified number of particles is achieved, to avoid communication dead-lock.

6 Technical description II: Installation and usage

6.1 Installing MPICH

A well known free implementation of the MPI-2 standard library MPICH (MPI-CHameleon),
Argonne National Laboratory, was chosen for installation to the ITER system. The most
recent (at the time when the project started) version was 1.0.5p4. The instruction below
explains step-by-step how to install it.

1. To download MPICH2:
http://www-unix.mcs.anl.gov/mpi/mpich/downloads/mpich2-1.0.5p4.tar.gz

2. To unpack it: tar -zxf mpich2-1.0.5p4.tar.gz

3. To create directories for building and installing, e.g.:

mkdir mpich2-install

mkdir mpich2-build

22

4. to set up the name of fortran compiler (e.g. Intel Fortran in bash):

export F77=ifort

export F90=ifort

5. To go to build directory and to run configuration script, e.g.:

cd mpich2-build

../mpich2-1.0.5p4/configure --prefix=/home/kotov/MPI/mpich2-install ...

... > configure.log

Here /home/kotov/MPI/mpich2-install is the full path to installation directory

6. To run make (compiling MPI requires GCC):

make > make.log

make install > make.install.log

7. To add MPI bin directory to the path, e.g.:
export PATH=/home/kotov/MPI/mpich2-install/bin:\$PATH

(this line has to be added to .profile)

8. To create ”secretword” file for MPD (for some security reasons) one has to go to
the home directory and to type:

touch .mpd.conf

chmod 600 .mpd.conf

The file .mpd.conf has to contain the following line:
secretword=<some combination of letters and numbers>

After this procedure the MPI library is installed. The default process management
system delivered with MPICH is MPD. One can check if MPI library and MPD have been
installed correctly by running the command mpich2version. It will print something like
this:

Version: 1.0.5

Device: ch3:sock

Configure Options: ’--prefix=/home/kotovv/MPI/mpich2-install’ ’F77=ifort’ ...

... ’F90FLAGS=’ ’F90=ifort’

CC: gcc

CXX: c++

F77: ifort

F90: ifort

23

Note that it is necessary to install MPI only once in home, but not on each machine to be
used in the MPI ring.

AN IMPORTANT NOTE. In the used version of the MPICH library a bug was discov-
ered (see sub-section ??) which caused a “memory leak” in the code (the code gradually
increased its size in memory). Memory profiler VALGRIND detected a memory leak in
the MPICH library. The bug (a missing call of “free” for a pointer) was found and fixed.
The bug has been confirmed by the developer. To fix it one has to add one line to the
source file
<MPI directory>/src/mpi/coll/helper_fns.c before compiling.

In function MPIC_Send the construction:

if (request_ptr) {

mpi_errno = MPIC_Wait(request_ptr);

}

must read:

if (request_ptr) {

mpi_errno = MPIC_Wait(request_ptr);

if (mpi_errno) { MPIU_ERR_POP(mpi_errno); }

MPID_Request_release(request_ptr);

}

6.2 Compiling and running the code with MPI

The recent EIRENE distribution adopted for parallel runs within SOLPS4.xxx is called
Eirene.mpi. To compile it without MPI, one has to link the *.f files from directory
../Eirene.mpi/broadcast_dummy/ and include mpif.h from this directory. For com-
pilation with MPI one instead has to use directory ../Eirene.mpi/broadcast/ and in-
clude file <MPIdirectory>/mpich2-install/include/mpif.h. Command mpif90 has to
be used instead of the name of the Fortran compiler. This script links all the necessary
library files automatically. One should not use the regular compiler’s name and also not
link the libraries explicitly, because this does not work! Note that the executable com-
piled with MPI can be used on one CPU in exactly the same way as without MPI (as
before). Note also that to run the code compiled with the INTEL compiler one may need
to increase the stack size: BASH command ulimit -s 262144.

Note, that apart from MPI this distribution of EIRENE does not require any other
external library. File eirene_main.f is required only for compiling the stand alone version
of EIRENE (without B2). For coupling with B2 one can choose between two sets of
subroutines, located in directories couple_B2 and couple_Tria, respectively. They are
related to different geometry options in EIRENE: the 2D regular polygonal standard grid
(geometry level LEVGEO=3), in which the cells are quadrangles, and the more flexible
triangular grid (LEVGEO=4), respectively. Presently within SOLPS4.xxx the triangular
grid is the stable option and thus recommended for use, whereas the older standard

24

polygonal grid has not been used and tested since 3 years. The modifications needed in
B2 described in section 6.3.

For making multiprocessor runs using MPICH, one first has to start MPD on the host
machine: mpd &. To find out whether parallel runs are possible, one has to use command
mpdcheck -l. In case of computers in Jülich it prints the following message:

Your unqualified hostname resolves to 127.0.0.1, which is

the IP address reserved for localhost. This likely means that

you have a line similar to this one in your /etc/hosts file:

127.0.0.1 \$uqhn

This should perhaps be changed to the following:

127.0.0.1 localhost.localdomain localhost

According to the policy provided by the Jülich Supercomputing Center (JSC) users at
FZJ are not allowed to change this parameter. Therefore, real parallel runs on regular
LINUX cluster machines are not possible, since they can not tell the other machine their
unique host address. The command mpdallexit stops MPD on the whole MPI-ring (see
below).

On the ITER computer system in Cadarache this problem did not appear. Package
MPICH has a tool mpdboot which automatically creates a MPI ring on the specified
number of computers taken from the list of hosts. Using this tool requires SSH to work
without password. If this is not possible (as it was the case during the project described
here), then one has to create the MPI-ring manually. An example is shown below:

1. Starting MPD on the host (root):
mpd&

2. Typing on the host:
mpdtrace -l

It will print something like this:
edge29.itereu.de_38804 (192.168.0.39)

Those are the host name, the port number and the IP-address.

3. Go to the next machine (to be added to the ring) and type:
mpd -h <host name> -p <port number> &

e.g. in the case in question:
mpd -h edge29.itereu.de -p 38804 &

4. Go back to the host, and check the created ring:
mpdtrace -l

then you will see something like this:

25

edge29.itereu.de_38804 (192.168.0.39)

edge30.itereu.de_33756 (192.168.0.40)

... and so on.
After starting the MPI ring one can run the code on several machines in parallel. In

EIRENE input file one can specify the distribution of strata between processors: array
PROCFORSTRA, see section 5.2. This can be done after block 14, e.g. in this way:

*** INFORMATION_FOR_MPI

NPRS= 2, NSTRA= 8

TFTTTTFF

FTFFFFTF

NPRS =4, NSTRA = 8

TTTTTTTF

TTTTTTTF

TTTTTTTF

TTTTTTTF

The code looks for the key word INFORMATION_FOR_MPI everywhere through the input
file. In each entry: NPRS is the number of processors and NSTRA is the number of strata
(the time census is taken into account: that’s why it is 8 instead of 7 for ITER cases).
The code looks for the combination which corresponds to the current run. If it has been
found, then the code reads logical table which follows immediately after NPRS, NSTRA.
Each line corresponds to one processor. .TRUE. means that this strata has to be run
on this processor, .FALSE.: not to run it. E.g. the entry for NPRS=2 says that strata 1
and 7 will be run on processor 0 and all the rest on processor 1. Entry for NPRS=4 says
that every processor has to sample all strata. The code looks for the MPI data until it
reaches the end of file or the key word END_OF_INFORMATION_FOR_MPI. If it can not find
the appropriate combination of NPRS and NSTRA in the input file, then the default (all
strata on each processor) is used. If a key word AUTOMATIC_DISTRIBUTION is put to this
block, then automatic distribution, Section 7 is applied.

One important note. Lines in PROCFORSTRA which switch on the same strata have to
represent the same pattern. E.g. in case of distribution:

FFFTTTTF

TTTTFFFF

processor 1 will start from the 4th strata and will be waiting then for processor 0 where
this stratum is the last one. Only after that processor 1 will be able to finish its work
while processor 0 will be waiting for it.

To start a parallel run one has to use the script mpiexec from MPICH package. An
example of the corresponding command:
nohup mpiexec -l -n 2 ./linux.Intel_EM/b2eirmpi > b2.log&

Here -n is the flag, which specifies the number of processors (2 in this case),

26

./linux.Intel_EM/b2eirmpi is the name of executable. Option -l enforces printing the
number of process in front of each line passed to standard output. The number for -n

can exceed the number of physical machines in the ring: in this case several processes are
emulated on one physical processor. mpiexec has problem to read long files from standard
input. Therefore, for multiprocessor runs the input is expected in file fort.1 (or it has
to be linked to the input file). For a single processor run the code still expects input in
the standard input stream. Note, that this prohibits from using command mpiexec -n

1: single processor run through mpiexec, which however does not make sense anyway. By
default MPD places the root process on the local host (the machine there mpiexec has
been started).

The process running on the host pipes its printing to the standard output (e.g. b2.log
for the shown example, as usual). For other processes the output is piped to the files
output.0001, output.0002, ..., etc. On each time-step EIRENE prints the extra file
mpistat.dat with run-time data for different strata and different parts of the code. Those
data can be used to optimize the parallelization (distribution of strata between processes
etc.) It is recommended to set EIRENE variable ALLOC (Block 7, 3rd line) to zero. In
this case only the specified number of particles (not the source strength) affects the time
allocated for each stratum.

6.3 Modifications required in B2

To use B2.4 with MPI version of EIRENE one has to add two lines to the code:

1. File driver/b2main.F. Line:
CALL B2_MPI_INTERFACE

has to be added at the beginning of the subroutine.

2. File driver/b2driv.F. Line:
CALL FINALIZE_EIRSRT(LAST)

has to be added right before operator GOTO 50.

The first command skips B2 on all but root process.
Besides that, a bug fix related to neutral radiation in B2 has to be added (see sub-

section 9.1.

7 Automatic load balancing

7.1 Outlook

In case of stratified sampling parallelization of a Monte-Carlo algorithm can become a
non-trivial task. The most obvious procedure would be to sample all strata on each
processor, but in this case the amount of communications is maximal. It is also obvious
that if the number of processors exceeds the number of strata, then one might use one
processor for only one stratum, thus, reducing significantly the number of communications.

27

Therefore, optimizing the distribution of strata between processors can increase scalability
of the code. In order to do this, a set of subroutines which perform such a distribution
automatically was added to the code.

In general, the algorithm first distributes the processors into multi-processor bands
(a single processor is a special case of such a band) and then distributes strata between
those bands depending of the estimated run-time. The main steps of the algorithm are:

1. collecting the run-time information;

2. estimating the expected run-time for the next EIRENE iteration;

3. distributing processors into bands;

4. distributing strata between bands;

It is not a general limitation, but in many places the algorithm assumes homogeneous
system (processors with equal performance).

The run-time information is collected by the subroutine UPDATE_MPISTATDATA (module
CPES.f). At the end of an EIRENE run subroutine NEXT_ITERATION_DATA processes
this information: it calculates the average time spent for one particle at each stratum,
stratum overhead and communication time. A library of subroutines which distribute
strata between processors is located in mpi_balance.f. Those subroutines are called in
EIRENE through interface AUTOMATIC_DISTRIBUTION2.

Subroutine EIRMPI_ESTIMATE_RUNTIME estimates the cpu-time, which will be used to
sample each stratum. After that, subroutine EIRENE_BAND_BALANCE yields the required
distribution. This subroutine checks different variants of distributing processors into
bands, some of them are calculated by subroutine EIRMPI_DISTRIBUTE_BANDS. For each
of those variants subroutine EIRMPI_BAND_BALANCE distributes strata between bands. The
variant with the most optimal distribution (with smallest estimated run-time) is returned.

The consistency of the result is checked finally in EIRENE_BAND_BALANCE (e.g., that
no strata is missing in the resulting table PROCFORSTRA). It is also checked how much is
the gain compared to a uniform distribution (all strata on each processor). If the gain
with the “optimized” distribution is too small, then the uniform distribution is used. The
total time allocated in EIRENE for sampling can be increased automatically, if necessary.

Interface AUTOMATIC_DISTRIBUTION2 is called from subroutine PEDIST if the key word
AUTOMATIC_DISTRIBUTION is placed in the block *** INFORMATION_FOR_MPI of the in-
put file. The automatic distribution is applied only starting from the second EIRENE
iteration: on the first iteration either prescribed or default (uniform) distribution is used.

The subsections below contain more detailed description of the individual steps of the
algorithm.

7.2 Collecting the run-time information

Information about the run-time of the different parts of the code is collected by subroutine
UPDATE_MPISTATDATA.

28

Time required for overhead of one stratum Os is calculated as:

Os =
∑
p

STATIS2...SUMOSTRA +
1

Ps

∑
p

INIT STRATA

Here s is the index of stratum, p is the index of processor, Ps is the number of proces-
sors, on which stratum s is calculated,

∑
p is the sum over such processors. Time for

INIT_STRATA is divided by the number of processors because this part is identical on all
processors.

Communication time C of strata s scaled to 2 processors is calculated as:

Cs =
1

τ(Ps)Ps

∑
p

CALSTR

Here function τ(P) takes into account, how the communication time scales between P pro-
cessors. In this case it is assumed that τ(P) = P . Note, that COUTAU and COLLECT_INFCOP

are not taken into account here, since they are related to global (not further optimizable)
overhead (together with INPUT, OUTPUT, MODUSR etc.).

If no statistic on communication time is collected for stratum s, then the maximum
communication time estimated from other strata is used.

Average time spent for one particle by the stratum s:

ts =

∑
p Tps∑
p Nps

Here Tps is the time, spent for sampling of stratum s on processor p, Nps is the number
of particles, sampled for stratum s on processor p.

7.3 Estimating the run-time of each stratum

The estimate of the expected run-time is based on the: i) time, allocated in MCARLO
(variable XTIM); ii) prescribed minimum number of histories (NMINPTS, referred below
as Ms); iii) ts from the previous subsection. First, weights w of each stratum are calculated
(subroutine EIRMPI_ESTIMATE_RUNTIME):

ws =
XTIMs − XTIMs−1

XTIMS − XTIM0

Here S is the number of strata.
The total time, available on all processors:

Ttot = (XTIMS − XTIM0) P

Here XTIM is taken on the root, P is the number of processors. Note that XTIMS−XTIM0

is equal to NTCPU/NPRS but not NTCPU, because this variable is corrected in routine
MCARLO.

29

Ttot, ws, ts, and Ms are then sent to subroutine EIRMPI_ESTIMATE_RUNTIME which
returns the expected run-time of each stratum Ts. This subroutine works as follows. For
each stratum s it compares two times:

T1 = T ∗
tot

ws

W
and T2 = Ms · ts

At the beginning T ∗
tot= Ttot and W =

∑S
s=1 ws. If T2 > T1, then time Ts := T2 , T ∗

tot :=
T ∗

tot − T2 and W := W −ws. Otherwise Ts := T1. The cycle is continued for other strata.
After the last stratum number S has been processed, the routine is repeated for strata,
for which Ts 6= T2. If no further assignments Ts := T2 have been made during this cycle,
then the iterations stop. This algorithm can lead to the result, that

∑S
s=1 Ts > Ttot. One

also has to be careful: NMINPTS should be specified for all strata or not specified at all,
otherwise some strata can get zero cpu-time and hence be turned off by EIRENE.

7.4 Distributing processors into bands

Estimated Ts, ts, Os and Cs are sent to subroutine EIRENE_BAND_BALANCE. In this sub-
routine, first, a relative time is calculated:

Rs = Ts/Tcpu, Tcpu =
1

P

S∑

s=1

(Ts + Os)

Cs is not taken into account at this stage.
The strata are divided into two groups: with Rs > 1 (multi-processor strata) and

Rs < 1 (single-processor strata). The bands for multi-processor strata are allocated in
subroutine EIRMPI_DISTRIBUTE_BANDS. At this stage, a homogeneous system is assumed.
The number of processors allocated for multi-processor bands is Pm = [

∑
Rs>1 Rs], where

brackets [...] denote closest smaller integer. The algorithm works as follows. Initially,
each stratum receives Bs = [Rs] + 1 processors. The initial number of bands is equal to
the number of multi-processor strata. After that loading of processors in each band is
estimated: Ls = Rs/Bs, and the stratum with the smallest Ls is taken. For this chosen
stratum, Bs is reduced: Bs := Bs− 1. If Bs stays > 0, then Ls is recalculated for new Bs,
otherwise, this stratum is not checked any more. The routine is continued until

∑
s Bs

does not reach Pm.
Since this algorithm is very primitive and does not take into account many other factors

(e.g. communication time, statistical variance per particle, etc.), several distributions are
checked and the most optimal of them is returned. These distributions are the following:

1. Allocating Pm processors for multiprocessor bands, run EIRMPI_BAND_BALANCE to
divide them into bands, the rest P − Pm processors are treated as single-processor
bands.

2. Same as previous, but the rest P − Pm processors are combined into one multi-
processor band.

30

3. Allocate Pµ=min(Pm + 1,P) processor for multi-processor bands, the rest P − Pµ

processors are treated as single-processor bands.

4. Same as previous, but the rest P − Pµ processors are combined into one multi-
processor band.

5. All available processors are combined into one multi-processor band.

In general, distributing processors into bands is the weakest point of deriving a load
balancing procedure.

7.5 Distributing strata between bands

Strata are distributed between bands in subroutine EIRMPI_BAND_BALANCE. This is the
most universal subroutine in mpi_balance.f. In principle, it can be used even on non-
homogeneous systems. The input parameters: Rs, Bb and Hsb. Here Bb is the rel-
ative time, available on the band b, and Hsb is the relative overhead (including com-
munications) as a function of stratum s and band b. Bb and Hsb are calculated in
EIRENE_BAND_BALANCE, internal subroutine PREPARE_DATA. Bb is simply equal to the num-
ber of processors in the band, Hsb=Bb ·Os/Tcpu+Ps · Cs/Tcpu · τ(P).

The algorithm used in EIRMPI_BAND_BALANCE works as follows. It looks for the stratum
with largest Rs. After that, it looks for the band with largest available time Bb − Hsb

and puts this stratum there. The time, available on the band is recalculated: Bb :=
Bb −Rs −Hsb. The procedure is repeated for the remaining strata.

In the trivial case of strata with equal Rs = S/P this algorithm leads to optimal
distribution. However, it is easy to show that it does not always lead to mathematical
optimum. E.g., P=2 and Rs = (0.6, 0.5, 0.4, 0.3, 0.2). The resulting distribution will be:
1st CPU, (0.6, 0.3); 2nd CPU, (0.5, 0.4, 0.2). Whereas the optimal distribution would be:
(0.6, 0.4) and (0.5, 0.3, 0.2).

Subroutine EIRMPI_BAND_BALANCE also returns the relative cpu-time, allocated on each
band:

Ab =
∑
s

(Rs + Hsb)

where
∑

s is calculated over all strata, placed on this band. Ab/Bb is then used in
EIRENE_BAND_BALANCE to evaluate, which distribution is the most optimal.

8 Conclusions, Outlook

A fully backward compatible upgrade of B2-EIRENE (ITER version: SOLPS4.2) with
parallelization of EIRENE itself and the EIRENE-B2 interface EIRCOP has been achieved,
tested, and delivered to the ITER team. First results with the revised code have been
presented both at PSI and EPS conferences 2008.

Algorithms of automatic nearly optimal distribution of strata (sources) between pro-
cessors and synchronization of runs between processors have been developed. A factor of

31

6 speed-up on 8 processors can be achieved for regular ITER cases. Further optimization
and parallelization of the serial (non Monte-Carlo) part of the code is necessary to further
increase scalability.

Applying parallelization in B2-EIRENE code allows a more flexible way of using the
computational resources and broadens the scope of applicability of the code. However,
this also increases technical complexity and requires additional user support. Even for
well-parallelizable (in theory) problems, like linear Monte-Carlo transport solvers, modi-
fying a large existing code represents a big technical and numerical challenge. Its testing
and commissioning requires large amount of time, because of inevitable occurrence of
unpredictable problems in unpredictable places.

A key issue is now to identify optimal iteration pathways towards convergence, bal-
ancing iteration errors vs. statistical noise on the route to converged solutions. This work
will be carried out under a special HPC project funded from FZJ and granted for this
particular optimization study (July 2008 – June-2009) for SOLPS4.3.

References

[1] D. Reiter, http://www.eirene.de, “Manual”, Chapter 1

[2] Reiter et al., Fus. Sci. Technol. 47 (2005) 172

[3] B. Wilkinson, M. Allen, “Parallel Programming”, 2nd ed., Pearson Education Inc,
Upper Saddle River, NJ (2005)

[4] W.R. Martin, T.-Ch Wan, T.S. Abdel-Rahmann, and T.N. Mudge, The International
Journal of Supercomputer Applications, Vol. 1, No. 3, (1987) p57-74

[5] Reiter, D. May, Chr. et al.,, J.Nucl.Mat. Vol.220, p987 (1994)

[6] Börner, P, “Coupling of statistical “Monte-Carlo” solvers with numerical
fluid solvers”, Diploma thesis, Univ. Hagen, Germany (2005) (in german),
http://www.eirene.de, “Recent reports”

[7] Reiter, D., “Progress in 2-Dimensional Plasma Edge Modelling”, J. Nucl. Mat.,
Vol.196-198, p241 (1992).

[8] Maddison, G.P., Reiter, D. “Recycling Source Terms for Edge Plasma Fluid Models
and Impact on Convergence Behaviour in the BRAAMS B2 Code”, KFA Jülich
report, Jül-2872 March 1994

[9] Keunings, R., “Micro-Macro methods for the multi-scale simulation of viscoelastic
flow using molecular models of kinetic theory”, Rheology Reviews 2004, 67-98

32

9 Appendix

9.1 Patch for neutral radiation in B2

An old bug in SOLPS.xxx (distinct from original B2-EIRENE as still maintained at FZJ)
with respect to calculation of the neutral radiated power in B2 was fixed. The bug was
related to calculation of the neutral radiation losses on the B2 side of the code system
(the old treatment has been left as a “feature” for backward compatibility). The old way
of calculating the radiated power radarr (B2, neutrals.F) is:

radarr =
∑

is

sni(is) · pot(is)− see− edissml .

The first error in this expression is the assumption that plasma fluid species “is” is identical
(one-to one) to EIRENE atom species “IA”. This may be true in all ITER applications
since about 1995, but certainly not generally in B2-EIRENE, where the species relations
between B2 and EIRENE have been kept more general already from the original design
onwards.

In the above expression the sum is taken over all (assumed) atom species (strictly: ion
species), sni(is) is the total particle sink of atom “is”, see is the total energy loss of
electrons, pot(is) is the ionization potential of atom “is”, edissml is the dissociation
energy of molecules, calculated in WNEUTRAL as edissml = PMML · 4.48 eV with PMML,
apparently, the total loss rate of (hydrogenic) molecules. This treatment overestimates
the total hydrogenic radiation, because it assumes that all the energy spent for dissociation
which exceeds the potential energy of molecules (4.48 eV) goes into radiation, whereas in
reality it goes mainly into kinetic energy of resulting atoms.

To correct this, one more array has been added to EIRDIAG: eneutrad, total neutral
radiation. This array is filled in WNEUTRAL as:

eneutrad = EAEL−∑

IA

PAAT(IA) · POT(IA)

It is thus the atomic radiation, calculated directly from EIRENE. PAAT and EAEL are
default EIRENE tallies: particle sink for atom IA and electron energy loss due to atoms
respectively. The radiation due to molecules and molecular ions is currently not taken
into account. For this similar expressions, involving EIRENE tallies EMEL and PMML, etc...
would have to be added.

In B2, neutrals.F the treatment of neutral radiation depends now on the value of
switch l neutrad: if it is ≤0, then the old implementation is used, otherwise eneutrad

is taken. Note, that the variable eneutrad has to be also added to EIRDIAGUSE and to
B2PLOT (file ngread.F). Extra printing from the version of A. Kukushkin was added to
WNEUTRAL as well.

The following construction in neutrals/neutrals.F has been added:

if(l_neutrad.le.0) then !{

33

c

c*** correct radiation losses for the molecule dissociation

c

do iy=1,ny !{

do ix=1,nx !{

k=region(ix,iy,0)

radarr(ix,iy)=radarr(ix,iy)-edissml(ix,iy,1,1)

rad_neutr=rad_neutr-edissml(ix,iy,1,1)

rdneureg(k)=rdneureg(k)-edissml(ix,iy,1,1)

recycereg(k)=recycereg(k)-edissml(ix,iy,1,1)

end do !}

end do !}

else !}{

c

c*** calculate radiation losses directly (at the moment only atoms)

c

rad_neutr=0.

rdneureg=0.

recycereg=0.

do iy=1,ny !{

do ix=1,nx !{

k=region(ix,iy,0)

radarr(ix,iy)=eneutrad(ix,iy,1)

rad_neutr=rad_neutr+eneutrad(ix,iy,1)

rdneureg(k)=rdneureg(k)+eneutrad(ix,iy,1)

recycereg(k)=recycereg(k)+eneutrad(ix,iy,1)

end do !}

end do !}

end if !}

For consistency, one line has to be added to B2PLOT, file double/ngread.F:

if(jvft44.ge.960511) then

do is=1,nmoli

call gfsub2(44,nxdd,nydd,nnx,nny,srcml)

call gfsub2(44,nxdd,nydd,nnx,nny,edissml)

end do

if(jvft44.ge.20070912)

. call gfsub2(44,nxdd,nydd,nnx,nny,eneutrad) !VK

read(44,’(2i6)’) nlimi,nstsi

A bug with calculating the incident heat flux density on the outer target in B2PLOT
has to be fixed as well.

(Note added after submitted draft version, in final version of this report (March 08):

34

This bug in B2PLOT has been found and fixed. Revised version of B2PLOT has been
send to ITER Cadarache)

9.2 User features, added to EIRENE

Some minor user option were added during the current project.

• Variable MPTS in Block 7 (3rd line, second entry): a multiplication factor for the
specified number of particles for all strata.

• An option which allows exact comparison of single- and multi-processor runs: reset
of the random number generator after each NPTSDEL histories and initialize it in the
same way, as it is initialized if one strata is running on several processors.

Variable NPTSDEL is assigned for each stratum in EIRENE input block 7 (6th entry
in the same line as NPTS - the number of histories). The corresponding code is added
to MCARLO.

• In EIRENE input block 11, switches for diagnostic output, which passes through
the buffer (printed using WRITE(0,*)):

XXXXX XXXXX XXXXX XXXXX XXXXX ...

TRCDBG2,TRCDBGE,TRCDBGM,TRCDBGF,TRCDBGL ...

TRCDBGS,TRCDBGG,TRCDBGMPI,TRCDBGC

TRCDBG2 more detailed level of output;
TRCDBGE tracing from EIRENE;
TRCDBGM ... MCARLO;
TRCDBGF ... FOLNEUT;
TRCDBGL ... LOCATE;
TRCDBGS ... routines for surface interaction;
TRCDBGG ... geometry routines;
TRCDBGMPI ... MPI routines;
TRCDBGC ... coupling routines;

EIRENE now also prints a text file mpistat.dat containing run-time information for
strata sampling and other parts of the code on each processor.

35

