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Abstract

A multi-fluid code for study of the two-dimensional structure of the tokamak edge
plasma is presented. The code models an electrically neutral and current-free plasma
containing several ion species and electrons. Each ion fluid is governed by a Navier-
Stokes system of equations. Coupling between the plasma species occurs through ioniza-
tion and recombination processes, interspecies friction, electric and thermal forces. and
{emperature equilibration. The code is specifically intended for study of the transport
of helium and impurities through the high-density edge plasma Eli_v_'i_s_aggz_lﬁfcr a tokamak

reactor experiment.




1. Introduction

A detailed understanding of multi-sp;:cicﬁ transport through the tokamak edge plasma is
required in order to Ejﬂjht pumping requirements for helium exhaust from a reactor
experiment and to Eredic;,the penetratiop into the plasma core of impurities released
from the wall and plates. To date, most of the work on modelling of helium and impuri-
ties in tokamaks has been concerned with the radial transport in the inner plasma. Issues
of plasma-wall interaction and the associated impurity relense can be modelled to some
extent by using such radial transport codes, but cnly in so far as poloidel asymmetries

" and transport along magnetic field lines do not play a significant role. This excludes
the study of transport through the edge plasme under conditions of high recycling on
divertor plates or limiters. Mtﬂti-speciﬁ plasma transport along the magnetic field
in the tokamak boundary laver has been studied numerically by Neuhauser, Schneider
et al. (1), and by Harbour and Morgan {2]. Their work demonstrated the importance of
the longitudinal electric field and of thermal forces, which act differently on the various
jonic species, for calculating the parallel transport of minority jons. However, they did
not treat the radial transport.

The present paper describes a numerical model for a two-dimensional multi-fluid piasma.
The code is specifically inteaded for study of the transport of helium and impurities
through the high-density edge plasma envisaged for a tokamak reactor experiment. The
equations used are of Navier-Stokes form for ench jon fluid. The relative concentrations
of the jon fluids are unrestricted. The jon fuids have a common temperature, which is
distinct from the electron temperature. The electron density and velocity follow from

] the assumptions of charge neutrality and absence of electric current. Coupling between
the plasma species occurs through ionization and recombination prmmﬂ,_ixﬁmpccies
friction, electric and thermal forces, and temperature equilibration. The numerical
methods used here are well able to handle these coupling terms. -

This code has been developed under a Euratom/NET contract. It supercedes the pre-
vious single-ion edge plasma code described in Refs. [3]-{7]. Both codes are described
in Ref. (8]. This code and the previous one have been made available to the NET team
through the group of M.F.A. Harrison at the UKAEA Culham Laboratory. The pre-
vious code has already been used extensively for modelling studies of the edge plasma
in NET and INTOR; e.g. see Ref. (9], The present code is organized in 8 very similar
_ way, but it is more general in allowing several ionic species, and is somewhat more
- robust because of improvements in the numerical scheme. The multi-species capability
. '.-Il.:ms.been implemented in such a way that ther= ix Do ﬁcna.lty when the code is used to
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model a plasma that has just one ion species, and it is therefore recommended to use
the present code in preference to the previous one in all cases.

Related two-dimensional edge plasma models have been developed at NRL (10], Prince-
ton [11]-{13}, Kurchatov [14]-(16], JAERI (17], {18], and JET {19], but all these models
deal only with a single ion species. Although the need for a consistent two-dimensional
transport model of a multi-species edge plasma has been felt for some yeart now, the
code described here and in Ref. [8] seems to be the first actual implementation of such
a model. '

The outline of the report is as follows, Section 2 presents the mathematical model. In
Sec. 3 the numerical approach s discussed, and in Sec. 4 two applications are treated.
Conclusions are given in Sec, 5. Appendix A describes the organization of the code, and
Appendix B describes in detail some routines that may have to be changed for different

applications.
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2. Mathematical Model

The purpose of this Section is to present the equations used to describe the two-dimen-
sional multi-species edge plasma.

Outline. The present equations form 2 direct extension of the two-dimensionsl edge
plasma model described in Refs. (3]-(7), which considers electrons and a single ionic
species only. The equations are of Navier-Stokes form as regards the parallel fiow and
ui a diffusive form in the radial direction. There are N ion fluids, which may have
‘fferent velocities but have a commen temperature, For each ion fluid a (1 € ¢ < &)
there is a continuity equation governing the particle deunsity n,, a momentum equation
governing the parallel velocity u,;, and a diffusion equation governing the radial velocity
v,. The electron density and velocity follow from the assumptions of charge neutrality

and absence of an electric current. The ele¢tron and ion temperatures T, and 7 are -
governed by convection—conduction equations. The poloidal flow velocity u, is computed

as (Be/Blu,,, therefore ignoring a diamagnetic conttibution ( By and B are the poloidal
 and total field strengths, respectively).

Classical multi-species plasma transport theary [20]-{22] gives rise to a rather compli-

_:ated system of force-friction refations, both for the parallel and for the radial transport.
This theory has been used here as a guide to obtain a simplified set of equations for
the ‘parallel transport. These equations are consistent with the standard classical the-
ory in the limit when one fluid is dominant and all others are trace impurities, and
they remain mathematically sound also at finite relative concentrations. The radial
transport is taken to be anomalous in our model. Interspecies friction and temperature
equilibration are classical.

Qur interest is restricted for the present to steady solutions of the eguations. It is te
be noted that, although the perallel transport coefficients are much larger than the
perpendicular coefficients, also the paralle] length scale is larger than the perpendicular
scale, 50 the problem really is two-dimensional. The nonlinearity of the transport coef-
ficients (e.g. heat conduction coefficients proportional to temperature to the power 5/2,
temperature equilibration coefficient proportional to temperature to the power —3/2)
makes it difficult to predict whether any particular term will dominate any other, and
even within one calculation the relative magnitude of the transport terms usually varies
by several orders of magnitude over the gcometnca.i domain, For cases of interest the
ﬂw_veloc:ty usul.lly 15 subsomc, increasing to somc W]nc:ty at an outﬂow bou.nda.rv
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Equations. Specifically, we solve the following system of equations

Continuity of species a (1 S a £ N):
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In these equations:

z,y = poloidal and radial coordinate,
V9 Ax, hy = metric coefficients,
B4, B = poloidal and total magnetic field,
Z,.,m, = charge number and mass of an ion of species a,
S5+ Smu, = volume sources of jons and momentum for species a,
5%, S = volume sources of electron and ion energy,
n%. 0y = poloidal and radial viscosity coefficients for species a,
‘ Fpp = friction force on ion species @ due to species &,
Ce, ¢; = coefficients in the thermal force for electrons ind'iogs, _
Dy, 3} = diffusion coefficients for species a,
K3, k% = heat conduction coefficients,

k = energy equipartition coefficient.

Auxiliary quantities used here and elsewhere are: ny = 3 n., 7, & D s Zeng,
Pa = ™unie, Po = Ty po = NTey s = (Ba/Bluga, e = (L, ZaNtatia}/ ey
Ve = (Z. ZgNaVs )fncl Zeg = (Z. Zﬁn‘]/(z‘ Z¢n.).

The coordinate system may be curvilinear although it must be orthogonal. By a proper
choice of the local metric coefficients it is possible to represent the geometric effects as.
sociated with changes in the major radius and in the poloidal and toroidal field strength.

The source terms S3, Si.. .+ Sk, 5% in Eqgs. (1)~(5) are associated with ionization, re-
combination and radiation, and have a complicated nonlinear and non-local dependence
on the unknowns of the system. The model used to obtain the source terms is highlj'I
problem dependent.




y?
are anomalous and problem dependent. The poloidal transport coefficients are re.

lated to parallel coefficients according to nf = (B}/B*)n§, xt = (B}/B*)«! and
xy = (B}/B*) x}. For the parallel electron heat conduction coefficient x¢ a flux-limited

Transport coefficients. The radial transport coefficients ny Dn, Dy, x5, and n.',

expression is employed. The coefficient is computed from the classical Spitzer-Harm

coefficient xisy according to the formula ;-3:#"&':‘ -
1 ~
——— ?f" Jihvt}
[ +1~ Y /
e [ 3
K=K 14— [
1 1SH gFL ] ' ( )
where g5y = —rjsu8T./0z is the classical conductive electron energy flux density,

gFL = an,I}\/T.Em. is the flux limit, and the parameters a = 0.12 and 4 = 1 were
chosen in accordance with Refs. (23] and [24].

The equipartition coefficient k, parallel heat conduction coefficients xisp and ni,, and
the parallel viscosity coefficients 77; are computed using the formulae given in Ref. [22]

for the case of a simpie plasma (one ionic species), with the following replacements:

Equipartition coefficient:
Simple plasma: ko Zim inin, \
Multiple ion species: ko Z' Z3m>'n,n,
Parallel Spitzer-Harm electron heat conduction coefficient:
Simple plasma: Kisn & z! M
Multiple ion species:  rigy Z‘ Zung/ Z. Zin,
Parallel ion heat conduction coefficient:

Simpie plasma: nil = Zf‘mi-u ?

Multiple ion species: ni‘ o Zn Z;zn,/ Z‘ Zing 2momyf{m, + my)

Parallel jon viscosity coefficient:
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Multiple ion species:  nf & Z7*n /Y Z¥nsy/2](my +1m) .

- v e - =
. .o . Ce et L.

Simple piasma: n; x 2, 'm




These prescriptions were obtained by consideration of a simple random-walk model of
the transport processes. Although this is a severe simplification of the complete multi-
species transport theory, the expressions have the correct limit in the cese when one

species dominates, and they are considered adequate for the present application.

The friction force F,, (proportional to uy, — %,,) is taken from Ref. [22]. The tgrm
u- Vp, in the energy equations reprasents work done by the eleciric field.

Boundary conditions. Counting derivatives, one sees that a total of 3N + 4 condi-
tions is required on the boundaries perpendicular to the z-coordinate, and that 4V + 4
conditions are required on boundaries perpendicular to the y-coordinate. For the N mo-
mentum equations (2) and for each of the two energy equations (4) and (5), conditions
must be given on each segment of the boundary. For the combination of the continu-
ity equation (1) and the diffusion equation (3) for each species, one condition must be
specified on the boundaries perpendicular to the z-coordinate, and two conditicns on
the boundaries perpendicular to the y-coordinate.

The boundary conditions appropriate to the two energy equations may specify either
the energy fluxes or the temperatures, or more generally they may specify the energ.a,r
.. luxes as function of the temperatures and density. For the momentum equations we
usual'y impose a sonic flow condition on one boundary segment perpendicular to the
z-coordinate, and zero flow or zero shear elsewhere. For each combination of continuii.
equation and diffusion equation, on one face perpendicular to the z-direction and on
both faces perpendicular to the y-direction, sither a density, or a particle flux, or some
relation between the two may be specified.




3. Numerical Solution

This Section gives a description of the discretization and solution methods employed
for the system of equations (1)~(5).

Outline. The present code follows closely the approach that has been established in the
author’s earlier edge plasma modelling work and that that is described in Refs. [4] and
(8], Both codes are based on a finite-volume discretization of the conservation equations
on a topologically rectangular mesh, using methods that were largely developed by
D.B. Spalding and co-workers (25), [26]. The discrete coefficients depend continuously
on the local cell Péclet number, and give central differencing and pure convective upwind
differencing in the limits of small and large Péclet number, respectively. A nonlinear
modification enhances stability in the presence of strong gradients. The discretization is
fully jmplicit in time. A distributive relaxation method, leading to an elliptic aquation, is
employed to obtain the pressure correction at each iteration. The discretized equations
are solved with the aid of Stone’s “Strongly Implicit Procedure” (271, which is based on

incomplete L*U decomposition.

In comparison with the previous code the principal difficulty in the numerical treatment

of the system {1)—(5) lemg between the ion flow velocities.

A less severe problem is the possibility of strong coupling between the densities of i 10ns

Mbounng charge states in situations where both icnization and recombination are
Important

Spatial discretization. This subsection describes in general terms the finite-volume
discretization scheme that is in employed in the code. The description folloys Patankar o
[25]. We refer-to a convection-conduction eguation written in conservation form:

V-(pug—-T -Vp)=S5. (7)
~ e
It is assumed that T is diagonal when the equation is expanded on coordinates, so that
1 8 [i . 788

Let us consider the three-dimensional case. The region is divided inio rectangular cells

(control volumes), with ¢ discretized at cell centers and u at cell faces. For each interior
mesh point P the differential equation (7) may be integrated over the control volume
surrounding P. Let the neighbours of P be dencted by E. W, N, 5, T, B (east, west,
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north, south, tap, bottom), and let the corresponding cell faces be denoted by subscripts

e, w, n, 8, t, b, The volume integral can be expressed as a sum of six surface integrals:

fffsdv:.'}.‘_j“'ﬁ_}ﬂ-'f:"'-}t—Jm

L
where, e g, for the ‘east’ face:

J.= f pusd = L 22 hshy drydas (9)

In order to armive at a discretization scheme of seven-point molecule form (five-point

form in two dimensions) the expression (9) is to be approximated by

" “ﬁﬁ"?pﬁ%ﬁ&r S

and simnilarly for the other fluxes. The coefficients o and § will depend on approxi-

.mations F, and D, to the strength of flow throngh the surface and the conductance
. between the mesh points: F, ~ (pu1).4, and D, =~ (7). A./d,, in which 4, is the area
-of the ‘east’ cell face and d, is the distance between the points P g.nd'.E .

- Two discretization schemes used often are the central difference scheme, which employs

F a=F/2+D, f=- ,f2+D
d.= nw"'l"t d‘f :GEald.u "{E

and the upwind scheme, for which

a = max(F,,0) + D,, f = max(~F,,0)+ D"

As is well known, the central difference scheme is second-order accurate but un$table at
high cell Péclet number, P, = F,/D,, whercas th?.{pw_/winé sr.’h;::ql\:\is always stable but

is only first-order accurate.

Through consideration of the exact solution to the one-dimensicnal convection—conduc-
tion equation with constant coefficients Patankar [25] is led to define two intermediate
schemes, both of which approximate central differencing at low cell Péclet number and
upwind differencing for zero diffusion at high cell P. The general form of the coefficients

in these and other schemes i3

a = max(F,,0} + D, A= ma.x{ F..D:I-F-D _ (11}

"c N - - b

where D! i3 an approximation to D,|P,}/(exp(|P,}) - 1). For the m1ﬂ:__n;a.r_§cbeme
D' = max(0, D —|Fe|/2), and fer the power law scheme D! = I}, max{0, {1—|P I;‘;I,IJ]"‘) '

i0




These schemes reduce to upwind differencing for zero conduction at |P! > 2 and at
|P| = 10, respectively. In practice there is little difference between the results cbtained
by using the power law scheme or the piecewise linear scheme. All the caleylations

reported in Refs. [3]-[7] were done using the power law scheme.

In the present code we employ for the temperaturs eguations s modification of the
piecewise linear scheme that is more robust in cases when strong gradients are pressnpt,

We now use Eq. (11) together with the assignment

D, = max (0, D, - |F\ Zer 2]}

where o is the strictly positive quantity that is being discretized. In comparison with the
piecewise linear scheme this discretization enhances the strength of conduction whenever
the values of ¢ vary widely over one mesh spacing. The modification Lelps to avoid
convergence to a solution in which the temperature is negative at some point in the

grid.

The continuity equation is purely convective, In order to svaluate, e.g., the mass Jux
through the ‘east’ cell face, it 15 natural to employ the assignment F, = p,u,4,, where
s« ={pp + pp)/2. (Remember that g is discretized on cell centers and u on cell faces)
That is in fact what was done for all the caleulations reported in Refs. {3}-[7]. At

present, however, we emplov

{pp +pE)/2, Hulep—peg)=0

Pa i (12)

2oppefipp +p2), Hudpp—pe) <0

The mass flux F, = p,u.4, computed by using Eq. {12) is a ¢ontinuous function of pp,
pE, and w,. Furthermore, {pp + pg)/2 = 20ppz/(pp + £E), with equality hoiding only
if pp = pg. In comparison with the standard assignment, g, = (pp + £5)/2, the mass
flux is reduced when the flow is from a cell of lawer g into a cell of higher p. This heips
to keep g positive. The procedure bears some relation to upwind differencing, but it
is significant only for large differences in p between neighbouning cells and maiptains

second-order accuracy.




Pressure correction procedure. The need for a special solution procedure for the
continuity equations may be seen most clearly by considering the system of equations
that governs the incompressible fiow of a simple fuid. If one would consider the mo-
menium balance equation to govern the velocity field and the energy equation to govern
the temperature, then the continunity equation would have to govern the pressure. But

the pressure does not even appear in that equation. *

For compressible flow the pressure is a derived quantity, and the density is one of the
primary variables. The continuity equation then appears suitable in principle for relax-
ation of the density field, but severe problems appear for low Mach number flows. when
the fluid is effectively incompressible. The traditional recommendation is to employ an
explicit discretization in time for the continuity equation, irrespective of the treatment
mﬂi‘er equations in the systemn. The timestep used for the continuity equation is
then governed by the CFL condition based on the velocity of sound.

In our code a method due to Patankar and Spalding is employed. Their approach is

- to satisfy the continuity equation through simultaneous local changes to the density,

pressure and velocity fields, We will present the method here with reference to a single,

..steady-state equation of the form 8(nu)/8z + 8(nv)/8y = 5., noting that it is equally

well applicable to an implicit treatment of a time-dependent equation. At each iteration

on the continuity equation the following coupled adjustments are made:
(p—p+é

n—n-+xf
< 3¢ | (13)

U—uUu—7C, —
* 8z

v-—v«-c,g—j

Inserting these changes into the continuity equation and retaining only the terms that
are linear in £, one sees that £ is to be obtained as solution to a standard convection—

conduction equation:

‘ B_i (n:u& - Ney g—:) b oy (n-.uf nc, g) =r (14)

where r is the residual before relaxation, r = S, — 8(nu)/8z — 8(nv)/8y. Thus, through
the relations (13} a relaxation procedure that is suitable for Eq { 14] is turned into a
relaxation procedure for the continuity equation [1}. The lm:al coeiﬁr::ents %, ¢ and ¢,




are chosen in order to minimize the damage that the replacements (14) do to the other
equations of the system, i.e. the equation of state and the two equations that govern

the velocities.

In order not to ypset the equation of state the assignment « == (&n/8p)r is appropriate.
The choice of the coefficients ¢, and ¢, is less straightforward and requires consideration
of the discretized momentum equation. The discrete equation for the z-velocity u has
the form
ép
Auw=58_.— E
We assume that A is s diagonally dominant operator of five-peint form, and that any
term that does not fit into A has been moved into the right hand side. The preseription
of Patankar and Spalding for the cocfficient ¢z Is new to &:tﬁg, = 1/a at each point,
where « is the diagonal coefficient in the matrix 4. In this way the effects of the two
adjustments & — u — ¢, 3£/8z and p — p + £ partially cancel out in the z-component
of the momentum equation. With the usual fluid flow problems the presenption for
¢, is similar to that for ¢, but in the system {1)—(3) the y-velocity is governed by a
diffusion equation instead of by a momentum balance squation. In order to let the two
adjustments v — v — ¢,8{/8y and p — p + £ cancel approximately in the diffusion
equation an assignment of the forrm ¢, = xD/n is indicated.
C-a}- £, fer

Overall iteration procedure. In order to obtain a steady solution to the discretized
svstem of equations (1)-(5), a procedure is employed in which each equation is relaxed
in turn in a cyclic order until convergence is achieved. Time-stepping is employed, but
only to obtain some under-relaxation; the discretization is fully implicit ai-u:l within any
single timestep the equations are not relaxed to convergence. Each cycle consists of the

following actions:
1. The source terms 57, S, g 5% and St are computed.

2, The momentum balance equations {2) are relaxed by changes to the field u,, for
each species a.

3. The total momentum eqguation is relaxed through identical changes in the velocities

of all species.

4. The fields v, are adjusted to satisfy the diffusion equations (3).

5. The continuity equations (1) are relaxed thmugn simultaneous changes to n., U4,

" and v,, fnr each species a.
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6. The electron and ion energy equations (4) and (5) are relaxed separately by changes
to the fields T, and T, respectively.

7. The total epergy equation (4) -~ {5} is relaxed by identical changes to T, and 7.
8. The contirmuity equations are relaxed once more, 25 in step 2.

Relaxation of each of the five-point equations is done by means of one or two iterations
of the Strongly Implicit Procedure of Stone [27], as implemented in the NAG Ubrary
code DO3UAF {28], The residuals of all equations are monitored in order to decide
whether a converged solution has besn achieved.

A special complication in the system {1)-(5) is the presence of 1wo energy ;eéuatiuns
which can be strongly coupled over at least part of the domain through the term
k{T. — Ti). Relaxing these equations separately will then lead to very slow conver-
gence. (Analogous problems occur in the modelling of chemically reacting flow.} As
seen above, this problem is dealt with by relaxing not just the separate energy equa-
tions but also the total energy equation. The total energy equation is relaxed through
identjcal changes to 7, and T;, and in this process the energy coupling term can be
ignored.

For the relaxation of the individual momentum equations in step 2. the friction terms are
treated implicitly. For the additional relaxation sweep in step 3 the inter-species friction
can be ignored, since it contributes no net momentum source, For each individual species
the coefficient ¢, needed for the distributive relaxation of the continuity equation is the

sum of two terms: one term corresponding to the momentum relaxation for that species

individually, and one term corresponding to the total momentum relaxation.

lonization has been treated implicitly in the calculations that are shown in Sec. 4, but
it could have been treated explicitly or one can alternate between an explicit and an
implicit treatment as suggested by Lackner et al. [29].

The procedure described above successtully solves the strongly coupled svstem of equa-
tions for the multi-fluid plasma. Evidently an alternative approach would be to rely
on a locally one-dimensional splitting method, where the basic component of the iters-
tive process is the solution of the coupled system of equatious involving all unknowns
along one poloidal or radial coordinate line, However, a comparison between the two
approaches has not been made for the present system of equations.




4. Example Calculations

Calculations made with the previous single-fluid edge plasma code have been presented
in Refs. [3]~[7], and in several contributions to the INTOR workshop (see also Refs. [8]
and [9]). In those references the

variation cf the assumptions made about the core plasma density and about the energy

is has heen on parametric studies, involving

transport coefficients. The principal concern was with the peak temperature near ma-
terial surfaces and the power load on these surfaces as function of the free parameters

in the model.

In this Section the results of two specific applications of the multi-Buid code are pre-
sented. One application is representative for the ASDEX divertor and scrape-off plasma,
and the other applies to the limiter edge of the conceptual TFCX experiment. The
ASDEX simulation pertains tc a two-ion-species plasma containing similar amounts
of hydrogen {protons) and deuterium. The TFCX simulation is concerned with he-
linm transport and models three ion fluids: a hydrogen fluid with mass number 2.5

{deutertum—-tritium), a He!* ﬂui.d, and a He?* fluid.

The ASDEX simuilation. The purpose of this simulation is to demonstrate the abil-
ity of the rode to handle a sitnation in which there exist large concentrations of more
than one ionic species—a case for which some numerical methods would fail to converge
because of the strong frictional coupling between the ion fiuids. In order for the sim-
ulation to have some physical interest as well it was decided to model an edge plasma

containing similar amounts of hydrogen and deuterium.

Figure 1 shows a poloidal cross-section of the ASDEX experiment, with the domain
of the calculation indicated. This region is mapped to the rectangular mesh shown in
Fig. 2. The size of the region is 1.0 m % 0.04 m and the mesh contains 32 x 24 ccils which
are strongly concentrated in front of the divertor target plate. The metric coefficients
/9, h, and h, were taken as constants in this calculation, and By/B was assumed to
bave the constant value 0.08,

The two ion species were 'H* and *H'*. For the paralle! transport coefficients 02,
x5, mil, and the equipartition coefficient k we tock the classical values as described in
Sec. 2, with a flux limit on ] eccording to Eq. {6). The radial transport coefficients
were assigned the following anomalous values: for both species {(a = 1,2) D% = 2 m?/s,
Dy =0, and 0y /man, = 0.2 m?/s, while furthermore Ky /me = 4 m?/s and rcljﬂi

0.2 m?/s. These radial transport coefficients are near the upper end of the rmg: fmmd

empirically for the ASDEX edge plasma.
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Fig. 1. Geometry of the ASDEX scrape-off layer and divertor.
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Fig. 2. The computational mesh for the ASDEX study.
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The boundary conditions were chosen as follows:

—~ On the interface with the main plasma, the ion densities, parallel Jow velocities
and two temperatures were prescribed: ny = 0.9 x 10" m™?, n3 = 0.9 x 10'®* m~3,
v =0,u2=0,7. =80¢V and T} =80 V.

— On the outer wall we prescribed zero trangverse particle flux, zero shear, and
"
pedestal temperatures T, = 2 ¢V and Tj = 2 &V,

- On the upstream boundary the following symmetry conditions were specified:
Ong/0z =0, uge =0 (e =1,2}, 87,/8z =0 and 8T;/8z = 0.

- On the divertor plate we specified flow at the common scund velocity for both
species: u; = uy3 = \/p/p. We also specified the energy fluxes Q. = §unueT, and
Q=Y (&nau. T + %mun,udu?,], in which &, = 4.0 and & = 2.5.

To obtain the volume sources 5%, §.,.,., SE and 5% we relied-en a simple mode] far the
_ hydrogen recycling. The flux of plasma ions impinging on the divertor plate was assumned
to be completely converted into a fiux of neutrals flowing along the poloidal coordinate
and away from the plate at a velocity u, = v’m . {Recycling coefficient unity.)
These neutrals were ionized according to an approximation to the collisional radiative
cross-section, which was taken as {zv) = 3 x 10~!* x a?/(3 + a*} m*/s, in which a =
T./{10 eV). These approximations are based on data in Ref. [30]. With each ionization
event, whether involving D-T or He, was assuciated an electron energy loss of 25 eV
(representing both the ionization energy and the radiation in multistep processes) and
an ion energy gain of 5 eV (representing the kinetic energy of the neutral particle). The
racmentum source from jonization processes was ignored in view af the small pitch angle

of the field lines,

’
The results of this calculation are shown in the contour plots, Figs. 3-6.

Figure 3 shows the density fields n; and n; {hydrogen and deuterium, respectively).
The hydrogen and deuteriwm density profiles remain virtually identical through most
of the scrape-off layer. In the recycling zone in front of the target plate the density rise
for deuteriumn takes place in a narrower region and reaches a higher vaiue than that
for hydrogen. The reason is that the recycling deuterium neutrals are slower than the
hydrogen neutrals, by a factor that is the square root of the mass ratio, and therefore
they become ionized closer to the target plate.

Figures 4 and 5 show the elcctron temperature 7, and the ion temperature 73, It can be

sesn that the two temperatures are not the same. In the hotter region of the scrape-off
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Fig. 6. Contour plot of the Mach number of the parallel flow. The
increment between the dotted contours is 0.01; between the solid
contours it is 0.05.

layer, outside the recycling zone, the strong parallel conductivity causes the tempera-
tures to be nearly constant along the magnetic field. This effect is more pronounced for

the electron temperature than for the ion temperature.

.Figure 6 shows the Mach number of the parallel flow, computed as uje / \/p_/; (This is
the parallel electron velocity normalized to the sound velocity of the fluid as & whole).
The flow is subsonic everywhere, but approaches sonic velocity at the divertor plate.
Notice that there exists a large region of recirculating flow, driven by the very localized

recycling process.

The TFCX simulation. The immediate aim of the present plasma code is to aid in
the study of helium transport in the edge plasma of a fusion reactor. The ratio between
the concentration of helium near the limiter or divertor plate and the concentration in
the main plasma is of interest for reactor désign, since it determines the amount of gas

that must be pumped in order to keep the central helium density at an acceptably low

level. This factor of helium enrichment or dilution depends in a complicated way on the

l. plasma flow in the scrape-off layer and on the helium recycling process, and cannot be
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assessed in a realistic way except through detailed numerical simulation. As an example
we present here a calculation for the edge plasma in the conceptual TFCX experiment.
This calculation is a multi-species version of work done in collaboration with C.E. Singer

and presented in Ref. [7].

Figure 7 shows a poloidal cross-section of the TFCX design, with the domain of the
calculation indicated. This region is mapped to the rectangular mesh shown in Fig. 8.
The size of the region is 4.0 m x 0.2 m, and it is divided into 32 x 24 cells. As in
the ASDEX example, the metric coefficients /g, h. and h, are constants, and in this
calculation Bg/B = 0.2.

The three ion species were H!™ at mass number 2.5 (representing D-T), “He'™ and
4He?~. For the parallel transport coefficients and the equipartition coefficient we took
again the classical values, modified by the flux limit on xj. The anomalous values for

the radial transport coefficients were the same as those used for the ASDEX study.
The boundary conditions were the following:

- On the interface with the main plasma, the densities of D-T and He?*, the radial
" flux of He'™, the parallel flow velocities of D-T and He?*, the radial momentum flux
associated with He!™, and two temperatures were prescribed: n; =7 X 10° m~3,

nave = 0, n3 = 5 x 1088 m~3, uy; = 0, manauyz = 0, yy3 = 0, T = 150 eV, and

— On the outer wall we prescribed zero transverse particle flux, zero shear, and

pedestal temperatures T, =2 eV and T; = 2 eV.

~ On the midplane and on the downstream boundary inward from the limiter, sym-
metry conditions were specified: 8n,/8z = 0, uy, = 0 (fora=1,2,3), 8T./8z = 0,
and 8T;/8z = 0. i

- On the limiter plate we specified sonic flow at the common sound velocity: uye =
/p/p (for a = 1,2,3); and energy fluxes Q. = é.neu.Te and Qi = Y (binauTi +

%manauau;‘;a), with §. = 4.0 and §; = 2.5.

The deuterium~—tritium recycling model used to calculate the volume sources was similar

to the one used for the ASDEX example, but it proceeded in two stages. The recycled

neutral flux travels first along the poloidal coordinate for a distance calculated from

' the local ionization rate coefficient, and then it travels radially inward for again such a

“distance. In this way we take into account to some extent the effect of the inclination

of the limiter surface, which causes the neutral flux coming from the limiter to move

preferentially inwards. The recycling coeflicient was set to 0.98.
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Fig. 9. Contour plot of the density of the D-T fluid in the TFCX
scrapeoff layer. The increment between the dashed contours is
5 x 1018 m'3; between the solid contours it is 2.5 x 10*° m~3.

The helium recycling model has the same structure as that for the D--T fuid, but of
course both Hel!™ and He?* recycle into He!*. The collisional radiative cross-section
for ionization of neutral He was approximated by the expression (ov) = 2.5 x 10714 x
a?/(20+a?) m3?/s, in which a = T./(10 eV). The cross-section for ionization of Hel*

He?+ was approximated by (ov) = 4 x 1075 x a? /(50 + @?) m?3/s, and the cross-section
for ionization of neutral hydrogen by (cv) = 3 x 1071 x a2/(3 + a?) m®/s. These
approximations are again based on Ref. [30]. With each ionization event, whether

involving D-T or He, was associated an electron energy loss of 25 eV and an ion energy

gain of 5eV.
The outcome of this calculation is shown in Figs. 9-14.

The deuterium-—tritium ion density is shown in Fig. 9. Figures 10 and 11 show the
density of Hel'™ and He?*, respectively. It is seen that singly charged helium exists in
significant concentrations only close to the limiter plate. In comparing Figs. 9-11 it is
notable that the density rise of He?* takes place over a much wider region than that
of either D-T or He'*. This is a combined effect of the flow in the plasma. and of the

relatively low cross-section for ionization to He®*
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In the present calculatioa the prescribed ratio of He to D-T on the outer boundary of
the main plasma was 7.1%, while for the ratio of the flux of He (both 1+ and 2+) to
D-T on the target plate we find a value of only 2.6%. This represents a significant and

unfavourable reduction of the helium concentration in the region where pumping has

to take place. Much more detailed recycling models than the present one are, required,
however, in order to predict accurately the pumping performance of any configuration.

The present result must therefore be taken as indicative only.

Figures 12 and 13 show the electron and ion temperatures, respectively. The dominating
effect of parallel electron heat conduction is again clearly visible. A large electron

temperature gradient along the field occurs only in the high-recycling zone.

Figure 14 shows the Mach number of the parallel flow, computed as uy./+/p/p. Notice
again how the localized recycling process creates a recirculating flow throughout a sub-
stantial part of the scrape-off layer. The direction of the flow is away from the limiter
in the vicinity of the separatrix. This causes a concern that impurities released from

the limiter tip will be carried into the main plasma.




5. Conclusions

The modelling of helium pumping and impurity penetration requires accurate and ef-
fective models both for transport in a multi-species plasma as well as for plasma-wall
interaction, and the results of such calculations may be quite sensitive to details of the
recycling model employed. A code such as presented here is an indispensable tool in
such studies. However, an improved treatment of neutral particles, whether based on
a diffusion model or on Monte Carlo calculations, is very desirable, and more effort in
that direction is required. Another area where more effort is desirable is to include

diamagnetic transport terms in the equations

The calculation times required for the present code are comparatively modest (e.g. less
than 3 minutes of Cray-1 time for each of the calculations presented above), so that an
extension of the simulation to more than three fluids is feasible from a computational
viewpoint. Application of the code to the study of transport of light impurities should,
therefore, pose no special problems. Modelling of heavy impurities will be feasible
provided that one restricts consideration to low charge states, which vis not unreasonable

for the cold scrape-off layer.
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Appendix A. Code Organization

This Appendix is addressed to the reader who has access to the code and wishes to use
it. Much effort has been made to make the code transparent, and the Appendix and
the code listing may be studied concurrently.

L 4
Principal routines. The more important routines in the code and their mutual rela-

tionships are summarized here.

b2main - main program. Calls b2init, b2ctrl, b2ceps, b2eval, b2moni. Defines the
size of the grid and the number of species, declares the principal program variables,
initializes the system (routine b2init), and performs an iterative process to solve the

equations. Each iteration involves calls to b2ctrl, b2ceps, b2eval, and b2moni.

b2init — subroutine. Called by b2main, calls phygeo. Defines the geometry (subroutine
phygeo) and initializes the state of the plasma.

b2ctrl - subroutine. Called by b2main on each iteration. Sets certain physical and
numerical parameters for one iteration. This routine is described in more detail in

Appendix B.

b2ceps - subroutine. Called by b2main on each iteration. Calls egstat, physrc, phyvis,
phydif , phythe, phyegp, srcrnod, mombal, parbal, enebal. Performs one iteration of a
relaxation process for the solution of the complete system of equations. The relaxation

process is described in Section 3 of this report.

b2eval - subroutine. Called by b2main on each iteration. Evaluates certain auxiliary

functionals of the estimated solutior (mainly one-dimensional projections of ,the two-

dimensional fields).

b2mon: - subroutine. Called by b2main on each iteration. Provides monitoring output

on each iteration, and final output at the conclusion.

phygeo — subroutine. Called by b2init. Defines the geometry and the grid. This routine

is described in more detail in Appendix B.

egstat — subroutine. Called by b2ceps. Computes the total pressure and the electron

, density. These are auxiliary quantities, not governed by differential equations.

physrc - subroutine. Called by b2ceps. Computes linearized expressions for external

sources of ion number (each species), momentum (each species), ion energy, and electron

"energy. This routine is described in more detail in Appendix B.




phyvis — subroutine. Called by b2ceps. Computes the viscosity coefficients for each

species.

phydif - subroutine. Called by b2ceps. Computes the diffusion velocity field for each

species.

phythc — subroutine. Called by b2ceps. Computes the 'poloida.l and radial thermal

conductivities for electrons and ions.

phyegp — subroutine. Called by h2ceps. Computes the coefficient of electron-ion tem-

perature equilibration energy transfer.

srcemod — subroutine. Called by b2ceps. Computes additional contributions to the
source terms: (a) contributions associated with the implicit time discretization; (b)
contributions in the momentum and energy equations due to the electron pressure gra-
dient, the thermal force, and ion—ion friction; (¢) numerical terms that vanish in steady

state, but that serve to stabilize the iteration.

mombal — subroutine. Called by b2ceps. Evaluates the residual and performs relaxation

for the momentum balance equations (called once for all species).

parbal — subroutine. Called by b2cep.s.h Evaluates the residual and pei'forms relaxation

for the continuity equations (ca.lléd separatély for each species).

enebal — subroutine. Called by b2ceps. Evaluates the residual and performs relaxation

for the two energy equations.

Principal variables. The following Fortran variables (parameters, scalars, and arrays)

occur in many routines throughout the code.

nz, ny - integer. The number of interior cells along the z- and y-axis, réspectively.
With boundary cells included there are (nz+2)*(ny-+2) cells in the mesh, indexed from

(0:nz+1,0:ny+1). nz and ny are initialized in b2main and are never changed.
nzd, nyd - integer constant. Used instead of nz and ny in array declarations.
nfld - integer constant. Number of ion species.

pt — real constant. The mathematical constant =.

me, mp — real constant. The electron and proton mass, respectively, expressed in

kilograms.

ev, ge — real constant. The magnitude of 1 eV in Joules and of the elementary charge

in Coulombs. (The numerical values are equal.) -
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mi, zi — (1:nfld) real array. The ion mass in kilograms and the ion charge number,

respectively, for each species. Initialized in b2main and never changed.

vol, gz, gy, sz, sy, rr - (0:nzd+1,0:nyd+1) real array. These arrays describe the local
metric properties of the grid. If (iz,1y) is in (0:nz+1,0:ny+1) then vol(iz, ty) is the
volume of the (iz,#y) cell, gz(iz, iy) is the mverse of the z-diameter, gy(iz,1y) is the
inverse of the y-diameter, and rr(iz, iy) is the ratio By/B. If (iz,1y) is in (0:nz, 0:ny+1)
then sz(iz, iy) is the area of the face between cells (iz,ty) and (iz+1,1y). K (iz, iy) is in
(0:nz+1, 0:ny) then sy(iz, 1y) is the area of the face between cells (iz,y) and (iz, iy+1).

The grid metric is initialized in phygeo and is never changed.

ni = (0:nzd+1,0:nyd+1, 1:nfld) real array. The number density for each species. Ini-
tialized in b2init and updated under control of b2ceps.

uu, v, up ~ (0:nzd+1,0:nyd+1, 1:nfld) real array. The poloidal velocity, radial veloc-
ity, and parallel velocity, respectively, for each species. At present the only difference
between uu and up is a factor By/B. If a diamagnetic velocity is included in the model
the distinction is more significant. These fields are initialized in b2init and updated

under control of b2ceps. ’

te, t1 — (0:nzd+1, 0:nyd+1) 1eal array. The electron- and lon-temperatures, respectively,

expressed in Joules. Initialized in »2init and updated under control of b2ceps.

fraz, fniy — (0:nzd+1, 0:nyd+1, 1:nfld) real array. The ion flux in the z- and y-direction,

respectively, for each species. Initialized in b2init and updated under control of b2ceps.

feez, feey — (0:nzd+1,0:nyd+1) real array. The electron energy flux in the z- and
‘y-direction, respectively. Initialized in 42init and updated under control of b2reps.

feix, feiy — (0:nzd+1,0:nyd+1) real array. The ion energy flux in the z- and y-direction,

respectively. Initialized in b2init and updated under control of b2ceps.

visz, visy — (0:nzd+1,0:nyd+1, 1:nfld) real array. The ion viscosity coefficients for the

z- and y-direction, respectively, for each species. Computed in phyvis.

hcze, hcye — (0:nzd+1,0:nyd+1) real array. The electron heat conduction coefficients

for the z- and y-direction, respectively. Computed in phythec.

hezi, heyt — (0:nzd+1, 0:nyd+1) real array. The ion heat conduction coefficients for the

z- and y-direction, respectively. Computed in phythc.

~ (0:nzd+1,0: nyd+1) real array. The electron-ion energy equipartition coefficient.

Computed in phyegp.
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snic, sntv — (0:nzd+1,0:nyd+1, 1:nfld) real array. The coefficients in the ion source

linearization for each species. Computed in physrc; additional terms included in srcmod.

smoc, smov — (0:nzd+1,0:nyd+1, 1:nfld+1) real array. The coefficients in the momen-
tum source linearization for each species as well as for the sum of all species. Computed

in physrc; additional terms included in srcmod.

seec, seev — (0:nzd+1, 0:nyd—+1) real array. The coefficients in the electron energy source

linearization. Computed in physrc; additional terms included in srcmod.

seic, setv — (0:nzd+1,0:nyd+1) real array. The coefficients in the ion energy source

linearization. Computed in physrc; additional terms included in sremod.

resco — (0:nzd+1,0:nyd+1, 1:nfld) real array. The residual of the continuity equation,
for each species. Computed in parbal.

resmo - (O:nzd+1,0:nyd—1,1:nfld+1) real array. The residual of the momentum bal-
ance equation, for each species separately and for all species together. Computed in

mombal.

resdi ~ (0:nzd+1,0:nyd+1, 1:nfld) real array. The residual of the diffusion equation, for

each species. Computed in b2ceps from the result of phydif.

resee, reset — (0:nzd+1,0:nyd+1) real array. The residual of the electron energy and

the ion energy equation, respectively. Computed in enebal.

cornt - (O:nzd+1,0:nyd+1, 1:nfld) real array. The latest correction made to the ion

density, for each species. Computed in parbal.

corup — (O:nzd+1,0:nyd+1,1:nfld+1) real array. The latest correction made to each

ion parallel velocity field separately and to the bulk ion velocity. Computed,in mombal.

corvv — (0:nzd+1,0:nyd+1, 1:nfld) real array. The latest correction made to each ion

diffusion velocity field. Computed in b2ceps from the result of phydif.

corte, corti — (0:nzd+1,0:nyd+1) real array. The latest corrections made to the electron-

and ion-temperatures, respectively. Computed in enebal.
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Appendix B. Problem-Dependent Routines

The routines phygeo and physrc are properly considered as part of the problem specifi-
cation. The routine b2ctr! specifies numerical control parameters for each iteration and
may also be used to specify a physical continuation procedure. These three routines are

likely to vary between applications, and are therefore described in more detail here.

Routine phygeo. The purpose of this routine is to specify the geometry and the grid

metric. The routine is called once in the initialization phase of the computation.

The heading for routine phygeo is as follows:

subroutine phygeo (nx, ny, nxd, nyd, xx, yy,
vol, gx, gy, sx, sy, rr)

* -- input arguments --
integer nx, ny, nxd, nyd

* -~ output arguments --
real xx(0:nxd+1,1:*), yy(O:nyd+1,1:%), .

vol(0:nxd+1,0:nyd+1), gx(0:nxd+1,0:nyd+1),
gy(0:nxd+1,0:nyd+1), sx(0:nxd+1,0:nyd+1),
sy(0:nxd+1,0:nyd+1), rr(0:nxd+1,0:nyd+1)

The geometry is topologically rectangular. Cne must choose a mapping of the physical

region in the poloidal plane to a rectangle in the z-y plane, with the flux surfaces

corresponding to lines of constant y. Therefore, z is a poloidal coordinate and y is a

radial coordinate.

The input arguments nz and ny specify the size of the grid. The grid contains nz
interior cells along the z-coordinate and ny interior cells along the y-coordinate. The
total number of cells is (nz+2)*(ny+2); the outer rim of cells is used to impose the
boundary conditions of the problem. The cells are indexed over (0:nz+1,0:ny+1). nz
and ny are both greater than 0.

The input arguments nzd and nyd are used instead of nz and ny in the array decla-
rations. Therefore, nzd > nz and nyd > ny. Elements outside the (O:nz+1,0:ny+1)

subrange of any (0:nzd+1,0:nyd+1) array should never be referenced.

The output arguments zz(0:nz+1,1:2) and yy(0:ny+1, 1:2) specify the coordinates of
the mesh. For (iz,:y) in (0:nz+1,0:ny+1) the ‘center” of the (2x, 1y) cell has coordinates
z = zz(iz,1) and y = yy(iy,1). For (iz,1y) in (0:nz,0:ny+1) the face between cells
(iz,1y) and (iz+1, iy) has z-coordinate zz(iz,2). For (iz,iy) in (0:nz+1,0:ny) the face
between cells (iz, ty) and (i:z:,iy~+1)’ha.s y-coordinate yy(1y,2). ‘
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The output arguments vol, gz, gy, sz, sy, rr specify metric properties of the grid. If
(iz,1y) is in (0:nz+1,0:ny+1) then vol(iz, 7y) is the volume of the (iz, iy) cell, gz(iz, iy)
is the inverse of the z-diameter, gy{iz, 1y) is the inverse of the y-diameter, and rr(iz, 1y)
is the local ratio By/B. If (iz,1y) is in (0:nz, 0:ny-+1) then sz(iz,1y) is the area of the
face between cells (iz,ty) and (iz+1,ty). If (iz,iy)is in (O:nz+1,0:ny) then sy(iz, iy)

is the area of the face between cells (iz, ty) and (iz, iy+1). !

The base unit for the grid metric is the meter. A common factor in vol, sz, and sy
will scale out of all differential equations. For definiteness, however, it is advisable to
compute these quantities as though each cell extends all the way around the toroidal
circumference of the torus (the ignorable coordinate). In that case, integrated quantities

correspond to the total content (of particles, energy, or whatever) in the torus.

For a large aspect ratio torus, gz and sy are almost independent of the y-coordinate,
and their variation along the z-coordinate is associated with non-uniformity of the mesh
in that direction. The variation of gy and sz is associated both with nonuniformity of
the mesh in the y-direction and with variation of the distance between flux surfaces

along the z-coordinate.

For accuracy it is desirable that the grid metric parameters for the interior cells are
smoothly varymng over space. This is achieved by constructing the grid via a smooth
wion of a uniform grid. The outer rim of cells, used only to impose the boundary
conditions, may be chosen to be very thin. In spite of the terminology, it is not required

that the cell ‘centers’ be located exactly midway between the cell faces.

Routine physrc. The purpose of this routine is to compute the external sources of
particles (each ion species), momentum (each ion species), electron energy, and ion
energy. These are the terms 53, 57, , Sg, and S§ in Eqgs. (1)~(5). The routine is called
once every iteration. The sources may be arbitrary nonlinear and nonlocal functions
of the state of the plasma, although the code is not guaranteed to converge for any
choice of source term. Sources in the outer rim of cells serve to impose the boundary

conditions.

Routine physrc is to compute the coefficients of a local linear expression that approx-
imates the source term in the vicinity of the present state of the plasma. Each ion
numb;r source is linearized with respect to the corresponding ion density, each mo-
mentum source with respect to the corresponding parallel velocity, the electron energy
source with respect to the electron temperature, and the ion energy source with respect

to the ion temperature.



The heading for routine physre is as follows:

subroutine physrc (nx, ny, nxd, nyd, nfld,
mi, zi, iter, ff, xx, Y,
vol, gx, gy, sx, sy, rr,
ni, uwu, vv, te, ti, pr, ne, phi, up,
snic, sniv, smoc, smov, seec, seev, seic, seiv, w)

* -- input arguments --

integer nx, ny, nxd, nyd, nfld, iter

real mi(1:nfld), zi(1:nfld),
£f£(1:%), xx(0:nxd+1,1:%), yy(O:nyd+1,1:%)
vol(0:nxd+1,0:nyd+1), .
gx(0:nxd+1,0:nyd+1), gy(O:nxd+1,0:nyd+1),
sx(0:nxd+1,0:nyd+1), sy(0:nxd+1,0:nyd+1),
rr(0:nxd+1,0:nyd+1),
ni(0:nxd+1,0:nyd+1,1:nfld),
uu(0:nxd+1,0:nyd+1,1:nfld),
vv(0:nxd+1,0:nyd+1,1:nfld),
te(0:nxd+1,0:nyd+1), ti(0:nxd+1,0:nyd+1),
pr(0:nxd+1,0:nyd+1), ne(0:nxd+1,0:nyd+1),
phi(O:nxd+1,0:nyd+1), '
up(O:nxd+1,0:nyd+1,1:nfld)

-

* -- output arguments --
real snic(0:nxd+1,0:nyd+1,1:nfld),
sniv(0:nxd+1,0:nyd+1,1:nfld),
smoc(0:nxd+1,0:nyd+1,1:nfld),
smov(0:nxd+1,0:nyd+1,1:nfld),
seec(0:nxd+1,0:nyd+1), seev(0:nxd+1 ,0:nyd+1),
seic(0:nxd+1,0:nyd+1), seiv(O:nxd+1,0:nyd+1)

* -- workspace arguments --.- x4
real w(0:nxd+1,0:nyd+1,1:nfld)

The input arguments nz, ny, nzd, and nyd have the same meaning as in routine phygeo.

The input argument nfld gives the number of ion species. Because the content of routine
physrc is problem-dependent, it may well be written in such a way as to tolerate just

one specific value of nfld.

The input arguments mi(1:nfld) and zi(1:nfld) specify the mass of each ion species and

its charge number, respectively. The mass is expressed in kilograms.

The input argument iter is an iteration counter. In many cases it may be ignored by
physrc. It may be used, for instance, when one wishes to alternate between iterations

the implicit /explicit treatment of ionization and recombination processes.
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The input argument ff(1:*) holds certain global parameters of the plasma, computed
in b2eval (quo vide). It may often be ignored by physrc, but is available if needed.

The input arguments zz(0:nz+1,1:2) and yy(0:ny+1,1:2) are as computed in phygeo.
The input arguments zz(0:nz+1,3:x) and yy(0:ny+1, 3:*) hold certain one-dimensional
reductions of jhe two-dimensional plasma profiles, again computed in b2eval. These

can often be ignored by physrc.
The input arguments vol, gz, gy, sz, sy, and rr are as computed in phygeo.

The input argument ni(0:nz+1,0:ny+1, 1:nfld) specifies the ion density, expressed in

-3

m™3, in each cell for each species.

The input argument uu(0:nz,0:ny+1,1:nfld) specifies the ion flow velocity in the z-

direction, expressed in ms~!, on each cell z-face for each species.

The input argument vv(0:nz+1,0:ny, 1:nfld) specifies the ion flow velocity in the y-

direction, expressed in ms™?, on each cell y-face for each species.

The input arguments te(0:nz+1,0:ny+1) and t:(0:nz+1,0:ny+1) specify the electron
temperature and the ion temperature, respectively, in each cell. Temperatures are

expressed in Joules.

“The input argument pr(0:nz+1,0:ny+1) specifies the total pressure, 1 Jm’ 3 in each

celi.

3

The input argument ne(0:nz+1,0:ny+1) specifies the electron density, in m™, in each

cell.

The input argument phi(0:nz+1,0:ny-+1) should be ignored; it represents the intention

to include at some future time a proper treatment of the electric potential.
s

The input argument up(0:nz,0:ny+1, 1:nfld) specifies the parallel ion flow velocity, ex-

pressed in ms™!, on each cell z-face for each species.

The output arguments snic(0:nz+1,0:ny+1,1:nfld) and sniv(0:nz+1,0:ny+1, 1:nfld)
specify a linearization for the particle source, S3, integrated over each cell, for each
species. That is, for (iz,iy) in (0:nz+1,0:ny+1) and i in (1l:nfld), the expression
snic(iz, iy, is)+sniv(iz, iy, is)*ni(iz, iy, ts) should approximate the particle source for

species is in the (iz, iy) cell. Units are s~*.

The output arguments smoc(0:nz, 0:ny+1, 1:nfld) and smov(0:nz, 0:ny+1, lznﬂd\) spec-
ify a linearization for the momentum source, 5,‘,‘,,_‘“, integrated over each z-staggered
cell, for each species. For (iz,iy) in (O:nz,0:ny+1) and is in (1l:nfld), the expres-

sion smoc(iz, iy, is)+smov( iz, iy, i8)*up(iz, iy, is) should approximate the momentum
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source for species is in the staggered cell that surrounds the (iz,1y) z-face. Units are

kgms™2.

The output arguments seec(0:nz-+1, 0: ny+1) and seev(0:nz+1,0:ny+1) specify a lin-
earization for the electron energy source, Sg, integrated over each cell. For (iz,1y) in
(0:nz+1,0:ny+1), the expression seec(iz, iy)+seev(iz, iy)*te(iz, iy) should approximate

the electron energy source in the (iz,1y) cell. Units are Js™?!

The output arguments seic(0:nz+1,0:ny+1) and seiv(0:nz-+1,0:ny+1) specify a lin-
earization for the ion energy source, Si, integrated over each cell. For (iz,1y) in
(0:nz+1,0:ny+1), the expression seic(iz, 1y)+sew(iz, iy)*ti(iz, iy) should approximate

the ion energy source in the (iz,iy) cell. Units are Js™!

A suitable choice of the source term linearization allows to impose either Dirichlet or
Neumann or mixed boundary conditions. and also to specify internal boundary condi-

tions. The book by Patankar [25] contains worthwhile advice on these matters.

Routine b2ctrl. The purpose of this routine is to set some physical and numerical

parameters that control the iteration. The routine is called once every iteration.

The heading for routine b2ctrl is as follows:

subroutine b2ctrl (nx, ny, nxd, nyd, nfld,
mi, zi, iter, ff, xx, yy,
lastit, rxf, rxd, freq, style)

* =-- input arguments --
integer nx, ny, nxd, nyd, nfld, iter
real mi(1:nfld), zi(i:nfld),
££(1:%), xx(0:nxd+1,1:+), yy(O:nyd+1,1:%)

* -- output arguments --
logical lastit
real rxf, rxd, freq
integer style(1:2)
The input arguments nz, ny, nzd, nyd, nfld, mi(1:nfld), zi(1:nfld), iter, fF(1:%),
zz(0:nz+1, 1:+), and yy(0:ny+1,1:#) all have the same meaning as in routine physrc.
The output argument lastit specifies whether the present iteration is to be the last one
(.true. if yes). For a fixed iteration process, lastit depends only on the value of iter.

i
Alternatively lastit can be made to depend on a norm of the residuals, computed in

b2eval (quo vide) and stored in ff.

The output argument rzf specifies a relaxation factor- for the present xteratlon The

computed corrections to the state of the plasma are all multlphed by r:cf before being




added to the old values. A good value for rzf is to be found by experimentation; it will

be in the range 0 to 1.

The output argument rzd provides another way to stabilize the iteration process, as
explained here. Each partial differential equation from Egs. (1)-(5) is discretized in five-
point form, typically with a positive diagonal and negative off-diagonal terms. Before
computing the incomplete L*U decomposition of the matrix, each diagonal element d
will be replaced by the maximum of d and of —rzd times the sum of the off-diagonal
elements in the corresponding row. If rzd > 1 then this procedure makes the matrix
diagonally dominant by rows. (A suitable source term linearization already guarantees
that the matrix is diagonally dominant by columns). Experience shows that rzd = 1 is

a good choice.

The output argument freg corresponds to the inverse timestep (in s™!), and provides a

third way to stabilize the iteration. A good value is to be found by experimentation.

The output argument style(1:2) specifies the level of output that is to be produced on
the present iteration by routine b2mon:. style(1l) controls printed output, and style(2)
controls graphical output. A negative value implies no output will be produced. A value
0 is suitable for the initial call. style(1) = 1 causes one line of output to be produced
and is usefu! for momitoring convergence. style(1) = 2 produces more elaborate vutpui,
while style(1) = 3 is most elaborate and is suitable on the final iteration. styls{(2) > 0
produces graphical output, and is suitable on the final iteration. If an error occurs in
the present iteration, then the assigned value of style will be disregarded in- b2moni,

and error output will be produced.

Besides defining the output arguments lastit, rzf, rzd, freq, and style(l:‘.é), the routine
b2ctrl may define or update certain physical parameters in common blocks; e.g. variables
that control a continuation procedure. Such a common block may be shared by the
routine physrc, or by other physics routines. The way this is done is problem dependent.
For the calculations shown earlier in this paper, the outflow Mach number was used as

a continuation parameter. This number was updated in b2ctrl and used in physrc.
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